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ON MORI CONE OF BOTT TOWERS

B. NARASIMHA CHARY

Abstract. A Bott tower of height r is a sequence of projective bundles

Xr
πr−→ Xr−1

πr−1−→ · · · π2−→ X1 = P1 π1−→ X0 = {pt},
where Xi = P(OXi−1 ⊕ Li−1) for a line bundle Li−1 over Xi−1 for all 1 ≤ i ≤ r and P(−)
denotes the projectivization. These are smooth projective toric varieties and we refer to the
top object Xr also as a Bott tower. In this article, we study the Mori cone and numerically
effective (nef) cone of Bott towers, and we classify Fano, weak Fano and log Fano Bott towers.
We prove some vanishing theorems for the cohomology of tangent bundle of Bott towers.

Keywords: Bott towers, Mori cone, primitive relations and toric varieties.

1. Introduction

In [BS58], R. Bott and H. Samelson introduced a family of (smooth differentiable) manifolds
which may be viewed as the total spaces of iterated P1-bundles over a point {pt}, where each
P1-bundle is the projectivization of a rank 2 decomposable vector bundle. In [GK94], M.
Grossberg and Y. Karshon proved (in complex geometry setting) that these manifolds have a
natural action of a compact torus and also obtained some applications to representation theory
and symplectic geometry. In [Civ05], Y. Civan proved that these are smooth projective toric
varieties. These are called Bott towers, we denote them by {(Xi, πi) : 1 ≤ i ≤ r}, where

Xr
πr−→ Xr−1

πr−1−→ · · · π2−→ X1 = P1 π1−→ {pt},
Xi = P(OXi−1

⊕Li−1) for a line bundle Li−1 over Xi−1 for all 1 ≤ i ≤ r and r is the dimension
of Xr. In [CS11], [CMS10] and [Ish12], the authors studied “cohomological rigidity”properties
of Bott towers. These also play an important role in algebraic topology and K-theory (see
[CR05], [DJ91] and references therein). In this article we refer to Xr also as a Bott tower (it is
also called Bott manifold).

In this paper we study the geometry of Bott towers in more detail by methods of toric
geometry. We work over the field C of complex numbers. We study the Mori cone of Xr

and prove that the class of curves corresponding to ‘primitive relations r(Pi)’ forms a basis of
the real vector space of numerical classes of one-cycles in Xr (see Theorem 4.7 and Corollary
4.8). An extremal ray R in the Mori cone is called Mori ray if R ·KXr < 0, where KXr is the
canonical divisor in Xr. We describe extremal rays and Mori rays of the Mori cone of Xr (see
Theorem 8.1). We characterize the ampleness and numerically effectiveness of line bundles on
Xr (see Lemma 5.1) and describe the generators of the nef cone of Xr (see Theorem 5.7).

Recall that a smooth projective variety X is called Fano (respectively, weak Fano) if its
anti-canonical divisor −KX is ample (respectively, nef and big). Following [AS14], we say that
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a pair (X,D) of a normal projective variety X and an effective Q-divisor D is log Fano if it is
Kawamata log terminal and −(KX +D) is ample (see Section 7 for more details). We study the
Fano, weak Fano and the log Fano (of the pair (Xr, D) for a suitably chosen divisor D in Xr)
properties of the Bott tower Xr. To describe these results we need some notation. It is known
that a Bott tower {(Xi, πi) : 1 ≤ i ≤ r} is uniquely determined by an upper triangular matrix
Mr with integer entries, defined via the first Chern class of the line bundle Li−1 on Xi−1, where
Xi = P(OXi−1

⊕Li−1) for 1 ≤ i ≤ r (see [GK94, Section 2.3], [Civ05] and [VT15, Section 7.8]).
For more details see Section 2. Let

Mr :=


1 β12 β13 . . . β1r

0 1 β23 . . . β2r

0 0 1 . . . β3r
...

...
. . .

...
0 . . . . . . 1


r×r

,

where βij’s are integers. Define for 1 ≤ i ≤ r,

η+
i := {r ≥ j > i : βij > 0}

and

η−i := {r ≥ j > i : βij < 0}.
If |η+

i | = 1 (respectively, |η+
i | = 2), then let η+

i = {m} (respectively, η+
i = {m1,m2}). If

|η−i | = 1 (respectively, |η−i | = 2), then set η−i = {l} (respectively, η−i = {l1, l2}). The following
can be viewed as a condition on ith row of the matrix Mr:

• N1
i is the condition that
(i) |η+

i | = 0, |η−i | ≤ 1, and if |η−i | = 1 then βil = −1; or
(ii) |η−i | = 0, |η+

i | ≤ 1, and if |η+
i | = 1 then βim = 1 and βmk = 0 for all k > m.

• N2
i is the condition that
Case 1: Assume that |η+

i | = 0. Then |η−i | ≤ 2, and if |η−i | = 1(respectively, |η−i | = 2)
then βli = −1 or −2 (respectively, βil1 = −1 = βil2).

Case 2: If |η−i | = 1 = |η+
i | and l < m, then βil = −1, βim = 1 and βmk = 0 for all

k > m.
Case 3: Assume that |η+

i | = 1. Then βim = 1 and either it satisfies
(i) Case 2; or
(ii) |η−i | = 0 and βmk = 0 for all k > m; or
(iii) there exists a unique r ≥ s > m such that
βms − βis = 1 and βmk − βik = 0 for all k > s, or
βms − βis = −1 and βis − βms − βsk = 0 for all k > s.

Definition 1.1. We say Xr satisfies condition I (respectively, condition II) if N1
i (respectively,

N2
i ) holds for all 1 ≤ i ≤ r.

Note that N1
i =⇒ N2

i for all 1 ≤ i ≤ r. If Xr satisfies condition I, then it also satisfies
conditions II. We prove,

Theorem (see Theorem 6.3).

(1) Xr is Fano if and only if it satisfies I.
(2) Xr is weak Fano if and only if it satisfies II.
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As a consequence we get some vanishing results for the cohomology of tangent bundle of Bott
towers and hence local rigidity results. Let TXr denote the tangent bundle of Xr.

Corollary (see Corollary 6.4 and Corollary 6.5). If Xr satisfies I, then H i(Xr, TXr) = 0 for
all i ≥ 1. In particular, Xr is locally rigid.

For 1 ≤ i ≤ r, we define some constants ki which again depend on the given matrix Mr

corresponding to the Bott tower Xr (for more details see Section 7). We prove,

Theorem (see Theorem 7.1). The pair (Xr, D) is log Fano if and only if ki < 0 for all
1 ≤ i ≤ r.

Remark 1.2. By using the results of this article, in [Cha17b] we give some applications to
Bott-Samelson-Demazure-Hansen (BSDH) variety, which can be described also as a iterated
projective line bundle, by degeneration of this variety to a Bott tower. Precisely, we study
Fano, weak Fano, log Fano properties for BSDH varieties (see also [Cha17a]). We obtain some
vanishing theorems for the cohomology of tangent bundle (and line bundles) on BSDH varieties
(see also [CKP15], [CKP] and [CK17]). We also recover the results in [PK16].

The paper is organized as follows: In Section 2, we discuss preliminaries on Bott towers and
toric varieties. In Section 3, we discuss the Picard group of the Bott tower and compute the
relative tangent bundle. Section 4 contains detailed study of primitive collections and primitive
relations of the Bott tower and we also describe the Mori cone. In Section 5 we describe ample
and nef line bundles on the Bott tower, and we find the generators of the nef cone. In Section
6 and 7, we study Fano, weak Fano and log Fan properties for Bott towers. We also see some
vanishing results. In Section 8, we describe extremal rays and Mori rays for the Bott tower.

2. Preliminaries

In this section we recall toric varieties (see [CLS11]) and Bott towers (see [Civ05] and [VT15]).
We work throughout the article over the field C of complex numbers. We expect that the proofs
work for algebraically closed fields of arbitrary characteristic, but did not find appropriate
references in that generality.

2.1. Toric varieties. We briefly recall the structure of toric varieties from [CLS11] (see also
[Ful93] and [Oda88]).

Definition 2.1. A normal variety X is called a toric variety (of dimension n) if it contains
an n-dimensional torus T (i.e. T = (C∗)n) as a Zariski open subset such that the action of the
torus on itself by multiplication extends to an action of the torus on X.

Toric varieties are completely described by the combinatorics of the corresponding fans. We
briefly recall here, let N be the lattice of one-parameter subgroups of T and let M be the lattice
of characters of T . Let MR := M ⊗ R and NR := N ⊗ R. Then we have a natural bilinear
pairing

〈−,−〉 : MR ×NR → R.
A fan Σ in NR is a collection of convex polyhedral cones that is closed under intersections and
cone faces. Let σ̌ be the dual cone of σ ∈ Σ in MR. For σ ∈ Σ, the semigroup algebra C[σ̌∩M ]
is a normal domain and finitely generated C-algebra. Then the scheme Spec(C[σ̌∩M ]) is called
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the affine toric variety corresponding to σ. For a given fan Σ, we can define a toric variety XΣ

by gluing the affine toric varieties Spec(C[σ̌ ∩M ]) as σ varies in Σ. For all 1 ≤ s ≤ n,

Σ(s) := {σ ∈ Σ : dim(σ) = s}.
For each ρ ∈ Σ(1), we denote uρ, the generator of ρ ∩N. For σ ∈ Σ,

σ(1) := Σ(1) ∩ σ.
There is a bijective correspondence between the cones in Σ and the T -orbits in XΣ. For each
σ ∈ Σ, the dimension dim(O(σ)) of the T -orbit O(σ) corresponding to σ is n − dim(σ). Let

τ, σ ∈ Σ, then τ is a face of σ if and only if O(σ) ⊂ O(τ), where O(σ) is the closure of T -orbit

O(σ). We denote V (σ) = O(σ) and it is a toric variety with the corresponding fan being

Star(σ), the star of σ which is the set of cones in Σ which have σ as a face. Let Dρ = O(ρ) be
the torus-invariant prime divisor in XΣ corresponding to ρ ∈ Σ(1). The group TDiv(XΣ) of
T -invariant divisors in XΣ is given by

TDiv(XΣ) =
⊕
ρ∈Σ(1)

ZDρ.

