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Abstract

We present a novel Hybrid High-Order (HHO) discretization of fourth-order elliptic problems
arising from the mechanical modeling of the bending behavior of Kirchhoff–Love plates, in-
cluding the biharmonic equation as a particular case. The proposed HHO method supports
arbitrary approximation orders on general polygonal meshes, and reproduces the key mechan-
ical equilibrium relations locally inside each element. When polynomials of degree k ě 1 are
used as unknowns, we prove convergence in hk`1 (with h denoting, as usual, the meshsize)
in an energy-like norm. A key ingredient in the proof are novel approximation results for
the oblique biharmonic projector on local polynomial spaces. Under biharmonic regularity
assumptions, a sharp estimate in hk`3 is also derived for the L2-norm of the error on the de-
flection. The theoretical results are supported by numerical experiments, which additionally
show the robustness of the method with respect to the choice of the stabilization.

MSC2010: 65N30, 65N12, 74K20

Keywords: Hybrid High-Order methods, Kirchhoff–Love plates, biharmonic problems, oblique
biharmonic projector

1 Introduction

As remarked by O. C. Zienkiewicz [2929], “one of the early requirements of the Finite Element (FE)
approximation was the choice of shape functions which did not lead to infinite strains on element
interfaces and which therefore preserved a necessary degree of continuity”. This requirement
(also called of conformity) appeared easy to satisfy for simple self-adjoint problems governed by
second-order equations, where C0-continuity at interfaces is enough. The situation is different
as far as it concerns the knowledge, essential in structural engineering, of the bending of plates,
whose numerical treatment has always been a goal of FE computations. Since thin plate bending
in the Kirchhoff–Love approximation is governed by a fourth-order equation, C1-continuity has
to be introduced (and the continuity of both the function and of its normal gradient assured
at interfaces). This was difficult to achieve and computationally expensive in the classical FE
framework, see e.g. Zienkiewicz [3030] for a first engineering-oriented discussion and Ciarlet [1515]
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for a mathematically-oriented one. In order to relax such C1-continuity condition, many non-
conforming, mixed, hybrid plates elements have been studied and tested all over the last fifty
years, and the literature on this subject is very broad; a minimal and by far non-exhaustive sample
includes the seminal paper by Lascaux–Lesaint [2626], as well as the classical works of Bathe [44],
Boffi–Brezzi–Fortin [77], Brenner [88], Brenner–Scott [99], Brezzi–Fortin [1111], Ciarlet [1515], Hughes
[2525]; see also references therein. More recent nonconforming methods which have similarities
(and differences) with the one presented here include the Hybridizable Discontinuous Galerkin
method [1616] of Cockburn–Dong–Guzmán and the Weak Galerkin method [2828] of Lin–Wang–Ye;
see also [1717] concerning the passage from Discontinuous Galerkin to hybrid methods. We also cite
here [1313], where the fourth-order operator in the Cahn–Hilliard equations is treated as a system
of second-order operators.

A recent approach to the construction of FE spaces with C1-regularity, on the other hand, has been
developed in the context of the Virtual Element Method (VEM) [66], [1010]. Here, global continuity
requirements are enforced by renouncing an explicit expression of the basis functions at each
point, and local contributions are built using computable projections thereof (a stabilization term
therefore has to be added). We refer the reader to [1212] [1414] for an application of C1-conforming
virtual spaces to plate-bending problems similar to the ones considered here. Nonconforming
versions of the VEM have also been developed for fourth order operators, see, e.g., the very
recent contributions by Antonietti–Manzini–Verani [33] (with virtual functions continuous at nodes)
and Zhao–Chen–Zhang [3131] (with C0-continuous virtual functions). These results suggest that a
nonconforming version of HHO methods can be developed for the Kirchhoff–Love bending problem.

The Kirchhoff–Love plate bending model problem considered in this work reads

´divdivM “ f in Ω, (1a)
u “ 0 on BΩ, (1b)

Bnu “ 0 on BΩ, (1c)

where Ω Ă R2 denotes a two-dimensional bounded and connected polygonal domain, representing
the middle surface of a plate in its reference configuration, and the divergence operator is denoted
by div or div, as to whether it acts on vector- or tensor-valued fields, respectively. In (1a1a), f
represents a surface load orthogonal to the plane of the plate, and M is the moment tensor, a
second-order symmetric tensor field related to the scalar unknown u, the deflection of the plate,
by the constitutive law

M “ ´A∇2u,

where A is a fourth-order, symmetric and uniformly-elliptic tensor field, and ´∇2u is referred to
as the curvature tensor. For the sake of simplicity, we assume in what follows that A is piecewise
constant on a finite polygonal partition PΩ “ tΩi : i P Iu of Ω, and that f P L2pΩq. Variational
formulations are classical for problem (11). For X Ă Ω, we denote by p¨, ¨qX the scalar product
in L2pXq, L2pXq2 or L2pXq2ˆ2, depending on the context, and by }¨}X the associated norm; we
omit the subscript X whenever X “ Ω. The primal variational formulation of (11) reads: Find
u P H2

0 pΩq such that

pA∇2u,∇2vq — apu, vq “ pf, vq @v P H2
0 pΩq. (2)

Owing to the Lax–Milgram Lemma, problem (22) is well-posed.

