A Hybrid High-Order method for Kirchhoff–Love plate bending problems - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

A Hybrid High-Order method for Kirchhoff–Love plate bending problems

Résumé

We present a novel Hybrid High-Order (HHO) discretization of fourth-order elliptic problems arising from the mechanical modeling of the bending behavior of Kirchhoff--Love plates, including the biharmonic equation as a particular case. The proposed HHO method supports arbitrary approximation orders on general polygonal meshes, and reproduces the key mechanical equilibrium relations locally inside each element. When polynomials of degree $k\ge 1$ are used as unknowns, we prove convergence in $h^{k+1}$ (with $h$ denoting, as usual, the meshsize) in an energy-like norm. A key ingredient in the proof are novel approximation results for the oblique biharmonic projector on local polynomial spaces. Under biharmonic regularity assumptions, a sharp estimate in $h^{k+3}$ is also derived for the $L^2$-norm of the error on the deflection. The theoretical results are supported by numerical experiments, which additionally show the robustness of the method with respect to the choice of the stabilization.
Fichier principal
Vignette du fichier
hho_paper.pdf (830.11 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01541389 , version 1 (22-06-2017)
hal-01541389 , version 2 (12-12-2017)
hal-01541389 , version 3 (24-01-2018)

Identifiants

  • HAL Id : hal-01541389 , version 1

Citer

Francesco Bonaldi, Daniele Di Pietro, Giuseppe Geymonat, Françoise Krasucki. A Hybrid High-Order method for Kirchhoff–Love plate bending problems. 2017. ⟨hal-01541389v1⟩
592 Consultations
227 Téléchargements

Partager

More