For each m ∈ M , the character χm of T is a rational function on XΣ and the corresponding
divisor is given by

div(χm) =
∑
ρ∈Σ(1)

〈m,uρ〉Dρ.

2.2. Bott towers. In this section we recall some basic definitions and results on Bott towers.
Let L0 be a trivial line bundle over a single point X0 := {pt}, and let X1 := P(OX0 ⊕ L0),
where P(−) denotes the projectivization. Let L1 be a line bundle on X1, then define X2 :=
P(OX1 ⊕ L1), which is a P1-bundle over X1. Repeat this process r-times, so that each Xi is a
P1-bundle over Xi−1 for 1 ≤ i ≤ r. We get the following:

Xr = P(OXr−1 ⊕ Lr−1)

Xr−1 = P(OXr−2 ⊕ Lr−2)

...

X1 = P(OX0 ⊕ L0)

X0 = {pt}

πr

πr−1

π2

π1

For each 1 ≤ i ≤ r, Xi is a smooth projective toric variety (see [Civ05, Theorem 22]).
Consider the points [1 : 0] and [0 : 1] in P1, we call them the south pole and the north
pole respectively. The zero section of Li−1 gives a section s0

i : Xi−1 −→ Xi , the south pole
section; similarly, the north pole section s1

i : Xi−1 −→ Xi by letting the first coordinate in
P(OXi−1

⊕ Li−1) to vanish.
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Let 1 ≤ i ≤ r. Since πi : Xi −→ Xi−1 is a projective bundle, by a standard result on the
cohomology ring of projective bundles we have the following (see [Har77, Page 429] for instance,
and also [Mil16, Proposition 10.1]):

Theorem 2.2. The cohomology ring H∗(Xi,Z) of Xi is a free module over H∗(Xi−1,Z) on
generators 1 and ui, which have degree 0 and 2 respectively, that is

H∗(Xi,Z) = H∗(Xi−1,Z)1⊕H∗(Xi−1,Z)ui.

The ring structure is determined by the single relation

u2
i = c1(Li−1)ui,

where c1(−) denotes the first Chern class and the restriction of ui to the fiber P1 ⊂ Xi is the
first Chern class of the canonical line bundle over P1. Hence we have

H∗(Xi,Z) = H∗(Xi−1,Z)[ui]/Ji,

where Ji is the ideal generated by u2
i − c1(Li−1)ui.

Consider the exponential sequence (see [Har77, Page 446]):

0 −→ Z −→ OXi−1
−→ O∗Xi−1

−→ 0.

Then we get the following exact sequence:

0 −→ H1(Xi−1,Z) −→ H1(Xi−1,OXi−1
) −→ H1(Xi−1,O∗Xi−1

)
c1(−)−→ H2(Xi−1,Z) −→

H2(Xi−1,OXi−1
) −→ · · ·

Since Xi−1 is toric, we have Hj(Xi−1,OXi−1
) = 0 for all j > 0 (see [Oda88, Corollary 2.8]).

As H1(Xi−1,O∗Xi−1
) = Pic(Xi−1), we get c1(−) : Pic(Xi−1)

∼−→ H2(Xi−1,Z). Then we have
the following:

Theorem 2.3. Each line bundle Li−1 on Xi−1 is determined (up to an algebraic isomorphism)
by its first Chern class, which can be written as a linear combination

c1(Li−1) = −
i−1∑
k=1

βkiuk ∈ H2(Xi−1,Z),

where βik’s are integers for 1 ≤ k ≤ i− 1.

Then by Theorem 2.2 and 2.3, by iteration, we get the following:

Corollary 2.4. We have
H∗(Xr,Z) = Z[u1, . . . , ur]/J,

where J is the ideal generated by {u2
j +

∑
i<j βijuiuj : 1 ≤ j ≤ r} and the integers βij’s are as

in Theorem 2.3.

Write {βij : 1 ≤ i < j ≤ r}, the collection of r(r− 1)/2 integers, as an upper triangular r× r
matrix

Mr :=


1 β12 β13 . . . β1r

0 1 β23 . . . β2r

0 0 1 . . . β3r
...

...
. . .

...
0 . . . . . . 1


r×r

(2.1)
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Then we get the following result (see for instance [GK94, Lemma 2.15] and also [Civ05, Section
3]).

Corollary 2.5. There is a bijective correspondence between {Bott towers of height r} and {r×r
upper triangular matrices with integer entries as in (2.1)}.

Two Bott towers {(Xi, πi) : 1 ≤ i ≤ r} and {(X ′i, π′i) : 1 ≤ i ≤ r} are isomorphic if there
exists a collection of isomorphisms {φi : Xi → X ′i : 1 ≤ i ≤ r} such that the following diagram
is commutative:

Xr
πr //

φr
��

Xr−1

πr−1 //

φr−1

��

· · · π2 // X1
π1 //

φ1

��

X0

φ0

��
X ′r

π′r // X ′r−1

π′r−1 // · · ·
π′2 // X ′1

π′1 // X ′0

2.2.1. Toric structure on Bott tower. Let {e+
1 , . . . , e

+
r } be the standard basis of the lattice Zr.

Define, for all i ∈ {1, . . . , r},
e−i := −e+

i −
∑
j>i

βije
+
j , (2.2)

where βij’s are integers as above. Then we have the following theorem (see [Civ05, Section 3
and Theorem 22] and for algebraic topology setting see [VT15, Theorem 7.8.7]):

Theorem 2.6. The Bott tower {(Xi, πi) : 1 ≤ i ≤ r} corresponding to a matrix Mr as in (2.1)
is isomorphic to {(XΣi , πΣi) : 1 ≤ i ≤ r}, the collection of smooth projective toric varieties
corresponding to the fan Σi with the 2i maximal cones generated by the set of vectors

{eεj : 1 ≤ j ≤ i and ε ∈ {+,−}},

and where πΣi : XΣi → XΣi−1
is the toric morphism induced by the projection πΣi : Zi → Zi−1

for all 1 ≤ i ≤ r.

Note that by Theorem 2.6, Σi has 2i one-dimensional cones generated by the vectors

{e+
j , e

−
j : 1 ≤ j ≤ i},

and by (2.2), we can see that the divisors Dρ+
j

corresponding to e+
j for 1 ≤ j ≤ i form a basis

of the Picard group of Xi (see Section 3 for more details).

3. On Picard group of a Bott tower

Now we describe a basis of the Picard group Pic(Xr) of Xr. Let ε ∈ {+,−} and for 1 ≤ i ≤ r,
let ρεi be the one-dimensional cone generated by eεi . For all 1 ≤ i ≤ r, we define Dρεi

to be the
toric divisor corresponding to the one-dimensional cone ρεi . We prove,

Lemma 3.1. The set {Dρεi
: 1 ≤ i ≤ r and ε ∈ {+,−}} forms a basis of Pic(Xr).

Proof. By Theorem 2.6, using the description of the one-dimensional cones we have the following
decomposition of Σ(1):

Σ(1) = {ρ+
i : 1 ≤ i ≤ r} ∪ {ρ−i : 1 ≤ i ≤ r}. (3.1)
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Again by Theorem 2.6, {Dρ+
i

: 1 ≤ i ≤ r} forms a basis of the Picard group Pic(Xr) of Xr.

Since
0 ∼ div(χe

+
i ) =

∑
ρ∈Σ(1)

〈uρ, e+
i 〉Dρ,

by (2.2) we can see that {Dρ−i
: 1 ≤ i ≤ r} also forms a basis of Pic(Xr). In general, let

σ ∈ Σ be the maximal cone generated by {eεi : 1 ≤ i ≤ r}. Take the torus-fixed point xε in Xr

corresponding to the maximal cone σ. Let U be the torus-invariant open affine neighbourhood
of xε in Xr. Then U is an affine space of dimension r; in particular, Pic(U) = 0. Therefore, we
get

Xr \ U = ∪ri=1Dρεi

and Pic(Xr) is generated by {Dρεi
: 1 ≤ i ≤ r} (see [Har70, Chapter II, Proposition 3.1, page

66]). Since {Dρεi
: 1 ≤ i ≤ r} is linearly independent and the rank of Pic(Xr) is r, this set

{Dρεi
: 1 ≤ i ≤ r} forms a basis of Pic(Xr). �

By Lemma 3.1, the set {Dρ+
i

: 1 ≤ i ≤ r} forms a basis of Pic(Xr). Now we express for each

1 ≤ i ≤ r, Dρ−i
in terms of Dρ+

j
’s (1 ≤ j ≤ r). Let 1 ≤ i ≤ r, define hi−1

i := −βi(i−1) and

hji :=


0 for j > i.