In this work, we propose and analyze a novel Hybrid High-Order (HHO) method for the approxi-
mation of problem (22) which sits at the far end of the spectrum of nonconforming methods, since
the underlying space does not even embed C0-continuity. HHO methods, introduced in [2020] in
the context of quasi-incompressible linear elasticity, are a class of new-generation discretization
methods for partial differential equations with several advantageous features. The most relevant
in the context of plate bending problems are: (i) the support of arbitrary approximation orders
on general polygonal meshes; (ii) the reproduction of key continuous properties (such as, e.g.,
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local equilibrium relations) at the discrete level; (iii) reduced computational cost thanks to static
condensation and compact stencil. We refer the reader to [2323] for an introduction covering the
salient aspects of HHO methods for linear and nonlinear problems.

The HHO method for problem (22) is formulated in terms of discrete unknowns defined on mesh
faces and elements (whence the term hybrid), and such unknowns are polynomials of arbitrary
degree k ě 1 (whence the expression high-order). The construction is conceived so that only
face-based unknowns are globally coupled, whereas element-based unknowns can be eliminated by
the computation of static condensation; see Remark 99 below for further details. Element-based
unknowns play the role of the deflection u inside elements, whereas face unknowns play the role of
the traces of u and of its gradient on faces. From these unknowns, a reconstruction of the deflection
of degree pk`2q is obtained by solving a local problem inside each element. This reconstruction is
conceived so that, composed with a local reduction map, it coincides with the oblique biharmonic
projector and, as such, has optimal approximation properties in the space of polynomials of total
degree (up to) pk ` 2q; see Theorem 1111 below, whose proof hinges on the recent results of [1919].
The high-order deflection reconstruction is used to formulate a local contribution, which includes
a carefully tailored stabilization term. The role of the latter is to ensure coercivity with respect to
a H2-like seminorm while, at the same time, preserving the approximation properties of the local
deflection reconstruction.

An extensive convergence analysis of the method is carried out. Specifically, in Theorem 1111 below
we prove convergence in hk`1 (with h denoting, as usual, the meshsize) in an energy-like norm and,
in Theorem 1515 below, a sharp estimate in hk`3 for the L2-norm under biharmonic regularity as-
sumptions. The latter result highlights a salient feature of HHO methods, namely the fact that, by
construction, element-based unknowns superconverge to the L2-orthogonal projection of the exact
solution on general meshes. As this happens by design (i.e., this behavior is not serendipitous),
this phenomenon is henceforth referred to as supercloseness rather than superconvergence. We
also show that the method satisfies locally inside each element a discrete version of the principle
of virtual work with moments and shear forces obeying a law of action and reaction. The per-
formance of the method is showcased on numerical examples, including a study of the robustness
with respect to the choice of the stabilization.

The rest of the paper is organized as follows. In Section 22 we introduce the discrete setting:
regularity for polygonal meshes, basic results thereon, and local projectors. A novel general result
contained in this section is Theorem 11, where optimal approximation properties for the biharmonic
projector on local polynomial spaces are studied. The proof of this theorem is given in Section
66. In Section 33 we introduce the HHO method, state the main results corresponding to Theorems
1111 and 1515, and provide a few numerical examples. In Section 44 we prove the local equilibrium
properties of the HHO method and identify discrete equilibrated counterparts of moments and
shear forces at interfaces. Section 55 collects the technical proofs of the properties of the discrete
bilinear form relevant to the analysis. Some indications of possible developments are given in
Secion 77.

2 Discrete setting

In this section we introduce some assumptions on the mesh, recall a few known results, and define
two projectors on local polynomial spaces that will play a key role in the analysis of the method.

2.1 Mesh

The HHO method is built upon a polygonal mesh of the domain Ω defined prescribing a set of
elements Th and a set of faces Fh.
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The set of elements Th is a finite collection of open disjoint polygons T with nonzero area such
that Ω “

Ť

TPTh
T and h – maxTPTh

hT , with hT the diameter of T . The set of faces Fh is a
finite collection of open disjoint line segments in Ω with nonzero length such that, for all F P Fh,
(i) either there exist two distinct mesh elements T1, T2 P Th such that F Ă BT1 X BT2 (and F is
called an interface) or (ii) there exists a mesh element T P Th such that F Ă BT X BΩ (and F is
called a boundary face). We assume that Fh is a partition of the mesh skeleton in the sense that
Ť

TPTh
BT “

Ť

FPFh
F .