1 for j = i.

−
∑i−1

k=j βik(h
j
k) for j < i.

Then we prove,

Lemma 3.2. Let 1 ≤ i ≤ r. The coefficient of Dρ+
j

in Dρ−i
is hji .

Proof. Proof is by induction on i and by using

0 ∼ div(χe
+
i ) =

∑
ρ∈Σ(1)

〈uρ, e+
i 〉Dρ. (3.2)

Recall the equation (2.2),

e−i = −e+
i −

∑
j>i

βije
+
j for all 1 ≤ i ≤ r.

If i = 1, by (3.2), we see

0 ∼ div(χe
+
1 ) = Dρ+

1
−Dρ−1

.

Then we have
Dρ−1

∼ Dρ+
1
. (3.3)

If i = 2, by (3.2) and (2.2), we see

0 ∼ div(χe
+
2 ) = Dρ+

2
−Dρ−2

− β21Dρ−1
.

By (3.3), we get
Dρ−2

∼ Dρ+
2
− β21Dρ+

1
= h2

2Dρ+
2

+ h1
2Dρ+

1
.

By induction assume that

Dρ−k
∼

r∑
j=1

hjkDρ+
j

for all k < i.
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Again by (3.2) and (2.2), we see

0 ∼ div(χe
+
i ) = Dρ+

i
−Dρ−i

−
∑
k<i

βikDρ−k
.

Then

Dρ−i
∼ Dρ+

i
−
∑
k<i

βikDρ−k
.

Hence

Dρ−i
∼ Dρ+

i
−
∑
k<i

βik(
r∑
j=1

hjkDρ+
j

).

Since hjk = 0 for k < j, we get

Dρ−i
∼ Dρ+

i
−
∑
k<i

βik(
i−1∑
j=1

hjkDρ+
j

).

Then

Dρ−i
∼ Dρ+

i
+

i−1∑
j=1

(−
i−1∑
k=j

βikh
j
k)Dρ+

j
.

Therefore, we conclude that Dρ−i
∼ Dρ+

i
+
∑i−1

j=1 h
j
iDρ+

j
. This completes the proof of the

lemma. �

Let ε ∈ {+,−}. Define Σ(1)ε := {ρεi : 1 ≤ i ≤ r}. Then

D =
∑
ρ∈Σ(1)

aρDρ =
∑

ρ∈Σ(1)+

aρDρ +
∑

ρ∈Σ(1)−

aρDρ.

For 1 ≤ i ≤ r, let gi := aρ+
i

+
∑r

j=i aρ−j h
i
j. Then we have

Corollary 3.3. D =
∑

ρ∈Σ(1) aρDρ ∼
∑r

i=1 giDρ+
i
.

Proof. We have D =
∑

ρ∈Σ(1) aρDρ =
∑r

i=1 aρ+
i
Dρ+

i
+
∑r

i=1 aρ−i Dρ−i
. By Lemma 3.2, we can

see that
∑r

i=1 aρ−i Dρ−i
∼
∑r

i=1 aρ−i (
∑i

j=1 h
j
iDρ+

j
). Then

∑r
i=1 aρ−i Dρ−i

∼
∑r

i=1(
∑r

j=i aρ−j h
i
j)Dρ+

j
.

Hence we have D ∼
∑r

i=1(aρ+
i

+
∑r

j=i aρ−j h
i
j)Dρ+

i
. Thus, D ∼

∑r
i=1 giDρ+

i
and this completes

the proof. �

Remark 3.4. By Corollary 3.3, we see some vanishing results of the cohomology of line bundles
on BSDH varieties in [Cha17b].

Let 1 ≤ i ≤ r. We prove the following.

Lemma 3.5. The relative tangent bundle Tπi of πi : Xi → Xi−1 is given by

Tπi ' OXi(Dρ+
i

+Dρ−i
) ' OXi(

i−1∑
j=1

βijDρ−j
+ 2Dρ−i

).



ON MORI CONE OF BOTT TOWERS 9

Proof. By definition of Bott tower, πi is a P1-fibration. Then the relative canonical bundle Kπi

is given by

Kπi = OXi(KXi)⊗ π∗i (OXi−1
(−KXi−1

))

(see [Kle80, Corollary 24, page 56]). By [CLS11, Theorem 8.2.3] (see also [Ful93, Page 74]), we
have

KXΣ
= −

∑
ρ∈Σ(1)

Dρ.

Then

Kπi = OXi(−
∑
ρ∈Σ(1)

Dρ)⊗ π∗i (OXi−1
(
∑

ρ′∈Σ′(1)

Dρ′)) ,

where Σ′ is the fan of Xi−1. Since Xi−1 smooth, any divisor of the form D =
∑

ρ′∈Σ′(1) aρ′Dρ′

with aρ′ ∈ Z, in Xi−1 is Cartier. Hence the pullback π∗i (D) is defined and given by

π∗i (D) = π∗i (
∑

ρ′∈Σ′(1)

aρ′Dρ′) =
∑
ρ∈Σ(1)

−ϕD(πi(uρ))Dρ,

where ϕD is the support function corresponding to the divisor D (see [CLS11, Theorem 4.2.12]
for the correspondence between support functions and Cartier divisors). Since the lattice map
πi : Zi → Zi−1 is the projection onto the first i− 1 factors (see page 6), by definition of uρ and
e−j (see (2.2)), for ε ∈ {+,−} we have

πi(uρεj) =

{
uρ′εj

if 1 ≤ j ≤ i− 1.

0 if j = i.

Hence

−ϕD(πi(uρεj)) =

{
aρ′εj

if 1 ≤ j ≤ i− 1.

0 if j = i.

Thus we have,

π∗i (
∑

ρ′∈Σ′(1)

Dρ′) =
∑

ρ∈Σ(1)\{ρ+
i ,ρ
−
i }

Dρ.

Therefore, we see that

Kπi = OXi(−Dρ+
i
−Dρ−i

). (3.4)

By (2.2), we note that

0 ∼ div(χe
+
i ) = Dρ+

i
−Dρ−i

−
i−1∑
j=1

βijDρ−j
. (3.5)

Since Ǩπi = det Tπi , we get Ǩπi = Tπi as πi is a P1-fibration. Therefore, the result follows from
(3.4) and (3.5). �

Remark 3.6. By Lemma 3.2, the relative tangent bundle Tπi can be expressed in terms of Dρ+
i

(1 ≤ i ≤ r).

The following is well known and proved here for completeness.
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Lemma 3.7. Let X and Y be smooth varieties. Let f : X −→ Y be a fibration with a section
σ and denote by σ(Y ) its image in X. Then the restriction of the relative tangent bundle Tf to
σ(Y ) is isomorphic to the normal bundle Nσ(Y )/X of σ(Y ) in X.

Proof. Consider the normal bundle short exact sequence

0 −→ Tσ(Y ) −→ TX |σ(Y ) −→ Nσ(Y )/X −→ 0, (3.6)

where Tσ(Y ) and TX are the tangent bundles of σ(Y ) and X respectively. Also consider the
following short exact sequence

0 −→ Tf −→ TX −→ f ∗TY −→ 0 . (3.7)

By restricting (3.7) to σ(Y ), since σ is a section of f , we get the following short exact sequence

0 −→ Tf |σ(Y ) −→ TX |σ(Y ) −→ Tσ(Y ) −→ 0 . (3.8)

By using (3.6) and (3.8), we see Tf |σ(Y ) is isomorphic to Nσ(Y )/X . This completes the proof.
�

We prove,

Lemma 3.8. Let 1 ≤ i ≤ r. The normal bundle NXi/Xi−1
of Xi−1 in Xi is ˇLi−1, where Li−1

is as in the definition of Bott tower and ˇLi−1 is denotes the dual of Li−1.

Proof. Fix 1 ≤ i ≤ r and let L := Li−1. Recall that P(E ) is by definition Proj(S(E )), S(E )
is symmetric algebra of E = OXi−1

⊕L (see [Har77, Page 162]). Let V (L ) = Spec(S(L )),
the geometric vector bundle associated to the locally free sheaf (line bundle) L (see [Har77,
Exercise 5.18, Page 128]). Then, V (L ) is an open subvariety in P(E ) and we have the following
commutative diagram

V (L ) P(E ) = Xi

Xi−1

π πr

s0i
σπ

Also note that the section s0
i (Xi−1) of πi corresponding to the projection E → OXi is same

as the zero section σπ(Xi−1) of π. Now consider the following short exact sequence

0 −→ Tπ −→ TV (L ) −→ π∗TXi−1
−→ 0. (3.9)

Since the restriction Tπ|σπ (Xi−1) of Tπ to σπ(Xr−1) is Ľ , by Lemma 3.7 and by above short

exact sequence (3.9) we see that Nσπ(Xi−1)/V (L ) ' Ľ . Hence we conclude that NXi−1/Xi ' Ľ
(here we are identifying Xi−1 with the section corresponding to the projection E = OXi−1

⊕L →
OXi−1

). This completes the proof of the lemma. �

Let 1 ≤ i ≤ r. We prove,

Lemma 3.9.

(1) The toric sections of πi are given by Dρεi
, ε ∈ {+,−}.



ON MORI CONE OF BOTT TOWERS 11

(2) The normal bundle NXi−1/Xi of Xi−1 in Xi is given by

NXi−1/Xi = ˇLi−1 = OXi(Dρ+
i

),

where the line bundle Li−1 is as in the definition of the Bott tower Xi.

Proof. Proof of (1): Recall that πi is a P1-fibration induced by the projection πi : Zi → Zi−1.
For each cone σ ∈ ΣF of dimension 1 (which is a maximal cone in ΣF , where ΣF denote the fan
of the fiber P1), the subvariety V (σ) is an invariant section of πi, which is an invariant divisor
in Xi. Hence we get two invariant divisors V (ρ+

i ) = Dρ+
i

and V (ρ−i ) = Dρ−i
.

Proof of (2): By Lemma 3.8, we have NXi−1/Xi = ˇLi−1 and the section Xi−1 is given by the
projection E = OXi−1

⊕Li−1 → OXi−1
. Hence (2) follows from (1). �

4. Primitive relations of the Bott tower

4.1. Primitive collections and primitive relations. First recall the notion of primitive
collections and primitive relations of a fan Σ, which are basic tools for the classification of Fano
toric varieties due to Batyrev (see [Bat91]).

Definition 4.1. We say P ⊂ Σ(1) is a primitive collection if P is not contained in σ(1) for
some σ ∈ Σ but any proper subset is. Note that if Σ is simplicial, primitive collection means
that P does not generate a cone in Σ but every proper subset does.

Definition 4.2. Let P = {ρ1, . . . , ρk} be a primitive collection in a complete simplicial fan Σ.

Recall uρ is the primitive vector of the ray ρ ∈ Σ. Then
∑k

i=1 uρi is in the relative interior of
a cone γP in Σ with a unique expression

k∑
i=1

uρi =
∑

ρ∈γP (1)

cρuρ, cρ ∈ Q>0. Hence we have
k∑
i=1

uρi − (
∑

ρ∈γP (1)

cρuρ) = 0. (4.1)

Then we call (4.1) the primitive relation of XΣ corresponding to P.

Recall that TDiv(XΣ) denote the group of torus-invariant divisors in XΣ (see Page 4). Since
the fan Σ of Xr is full dimensional, we have the following short exact sequence

0 −→M
ϕ1−→ TDiv(Xr) =

⊕
ρ∈Σ(1)

ZDρ
ϕ2−→ Pic(Xr)→ 0, (4.2)

where the maps are given by ϕ1 : m 7→ div(χm) and ϕ2 : D 7→ OXr(D) (see [CLS11, Theorem
4.2.1]).

Now we recall some standard notations: Let X be a smooth projective variety, we define

N1(X)Z := {
∑

finite

aiCi : ai ∈ Z, Ci irreducible curve in X}/ ≡

where ≡ is the numerical equivalence, i.e. Z ≡ Z ′ if and only if D · Z = D · Z ′ for all divisors
D in X. We denote by [C] the class of C in N1(X)Z. Let N1(X) := N1(X)Z ⊗ R. It is a well
known fact that N1(X) is a finite dimensional real vector space (see [Kle66, Proposition 4, §1,
Chapter IV]). In the case where X is a (smooth projective) toric variety, N1(X)Z is dual to
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Pic(X) via the natural pairing (see [CLS11, Proposition 6.3.15]). In our case X = Xr, there
are dual exact sequences:

0 −→M
ϕ1−→ ZΣ(1) ϕ2−→ Pic(Xr) −→ 0

and

0 −→ N1(Xr)Z
ϕ∗2−→ ZΣ(1) ϕ∗1−→ N −→ 0, (4.3)

where
ϕ∗2([C]) = (Dρ · C)ρ∈Σ(1), C is an irreducible complete curve in Xr

and
ϕ∗1(eρ) = uρ, eρ is a standard basis vector of RΣ(1)

(see [CLS11, Proposition 6.4.1]). Let P be a primitive collection in Σ. Note that since Xr is
smooth projective, P ∩ γP (1) = ∅ and

cρ ∈ Z>0 for all ρ ∈ γP (1) (4.4)

(see [CLS11, Proposition 7.3.6]). As an element in Z
∑

(1), we write r(P ) = (rρ)ρ∈Σ(1), where

rρ =


1 if ρ ∈ P
−cρ if ρ ∈ γP (1)

0 otherwise

(4.5)

Then by (4.1) we see that ∑
ρ∈

∑
(1)

rρuρ = 0.

Hence by the exact sequence (4.3) and by (4.4), we observe that r(P ) gives an element in
N1(Xr)Z (see [CLS11, Page 305]). We prove,

Lemma 4.3. Let Pi := {ρ+
i , ρ

−
i }, 1 ≤ i ≤ r. Then {Pi : 1 ≤ i ≤ r} is the set of all primitive

collections of the fan Σ of Xr.

Proof. By Theorem 2.6, the cones in the fan Σ of Xr are generated by subsets of
{e+

1 , . . . , e
+
r , e

−
1 , . . . , e

−
r } and containing no subset of the form {e+

i , e
−
i }. Then by Definition

4.1, it is clear that Pi = {ρ+
i , ρ

−
i } is a primitive collection for all i. Also note that again by

description of the cones in Σ, any primitive collection must contain a Pi for some 1 ≤ i ≤ r.

Fix 1 ≤ i ≤ r. Let Q be a collection of one-dimensional cones such that it properly contains
Pi, i.e. there exists 1 ≤ j ≤ r and j 6= i such that ρεj ∈ Q ⊃ Pi, ε ∈ {+,−}. Assume that Q is

a primitive collection. Then by Definition 4.1, {ρ+
i , ρ

−
i } ⊂ Q generates a cone in Σ. This is a

contradiction to the description of the cones in Σ. Therefore, we conclude that {Pi : 1 ≤ i ≤ r}
is the set of all primitive collections. �

Now we define the Contractible classes from [Cas03]: Let X be a smooth projective toric
variety. We define NE(X)Z in N1(X) by

NE(X)Z := {
∑
finite

aiCi : ai ∈ Z≥0 and Ci irreducible curve in X }.

Let γ ∈ NE(X)Z be primitive (i.e. the generator of Z≥0γ) and such that there exists some
irreducible curve in X having numerical class in Q≥0γ. Then
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Definition 4.4. (see [Cas03, Definition 2.3]) The above class γ is called contractible if there
exists a toric variety Xγ and an equivariant morphism φγ : X → Xγ, surjective with connected
fibers, such that for every irreducible curve C in X,

φγ(C) = {pt} if and only if [C] ∈ Q≥0γ.

Remark 4.5. Note that any contractible class is always a class of some invariant curve and
also a primitive relation (see [Cas03, Theorem 2.2] and [Sca09, Page 74]).

Recall the following result from [Cas03, Proposition 3.4].

Proposition 4.6. Let P = {ρ1, . . . , ρk} be a primitive collection in Σ, with the primitive
relation r(P ):

k∑
i=1

uρi −
∑

ρ∈γP (1)

cρuρ = 0.

Then r(P ) is contractible if and only if for every primitive collection Q of Σ such that P ∩Q 6= ∅
and P 6= Q, the set (Q \ P ) ∪ γP (1) contains a primitive collection.

4.2. Mori cone. We use the notation as above. Let X be a smooth projective variety. We
define NE(X) the real convex cone in N1(X) generated by classes of irreducible curves. The
Mori cone NE(X) is the closure of NE(X) in N1(X) and it is a strongly convex cone of
maximal dimension.

If X is a (smooth projective) toric variety, it is known that NE(X)Z is generated by the
finitely many torus-invariant irreducible curves in X and hence NE(X)Z is a finitely generated
monoid. Hence the cone NE(X) = NE(X) is a rational polyhedral cone and we have

NE(X) =
∑

τ∈Σ(r−1)

R≥0[V (τ)],

where r = dim(X) and [V (τ)] ∈ N1(X)Z is the class of the toric curve V (τ). This is called
the Toric Cone Theorem (see [CLS11, Theorem 6.3.20]). Let τ ∈ Σ(r − 1) be a wall, that is
τ = σ ∩ σ′ for some σ, σ′ ∈ Σ(r). Let σ (respectively, σ′) is generated by {uρ1 , uρ2 , . . . , uρr}
(respectively, by {uρ2 , . . . , uρr+1}) and let τ be generated by {uρ2 , . . . , uρr}. Then we get a linear
relation,

uρ1 +
r∑
i=2

biuρi + uρr+1 = 0 (4.6)

The relation (4.6) called wall relation and we have

Dρ · V (τ) =


bi if ρ = ρi and i ∈ {2, 3, . . . , r}
1 if ρ = ρi and i ∈ {1, r + 1}
0 otherwise

(see [CLS11, Proposition 6.4.4 and eq. (6.4.6) page 303]). Now we describe the Mori cone
NE(Xr) of Xr in terms of the primitive relations of Xr.

Theorem 4.7. NE(Xr)Z =
∑r

i=1 Z≥0r(Pi).



14 B. NARASIMHA CHARY

Proof. We have

NE(Xr) =
∑
P∈P

R≥0r(P ) ,

where P is the set of all primitive collections in Xr (see [CLS11, Theorem 6.4.11]). By Lemma
4.3, {Pi : 1 ≤ i ≤ r} is the set of all primitive collections of Xr. Therefore, we get

NE(Xr) =
r∑
i=1

R≥0r(Pi) .

By [Cas03, Theorem 4.1], we have

NE(Xr)Z =
∑
γ∈C

Z≥0γ,

where C is the set of all contractible classes in Xr.

By Proposition 4.6, we can see that the primitive relations r(Pi) are contractible classes for
1 ≤ i ≤ r. Since any contractible class is a primitive relation, we get

C = {r(Pi) : 1 ≤ i ≤ r}.
Hence we conclude that

NE(Xr)Z =
r∑
i=1

Z≥0r(Pi).

This completes the proof of the theorem. �

We have

Corollary 4.8. The set {r(Pi) : 1 ≤ i ≤ r} forms a basis of N1(Xr)Z.

Proof. By Theorem 4.7, {r(Pi) : 1 ≤ i ≤ r} generates the monoid NE(Xr)Z and the cone
NE(Xr) is of dimension r. So r(Pi) for 1 ≤ i ≤ r are linearly independent. Also the group
N1(Xr)Z is generated by NE(Xr)Z, hence by r(Pi) for 1 ≤ i ≤ r. Hence these form a basis of
N1(Xr)Z. �

Next we describe the primitive relation r(Pi) explicitly by finding the cone γPi in (4.1) for
1 ≤ i ≤ r. We also observe that these cones depend on the given matrix corresponding to the
Bott tower. We need some notation to state the result. Recall the matrix Mr corresponding to
the Bott tower Xr is

Mr =


1 β12 β13 . . . β1r

0 1 β23 . . . β2r

0 0 1 . . . β3r
...

...
. . .

...
0 . . . . . . 1


r×r

(see Section 2). Fix 1 ≤ i ≤ r. Define:

(1) Let r ≥ j > j1 = i ≥ 1 and define a1,j := βj1j.
(2) Let r ≥ j2 > j1 be the least integer such that a1,j > 0, then define for j > j2

a2,j := βij2βj2j − βij.
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(3) Let k > 2 and let r ≥ jk > jk−1 be the least integer such that ak−1,j < 0, then
inductively, define for j > jk

ak,j := −ak−1,jkβjkj + ak−1,j.

(4) For j ≤ i, bj := 0, and for j > i define

bj := al,j if jl+1 ≥ j > jl, l ≥ 1. (4.7)

Note that we have

bj =


0 for j ≤ i

< 0 for j ∈ {j3, . . . , jm}
≥ 0 otherwise .

(5) Let Ii := {j1, . . . , jm}.

Example 4.9. Let

M7 =



1 −1 −1 −1 2 −1 2
0 1 0 2 −1 2 −1
0 0 1 0 −1 −1 −1
0 0 0 1 −1 2 −1
0 0 0 0 1 −1 2
0 0 0 0 0 1 −1
0 0 0 0 0 0 1


7×7

Let i = 1, then j1 = 1 and (1) a1,2 = β12 = −1 ; (2) a1,3 = β13 = −1 ; (3) a1,4 = β14 = −1 ;
(4) a1,5 = β15 = 2 ; (5) a1,6 = β16 = −1 ; (6) a1,7 = β17 = 2.

Then j2 = 5 and (1) a2,6 = β15β56 − β16 = −1 ; (2) a2,7 = β15β57 − β17 = 2 .

Then j3 = 6 and a3,7 = −a2,6β67 + a2,7 = −(−1)(−1) + (2) = 1.

Therefore, I1 = {1, 5, 6} .

Let 1 ≤ i ≤ r. Let Ai := {eεjj : 1 ≤ j ≤ r, bj 6= 0 and

εj =

{
+ for j /∈ Ii
− for j ∈ Ii

}.

Remark 4.10. Note that as bj = 0 for j ≤ i, we can take i < j ≤ r in the definition of Ai.

Now we have,

Proposition 4.11. Let 1 ≤ i ≤ r. The cone γPi in the primitive relation of Xr corresponding
to Pi is generated by Ai.

Before going to the proof we see an example.

Example 4.12. We use same setting as in Example 4.9. By Lemma 4.3, we have Pi = {ρ+
i , ρ

−
i }

for all 1 ≤ i ≤ 7. By definition of e−i (see (2.2)), we have

(i) e−1 + e+
1 = e+

2 + e+
3 + e+

4 − 2e+
5 + e+

6 − 2e+
7 ; (ii) e−2 + e+

2 = −2e+
4 + e+

5 − 2e+
6 + e+

7 ; (iii)
e−3 + e+

3 = e+
5 + e+

7 ; (iv) e−4 + e+
4 = e+

5 − 2e+
6 + e+

7 ; (v) e−5 + e+
5 = e+

6 − 2e+
7 ; (vi) e−6 + e+

6 = e+
7 ;

(vii) e−7 + e+
7 = 0.
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Now we describe the cone γP1. Observe that in (i) coefficient of e+
5 is negative. By (v), we

can see
e−1 + e+

1 = e+
2 + e+

3 + e+
4 + 2(e−5 − e+

6 + 2e+
7 ) + e+

6 − 2e+
7 .

Then e−1 + e+
1 = e+

2 + e+
3 + e+

4 + 2e−5 − e+
6 + 2e+

7 . By (vi),

e−1 + e+
1 = e+

2 + e+
3 + e+

4 + 2e−5 + e−6 + e+
7 . (4.8)

In this case, I1 = {1, 5, 6} (see Example 4.9) and the cone γP1 is generated by

{e+
2 , e

+
3 , e

+
4 , e

−
5 , e

−
6 , e

+
7 }.

Now we prove Proposition 4.11:

Proof. By (2.2), for all 1 ≤ i ≤ r, we have

e−i + e+
i = −

∑
j>i

βije
+
j . (4.9)

If for all j > i, βij ≤ 0, then the cone γPi is generated by {e+
j : j > i, βij < 0}. If not, choose

the least integer j2 > i such that βij2 > 0. Now write

e−i + e+
i = −(

∑
j2>j>i

βije
+
j ) + βij2(−e+

j2
)− (

∑
j>j2

βije
+
j ).

Again by using (4.9), we have

e−i + e+
i = −(

∑
j2>j>i

βije
+
j ) + βij2(e−j2 +

∑
j>j2

βj2je
+
j )− (

∑
j>j2

βije
+
j ).

Then
e−i + e+

i = −(
∑
j2>j>i

βije
+
j ) + βij2e

−
j2

+
∑
j>j2

(βij2βj2j − βij)e+
j ).

By definition a2,j = βij2βj2j − βij, then we have

e−i + e+
i = −(

∑
j2>j>i

βije
+
j ) + βij2e

−
j2

+ (
∑
j>j2

a2,je
+
j ).

If a2,j ≥ 0 for all j > j2, then γPi is generated by

{eεjj : j > i, εj = +∀j 6= j2, and εj = − for j = j2}.

Otherwise, choose the least integer j3 > j2 such that a2,j3 < 0. By substituting −e+
j3

from
(4.9), we get

e−i + e+
i = −(

∑
j2>j>i

a1,je
+
j ) + βij2e

−
j2

+ (
∑

j3>j>j2

a2,je
+
j )− a2,j3(e−j3 +

∑
j>j3

βj3je
+
j ) + (

∑
j>j3

a2,je
+
j ).

Then,

e−i + e+
i = −(

∑
j2>j>i

a1,je
+
j ) + βij2e

−
j2

+ (
∑

j3>j>j2

a2,je
+
j )− a2,j3e

−
j3

+
∑
j>j3

(−a2,j3βj3j + a2,j)e
+
j ).

By definition a3,j = −a2,j3βjj3 + a2,j, then we have

e−i + e+
i = −(

∑
j2>j>i

a1,je
+
j ) + 2e−j2 + (

∑
j3>j>j2

a2,je
+
j )− a2,j3e

−
j3

+ (
∑
j>j3

a3,je
+
j ).
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By repeating this process, we get the cone γPi as we required. �

Let 1 ≤ i ≤ r. Recall Ii = {i = j1, . . . , jm} as in page 13. Define for 1 ≤ j ≤ r ,

cj :=

{
−bj if j ∈ Ii \ {j1, j2}
bj otherwise

Set γPi(1) := {γ1, . . . , γl}. Then we have

Corollary 4.13. For 1 ≤ i ≤ r, the primitive relation r(Pi)(= (rρ)ρ∈Σ(1)) of Xr given by

rρ =


1 for ρ = ρ+

i or ρ−i
−cj for ρ = γj ∈ γPi(1)

0 otherwise

Example 4.14. We use Example 4.12. The following can be seen easily from (4.8).

(1) γP1(1) = {ρ+
2 , ρ

+
3 , ρ

+
4 , ρ

−
5 , ρ

−
6 , ρ

+
7 } .

(2) The primitive relation r(P1) = (rρ)ρ∈Σ(1) is given by

rρ =


1 for ρ = ρ+

1 or ρ−1
−1 for ρ = ρ+

k , k ∈ {2, 3, 4, 7} and ρ = ρ−6
−2 for ρ = ρ−5
0 otherwise

Now we describe the primitive relations r(Pi) in terms of intersection of two maximal cones
in the fan of Xr. Let 1 ≤ i ≤ r. Let C ′i := {eεjj : 1 ≤ j ≤ r and

εj =

{
+ if j /∈ Ii \ {j1}
− if j ∈ Ii

}.

Let C ′′i := {eεjj : 1 ≤ j ≤ r and

εj =

{
+ if j /∈ Ii
− if j ∈ Ii

}.

Example 4.15. We use Example 4.12, for i = 1, we have I1 = {1, 5, 6}. Then

C ′1 = {e+
1 , e

+
2 , e

+
3 , e

+
4 , e

−
5 , e

−
6 , e

+
7 } and C ′′1 = {e−1 , e+

2 , e
+
3 , e

+
4 , e

−
5 , e

−
6 , e

+
7 }.

We prove the following by using wall relation (see page 12).

Proposition 4.16. Fix 1 ≤ i ≤ r. The class of curve r(Pi) is given by

r(Pi) = [V (τi)] ,

where τi = σ ∩ σ′ and σ (respectively, σ′) is the cone generated by C ′i (respectively, by C ′′i ).
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Proof. From Corollary 4.13, we have the following.

e+
i + e−i −

∑
j>i

cje
εj
j = 0, (4.10)

where εj is as in Proposition 4.11. First we show that the set Q := {ρ ∈ Σ(1) : Dρ · V (τi) > 0}
is not contained in σ(1) for any σ ∈ Σ (we adapt the arguments of [CLS11, Proof of Theorem
6.4.11, page 306], here we are not assuming the curve V (τi) is extremal). Indeed, suppose
Q ⊆ σ(1) for some σ ∈ Σ. Let D be an ample divisor in Xr (such exists as Xr is projective).
Then, we can assume that D is of the form

D =
∑
ρ∈Σ(1)

aρDρ , aρ = 0 for all ρ ∈ σ(1) and aρ ≥ 0 for all ρ /∈ σ(1)

(see [CLS11, (6.4.10), page 306]). Then we can see

D · V (τi) =
∑
ρ/∈σ(1)

aρDρ · V (τi).

As Q ⊆ σ(1), by definition of Q, Dρ · V (τi) ≤ 0 for ρ /∈ σ(1). Since aρ ≥ 0 for ρ /∈ σ(1), we get
D ·V (τi) ≤ 0, which is a contradiction as D is ample. Therefore, Q is not contained in σ(1) for
any σ ∈ Σ. Hence to prove the proposition it is enough to prove

Pi = Q(:= {ρ ∈ Σ(1) : Dρ · V (τi) > 0})

(see again [CLS11, Proof of Theorem 6.4.11, page 306]). From (4.10) and by using wall relation,
we can see that

Dρ · V (τi) =


1 if ρ = ρ+

i or ρ−i .

−cj if ρ = ρ
εj
j and j ∈ Ii \ {j1}.

0 otherwise.

Since cj’s are all positive integers (see (4.4)), by Lemma 4.3 we conclude that

Pi = {ρ ∈ Σ(1) : Dρ · V (τi) > 0}

and hence r(Pi) = [V (τi)]. This completes the proof of the proposition. �

Example 4.17. In Example 4.12, the curve r(P1) = [V (τ1)] with τ1 = σ ∩ σ′ where σ is the
cone generated by

C ′1 = {e+
1 , e

+
2 , e

+
3 , e

+
4 , e

−
5 , e

−
6 , e

+
7 }

and σ′ is the cone generated by

C ′′1 = {e−1 , e+
2 , e

+
3 , e

+
4 , e

−
5 , e

−
6 , e

+
7 }.

Corollary 4.18. NE(Xr)Z =
∑r

i=1 Z≥0[V (τi)], where τi is as in Proposition 4.16.

Proof. This follows from Theorem 4.7 and Proposition 4.16 �
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5. Ample and nef line bundles on the Bott tower

Let X be a smooth projective variety. Recall N1(X) is the real finite dimensional vector
space of numerical classes of real divisors in X (see [Kle66, §1, Chapter IV]). In N1(X), we
define the nef cone Nef(X) to be the cone generated by classes of numerically effective divisors
and it is a strongly convex closed cone in N1(X). The ample cone Amp(X) of X is the cone
in N1(X) generated by classes of ample divisors. Note that the ample cone Amp(X) is interior
of the nef cone Nef(X) (see [Kle66, Theorem 1, §2, Chapter IV]). Recall that the nef cone
Nef(X) and the Mori cone NE(X) are closed convex cones and are dual to each other (see
[Kle66, §2, Chapter IV] ) .

In our case, we have Pic(Xr)R = N1(Xr), as the numerical equivalence and linear equivalence
coincide (see [CLS11, Proposition 6.3.15]).

In this section, we characterize the ampleness and numerically effectiveness of line bundles
on Xr and we study the generators of the nef cone of Xr. We use the notation as in Section 4.
Let D =

∑
aρDρ be a toric divisor in Xr and for 1 ≤ i ≤ r, define

di := (aρ+
i

+ aρ−i −
∑

γj∈γPi (1)

cjaγj).

Then we prove,

Lemma 5.1.

(1) The divisor D is ample if and only if di > 0 for all 1 ≤ i ≤ r.
(2) The divisor D is numerically effective (nef) if and only if di ≥ 0 for all 1 ≤ i ≤ r.

Proof. Proof of (2): Recall that the primitive relation r(Pi) is given by

r(Pi) = (rρ)ρ∈Σ(1)

(see page 11). First observe that we have the following

D · r(Pi) =
∑
ρ∈Σ(1)

aρ(Dρ · r(Pi)) =
∑
ρ∈Σ(1)

aρrρ

(see [CLS11, Proposition 6.4.1, page 299]). Then by (4.5), we get

D · r(Pi) =
∑
ρ∈Pi

aρ −
∑

ρ∈γPi (1)

rρaρ.

By Lemma 4.3, we have Pi = {ρ+
i , ρ

−
i }. Then by Corollary 4.13, we get

D · r(Pi) = (aρ+
i

+ aρ−i −
∑

γj∈γPi (1)

cjaγj) =: di. (5.1)

Since the nef cone Nef(Xr) and the Mori cone NE(Xr) are dual to each other, the divisor
D is nef if and only if D ·C ≥ 0 for all torus-invariant irreducible curves C in Xr. By Theorem
4.7, we have

NE(Xr) =
r∑
i=1

R≥0r(Pi).



20 B. NARASIMHA CHARY

Hence D is nef if and only if D · r(Pi) ≥ 0 for all 1 ≤ i ≤ r. Therefore, by (5.1), we conclude
that the divisor D is nef if and only if di ≥ 0 for all 1 ≤ i ≤ r. This completes the proof of (2).

Proof of (1): Recall that the divisor D is ample if and only if its class in Pic(Xr)R lies in the
interior of the nef cone Nef(Xr). Hence by using similar arguments as in the proof of (2) and
the toric Kleiman criterion for ampleness [CLS11, Theorem 6.3.13], we can see that D is ample
if and only if di > 0 for all 1 ≤ i ≤ r. �

Next we describe the generators of the nef cone Nef(Xr) of Xr.

Example 5.2. Let M2 =

[
1 −1
0 1

]
2×2

. Then X2 = P(OP1 ⊕ OP1(1)), the Hirzebruch surface

H1 and the rays ρ+
1 , ρ

−
1 , ρ

+
2 and ρ−2 of the fan (shown below) of X2 are generated by e+

1 , e
−
1 =

−e+
1 + e+

2 , e
+
2 and −e+

2 respectively.

ρ+
1

ρ+
2ρ−1

ρ−2

Figure. Fan of Hirzebruck surface H1.

The primitive relations r(P1) and r(P2) are given by

r(P1) : e+
1 + e−1 = e2 and r(P2) : e+

2 + e−2 = 0.

By wall relation, we observe that

(1) Dρ+
1
· r(P1) = 1 and Dρ+

1
· r(P2) = 0.

(2) Dρ−2
· r(P1) = 0 and Dρ−2

· r(P2) = 1.

Then the dual basis of {r(P1) , r(P2)} is {Dρ+
1
, Dρ−2

}. Hence the generators of the nef cone

Nef(H1) are Dρ+
1

and Dρ−2
. Note that by Lemma 3.1, Pic(H1) is generated by {Dρ+

1
, Dρ−2

}.
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Let D = aDρ+
1

+ bDρ−2
∈ Pic(H1). Then

D is ample if and only if a > 0 and b > 0

(this gives back [CLS11, Example (6.1.16), page 273]).

Now we prove the similar results for Xr. For 1 ≤ m ≤ r, define

Jm := {1 ≤ i < m : {ρ+
m} ∩ γPi(1) 6= ∅}.

Remark 5.3. Note that the set Jm is the collection of indices i < m for which uρ+
m

appear in
the γPi part of the expression (4.1) for the primitive relation r(Pi).

We set D1 := Dρ+
1

, and for m > 1 define inductively

Dm :=

{
Dρ+

m
if Jm = ∅

(
∑

k∈Jm c
γPk
ρ+
m
Dk) +Dρ+

m
if Jm 6= ∅,

where −cγPk
ρ+
m

is the coefficient of e+
m in the primitive relation r(Pk).

Example 5.4. In Example 5.2, D1 = Dρ+
1

, J2 = {1} and D2 = D1 + Dρ+
2

. By using (2.2),

we see that 0 ∼ div(χe
+
1 ) ∼ Dρ+

1
− Dρ−1

and 0 ∼ div(χe
+
2 ) ∼ Dρ+

2
− Dρ−2

+ Dρ−1
. Hence D2 =

D1 +Dρ+
2

= Dρ−2
.

Example 5.5. In Example 4.12,

(1) Recall by (4.8), we have e−1 + e+
1 = e+

2 + e+
3 + e+

4 + 2e−5 + e−6 + e+
7 . Then,

γP1(1) = {ρ+
2 , ρ

+
3 , ρ

+
4 , ρ

−
5 , ρ

−
6 , ρ

+
7 }.

(2) γP2(1) = {ρ−4 , ρ−5 , ρ+
6 , ρ

+
7 } (since e+

2 + e−2 = 2e−4 + e−5 + e+
6 + e+

7 ) .

(3) γP3(1) = {ρ+
5 , ρ

+
7 } (since e+

3 + e−3 = e+
5 + e+

7 ) .

(4) γP4(1) = {ρ+
5 , ρ

−
6 , ρ

−
7 } (since e+

4 + e−4 = e+
5 + 2e−6 + e−7 ).

(5) γP5(1) = {ρ+
6 , ρ

−
7 } (since e+

5 + e−5 = e+
6 + 2e−7 ).

(6) γP6(1) = {ρ+
7 } (since e+

6 + e−6 = e+
7 ).

(7) γP7(1) = ∅. (since e+
7 + e−7 = 0 ).

Then ,

(1) If m = 1, then D1 = Dρ+
1

.

(2) If m = 2, then J2 = {1} and c
γP1

ρ+
2

= 1. Hence D2 = D1 +Dρ+
2

.

(3) If m = 3, then J3 = {1} and c
γP1

ρ+
3

= 1. Hence D3 = D1 +Dρ+
3

.

(4) If m = 4, then J4 = {1} and c
γP1

ρ+
4

= 1. Hence D4 = D1 +Dρ+
4

.
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(5) If m = 5, then J5 = {3, 4} and c
γP3

ρ+
5

= 1 ; c
γP4

ρ+
5

= 1. Hence

D5 = D3 +D4 +Dρ+
5
.

(6) If m = 6, then J6 = {2, 5} and c
γP2

ρ+
6

= 1 ; c
γP5

ρ+
6

= 1. Hence

D6 = D2 +D5 +Dρ+
6
.

(7) If m = 7, then J7 = {1, 2, 3, 6} and

c
γP1

ρ+
7

= 1 ; c
γP2

ρ+
7

= 1 ; c
γP3

ρ+
7

= 1 ; and c
γP6

ρ+
7

= 1 . Hence

D7 = D1 +D2 +D3 +D6 +Dρ+
7
.

We prove,

Proposition 5.6. The set {Di : 1 ≤ i ≤ r} is dual basis of {r(Pi) : 1 ≤ i ≤ r}.

Proof. Fix 1 ≤ i ≤ r. By Proposition 4.16, the class of curve corresponding to the primitive
relation r(Pi) is given by

r(Pi) = [V (τi)]

(where τi is described as in Proposition 4.16). From Corollary 4.13, the primitive relation
r(Pi)(= [V (τi)]) is

e+
i + e−i −

∑
j>i

cje
εj
j = 0, (5.2)

where εj is as in Proposition 4.16. Note that this is the wall relation for the torus-invariant
curve V (τi). We prove

Dm · r(Pi) = Dm · V (τi) =

{
1 if i = m.

0 if i 6= m.
(5.3)

By (5.2) and by wall relation, we have

Dρ+
m
· V (τi) =


1 for m = i

0 for m < i

−cγPi
ρ+
m

for m > i and i ∈ Jm
0 for m > i and i /∈ Jm

(5.4)

Hence by definition of Dm, it is clear that

Dm · V (τi) =

{
1 for m = i

0 for m < i
(5.5)

Now we claim Dm · V (τi) = 0 for all m > i. Assume that m > i and write m = i+ j, where
1 ≤ j ≤ r − i. We prove the claim by induction on j. If j = 1, then Dm = Di+1.

Case 1: If Ji+1 = ∅, then Di+1 = Dρ+
i+1

. By (5.4), we see that Di+1 · V (τi) = 0.

Case 2: Assume that Ji+1 6= ∅.
Subcase 1: If i /∈ Ji+1, then by (5.4) and (5.5), we can see that Di+1 · V (τi) = 0.
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Subcase 2: If i ∈ Ji+1, then by (5.5), we have Di+1 · V (τi) = c
γPi
ρ+
i+1

+ (Dρ+
i+1
· V (τi)).

By (5.4), Dρ+
i+1
· V (τi) = −cγPi

ρ+
i+1

and hence Di+1 · V (τi) = 0. This proves the claim for j = 1.

Now assume that j > 1.

Case 1: If Jm = ∅, then by (5.4) and (5.5), we see that Dm · V (τi) = 0.

Case 2: Assume that Jm 6= ∅.
Subcase 1: If i /∈ Jm, then by (5.4) and (5.5), we can see that

Dm · V (τi) = ((
∑

k∈Jm,k>i

c
γPk
ρ+
m
Dk) · V (τi)) + (Dρ+

m
· V (τi)).

By induction on j, Dk · V (τi) = 0 for all i < k < m. By (5.4), as m > i and m /∈ Jm , we
have Dρ+

m
· V (τi) = 0 . Hence we conclude that Dm · V (τi) = 0. This completes the proof of the

proposition. �

We have,

Theorem 5.7.

(1) The nef cone Nef(Xr) of Xr is generated by {Di : 1 ≤ i ≤ r}.
(2) The divisor D =

∑
i aiDi is ample if and only if ai > 0 for all 1 ≤ i ≤ r.

Proof. Since the nef cone Nef(Xr) is dual of the Mori cone NE(Xr), (1) follows from Propo-
sition 5.6.

Proof of (2): This follows from (1) as the ample cone Amp(Xr) is interior of the nef cone
Nef(Xr). �

6. Fanoness and weak Fanoness of Bott towers

In this section we describe the matrices Mr such that the corresponding Bott tower Xr is Fano
or weak Fano. First recall the Iitaka dimension of a Cartier divisor D in a normal projective
variety X. Let

N(D) := {m ≥ 0 : H0(X,L (mD)) 6= 0},
where L (mD) is the line bundle associated to mD. For m ∈ N(D), we have a rational map

φm : X 99K P(H0(X,L (mD))∗).

If N(D) is empty we define the Iitaka dimension κ(D) of D as −∞. Otherwise we define

κ(D) := max
m∈N(D)

{dim(φm(X))}.

Observe that κ(D) ∈ {−∞, 0, 1, . . . , dim(X)}. We say D is big if κ(D) = dim(X) (see [Laz04,
Section 2.2, page 139]). Note that an ample divisor is big .

Lemma 6.1. Let X be a smooth projective variety, let U be an open affine subset of X. Let D
be an effective divisor with support X \ U . Then D is big.
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Proof. It suffices to show that there exists an effective divisor E with support X \U such that
E is big. Indeed, we then have mD = E + F for some m ≥ 0 and for some effective divisor F .
Then E + F is big and hence so is D.

There exists f1, . . . , fn ∈ OX(U) algebraically independent over C, where n = dim(X).
View f1, . . . , fn as rational functions on X, then f1, . . . , fn ∈ H0(X,OX(E)) for some effective
divisor E with support X \ U (since div(fi) is an effective divisor with support in X \ U for
1 ≤ i ≤ r). Thus, the monomials in f1, . . . , fn of any degree m are linearly independent
elements of H0(X,OX(mE)). So dim(H0(X,OX(mE))) grows like mn as m→∞. Hence E is
big (see [Laz04, Corollary 2.1.38 and Lemma 2.2.3]) and this completes the proof. �

We get the following as a variant of Lemma 6.1.

Corollary 6.2. Let X be a smooth projective variety and D be an effective divisor. Let supp(D)
denotes the support of D. If X \ supp(D) is affine, then D is big.

A smooth projective variety X is called Fano (respectively, weak Fano) if its anti-canonical
line bundle −KX is ample (respectively, nef and big). To describe our results we use the
notation and terminology from Section 1 (see page 2). We prove,

Theorem 6.3.

(1) Xr is Fano if and only if it satisfies I.
(2) Xr is weak Fano if and only if it satisfies II.

Proof. Proof of (2): We have

KXr = −
∑
ρ∈Σ(1)

Dρ (6.1)

(see [CLS11, Theorem 8.2.3] or [Ful93, Page 74]). The anti-canonical line bundle of any pro-
jective toric variety is big, since we have

supp(−KXr) = Xr \ (C∗)r,

(C∗)r is an affine open subset of Xr, by Corollary 6.2, −KXr is big.

By using Lemma 5.1, we prove that −KXr is nef if and only if Xr satisfies II.

Let D = −KXr . By (6.1) and by definition of di for D (see Lemma 5.1), we have

di = 2−
∑

γj∈γPi (1)

cj.

Then by Lemma 5.1(2), −KXr is nef if and only if
∑

γj∈γPi (1) cj ≤ 2 for all 1 ≤ i ≤ r.

First assume that −KXr is nef. Fix 1 ≤ i ≤ r. By above discussion, we have∑
γj∈γPi (1)

cj ≤ 2. (6.2)

Since cj’s are positive integers (see (4.4)), we get the following situation:

|γPi(1)| = 0 or |γPi(1)| = 1, or |γPi(1)| = 2.
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Case 1: If |γPi(1)| = 0, then by definition of γPi (see Definition 4.2), we have

r(Pi) : e+
i + e−i = 0.

Then |η+
i | = 0 = |η−i |. Hence we see Xr satisfies the condition N1

i .

Case 2: If |γPi(1)| = 1, then there exists a unique r ≥ j > i, such that γj ∈ γPi(1) and the
primitive relation is either

r(Pi) : e+
i + e−i = cje

+
j (6.3)

or

r(Pi) : e+
i + e−i = cje

−
j (6.4)

By (6.2), we get cj = 1 or 2.

Subcase (i): Assume that cj = 1. If the primitive relation is (6.3), then we can see that

|η+
i | = 0 and cj = −βij = 1. Then βij = −1 and hence Xr satisfies the condition N1

i .

If the primitive relation is (6.4), then by (2.2) |η−i | = 0 and |η+
i | = 1. Hence cj = βij = 1 and

βjk = 0 for all k > j.

Subcase (ii): Assume that cj = 2. If the primitive relation r(Pi) is (6.3), then |η+
i | = 0 and

|η−i | = 1. So by (2.2), we have cj = −βij. If the primitive relation r(Pi) is (6.4), then |η+
i | = 1,

|η−i | = 0 and βjk = 0 for all k > j. Again by (2.2), we have cj = βij Thus,

either βij = −2 or βij = 2.

Hence Xr satisfies the condition N2
i .

Case 3: If |γPi(1)| = 2, then there exists r ≥ s1 > s2 > i with γs1 , γs2 ∈ γPi(1) such that the
primitive relation r(Pi) is

r(Pi) : e+
i + e−i = cs1e

±
s1

+ cs2e
±
s2

(6.5)

Subcase (i): If the primitive relation is r(Pi) : : e+
i + e−i = cs1e

+
s1

+ cs2e
+
s2

, by (2.2) we see

|η+
i | = 0 and |η−i | = 2 . By (6.2) and (4.4) (ci’s are positive integers), we get

cs1 = 1 , cs2 = 1 and βis1 = βis2 = −1.

Hence Xr satisfies the condition N2
i .

Subcase (ii): If the primitive relation is r(Pi) : e+
i + e−i = cs1e

+
s1

+ cs2e
−
s2

, by (2.2) we see

|η+
i | = 1 = |η−i |. Then βis1 = −1, βis2 = 1 and βs2k = 0 for all k > s2.

Subcase (iii): If the primitive relation is r(Pi) : e+
i + e−i = cs1e

−
s1

+ cs2e
+
s2

, by (2.2) we see

|η+
i | = 1 and βis1 = 1. Then βs1s2 − βis2 = 1 and βs1k − βik = 0 for all k > s2.

Subcase (iv): If the primitive relation is r(Pi) : e+
i + e−i = cs1e

−
s1

+ cs2e
−
s2

, by (2.2) we see

|η+
i | = 1 and βis1 = 1. Then βs1s2 − βis2 = −1 and βis2 − βs1s2 − βs2k = 0 for all k > s2.

Hence Xr satisfies the condition N2
i . Therefore, we conclude that if Xr is weak Fano then

Xr satisfies the condition II. Similarly, we can prove by using Lemma 5.1(2), if Xr satisfies II
then Xr is weak Fano. This completes the proof of (2).

Proof of (1): This follows by using similar arguments as in the proof of (2) and Lemma
5.1(1). �
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6.1. Local rigidity of Bott towers. Now we prove some vanishing results for the cohomology
of tangent bundle of the Bott tower Xr and we get some local rigidity results. Let TXr denotes
the tangent bundle of Xr. Then we have

Corollary 6.4. If Xw̃ satisfies I, then H i(Xw̃, TXw̃) = 0 for all i ≥ 1.

Proof. If Xr satisfies I, then by Theorem 6.3, Xr is Fano variety. By [BB96, Proposition 4.2],
since Xr is a smooth Fano toric variety, we get H i(Xr, TXr) = 0 for all i ≥ 1. �

It is well known that by Kodaira-Spencer theory, the vanishing of H1(X,TX) implies that X
is locally rigid, i.e. admits no local deformations (see [Huy06, Proposition 6.2.10, page 272]).
Then by above result we have

Corollary 6.5. The Bott tower Xr is locally rigid if it satisfies I.

7. Log Fanoness of Bott towers

Recall that a pair (X,D) of a normal projective variety X and an effective Q-divisor D is
Kawamata log terminal (klt) if KX + D is Q-Cartier, and for all proper birational maps
f : Y −→ X, the pull back f ∗(KX +D) = KY +D′ satisfies f∗KY = KX and bD′c ≤ 0, where
b
∑

i aiDic =
∑

ibaicDi, bxc is the greatest integer ≤ x. The pair (X,D) is called log Fano if
it is klt and −(KX +D) is ample.

We recall here, a condition for the anti-canonical line bundle to be big (see [CG13]). Let X
be a Q- Gorenstein projective normal variety over C. If X admits a divisor D with the pair
(X,D) being log Fano then −KX is big (In [CG13] there is a necessary and sufficient condition
that X is log Fano (or “Fano type ”) variety, see [CG13, Theorem 1.1] for more details on this
).

If X is smooth and D is a normal crossing divisor, the pair (X,D) is log Fano if and only
if bDc = 0 and −(KX + D) is ample (see [KM08, Lemma 2.30, Corollary 2.31 and Definition
2.34]). In case of toric variety X see also [CLS11, Definition 11.4.23 and Proposition 11.4.24,
page 558]. We use notation as in Lemma 5.1. Let D =

∑
ρ∈Σ(1) aρDρ be a toric divisor in Xr,

with a′ρs in Q≥0 and bDc = 0. For 1 ≤ i ≤ r, define

ki := di − 2 +
∑

γj∈γPi (1)

cj.

Then we prove,

Theorem 7.1. The pair (Xr, D) is log Fano if and only if ki < 0 for all 1 ≤ i ≤ r.

Proof. From the above discussion by the condition on D, the pair (Xr, D) is log Fano if and
only if −(KXr +D) is ample. Note that as −KXr =

∑
ρ∈Σ(1) Dρ, we get

−(KXr +D) =
∑
ρ∈Σ(1)

(1− aρ)Dρ.

By Lemma 5.1, −(KXr +D) is ample if and only if

((1− aρ+
i

) + (1− aρ−i )−
∑

γj∈γPi (1)

cj(1− aγj)) > 0 for all 1 ≤ i ≤ r. (7.1)
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Recall the definition of di for D,

di = aρ+
i

+ aρ−i −
∑

γj∈γPi (1)

cjaγj .

Then we have

((1− aρ+
i

) + (1− aρ−i )−
∑

γj∈γPi (1)

cj(1− aγj)) = −(di − 2 +
∑

γj∈γPi (1)

cj).

Hence in (7.1)

((1− aρ+
i

) + (1− aρ−i )−
∑

γj∈γPi (1)

cj(1− aγj)) = −ki for all 1 ≤ i ≤ r

and we conclude that −(KXr + D) is ample if and only if ki < 0 for all 1 ≤ i ≤ r. This
completes the proof of the theorem. �

8. Extremal rays and Mori rays of the Bott tower

In this section we study the extremal rays and Mori rays of Mori cone of Xr. First we recall
some definitions. Let V be a finite dimensional vector space over R and let K be a (closed)
cone in V . A subcone Q in K is called extremal if u, v ∈ K, u + v ∈ Q then u, v ∈ Q. A face
of K is an extremal subcone. A one-dimensional face is called an extremal ray. Note that an
extremal ray is contained in the boundary of K.

Let X be a smooth projective variety. An extremal ray R in NE(X) ⊂ N1(X) is called Mori
if R ·KX < 0, where KX is the canonical divisor in X. Recall that NE(Xr) is a strongly convex
rational polyhedral cone of maximal dimension in N1(Xr). We prove,

Theorem 8.1.

(1) The class of curves r(Pi) for 1 ≤ i ≤ r are all extremal rays in the Mori cone NE(Xr)
of Xr.

(2) Fix 1 ≤ i ≤ r, the class of curve r(Pi) is Mori ray if and only if either |γPi(1)| = 0, or
|γPi(1)| = 1 with cj = 1 for γj ∈ γPi(1).

Proof. Proof of (1): This follows from Theorem 4.7 and Corollary 4.8.

Proof of (2): By (1), r(Pi) 1 ≤ i ≤ r are all extremal rays in NE(Xr). Hence for 1 ≤ i ≤ r,
r(Pi) is Mori if KXr · r(Pi) < 0. Since KXr = −

∑
ρ∈Σ(1) Dρ, we can see by Corollary 4.13 and

by similar arguments as in the proof of Lemma 5.1,

KXr · r(Pi) = −2 +
∑

γj∈γPi (1)

cj. (8.1)

Thus if KXr · r(Pi) < 0, then ∑
γj∈γPi (1)

cj < 2.

As cj are all positive integers (see (4.4)), we get either |γPi(1)| = 0, or |γPi(1)| = 1 and cj = 1
for γj ∈ γPi(1). Similarly, by using (8.1) we can prove the converse. This completes the proof
of the theorem. �
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CS 40700, 38058, Grenoble cedex 09, France., Email: narasimha-chary.bonala@univ-grenoble-
aples.fr


	1. Introduction
	2. Preliminaries
	2.1. Toric varieties
	2.2. Bott towers

	3. On Picard group of a Bott tower
	4. Primitive relations of the Bott tower
	4.1. Primitive collections and primitive relations
	4.2. Mori cone 

	5. Ample and nef line bundles on the Bott tower
	6. Fanoness and weak Fanoness of Bott towers
	6.1. Local rigidity of Bott towers

	7. Log Fanoness of Bott towers
	8. Extremal rays and Mori rays of the Bott tower
	References