We denote by F i
h the set of all interfaces and by Fb

h the set of all boundary faces, so that Fh “
F i
h Y Fb

h . The length of a face F P Fh is denoted by hF . For any T P Th, FT is the set of faces
that lie on BT (the boundary of T ) and, for any F P FT , nTF is the unit normal to F pointing
out of T . Symmetrically, for any F P Fh, TF is the set containing the mesh elements sharing face
F (two if F is an interface, one if F is a boundary face).

The notion of geometric regularity for polygonal meshes is more subtle than for standard meshes.
To formulate it, we assume the existence of a matching simplicial submesh, meaning that there is
a conforming triangulation Th of the domain such that each mesh element T P Th is decomposed
into a finite number of triangles from Th and each mesh face F P Fh is decomposed into a finite
number of edges from the skeleton of Th. We denote by % the regularity parameter such that (i)
for any triangle S P Th of diameter hS and inradius rS , %hS ď rS and (ii) for any mesh element
T P Th and any triangle S P Th such that S Ă T , %hT ď hS . When considering refined mesh
sequences, the regularity parameter should remain bounded away from zero.

In what follows, we also assume that the mesh is compliant with the data, i.e. for each mesh element
T P Th there exist a unique Ωi P PΩ such that T Ă Ωi. As a result, the material tensor field A is
element-wise constant, and we set for the sake of brevity

AT – A|T @T P Th.

We also denote by A´T and A`T the smallest and largest eigenvalues of AT , regarded as an endo-
morphism of R2ˆ2

sym, respectively. For l ě 0 we also introduce, for later use, the broken Sobolev
space

H lpThq –
 

v P L2pΩq : v|T P H
lpT q @T P Th

(

, (3)

equipped, unless noted otherwise, with the broken seminorm }¨}HlpThq
defined by

@v P H lpThq, }v}HlpThq
–

˜

ÿ

TPTh

}v}2HlpT q

¸1{2

. (4)

2.2 Basic results

We next recall a few geometric and functional inequalities, whose proofs are straightforward adap-
tations of the results collected in [2121, Chapter 1] (where a slightly different notion of mesh faces
is considered). For any mesh element T P Th and any face F P FT it holds that

%2hT ď hF ď hT , (5)

which expresses the fact that we are working on isotropic meshes. Moreover, the maximum number
of faces of a mesh element is uniformly bounded: There is an integer NB ě 3 only depending on %
such that

max
hPH

max
TPTh

cardpFT q ď NB. (6)

Let a polynomial degree l ě 0 be fixed, let X be a mesh element or face, and denote by PlpXq the
space spanned by the restrictions to X of two-variate polynomials of total degree at most l ě 0.
There exist three real numbers Ctr ą 0, Ctr,c ą 0, and Cinv depending on % and possibly on l, but
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independent of h, such that for any T P Th and F P FT , the following discrete trace, continuous
trace, and inverse inequalities hold:

}w}F ď Ctr h
´1{2

F }w}T @w P PlpT q, (7a)

h
1{2

T }w}BT ď Ctr,c p}w}T ` hT }∇w}T q @w P H1pT q, (7b)

}∇w}T ď Cinvh
´1
T }w}T @w P PlpT q, (7c)

We also recall the following Poincaré inequality, valid for all T P Th and all w P H1pT q such that
pw, 1qT “ 0:

}w}T ď CphT }∇w}T , (8)

where the real number Cp is independent of both hT and T , but possibly depends on % (for
instance, Cp “ π´1 for convex elements [55]).

2.3 Projectors on local polynomial spaces

Projectors on local polynomial spaces are an essential ingredient in the construction and analysis
of our method. Let a polynomial degree l ě 0 be fixed, and let X denote a mesh element or
face. The L2-orthogonal projector πlX : L2pXq Ñ PlpXq is such that, for all v P L2pXq, πlXv is the
unique polynomial satisfying the relation

pπlXv ´ v, wqX “ 0 @w P PlpXq. (9)

The corresponding vector-valued version, denoted by πlX , acts component-wise. We recall the
following approximation results that are a special case of the ones proved in [2222, Lemmas 3.4 and
3.6]: There exists a real number C ą 0 independent of h, but possibly depending on % and l, such
that, for all T P Th, all s P t0, . . . , l ` 1u, and all v P HspT q,

|v ´ πlT v|HmpT q ď Chs´mT |v|HspT q @m P t0, . . . , su, (10a)

and, if s ě 1,

|v ´ πlT v|HmpBT q ď Ch
s´m´1{2

T |v|HspT q @m P t0, . . . , s´ 1u. (10b)

Here we have set, for any ϕ P HspT q,

|ϕ|HmpT q –
ÿ

αPN2,}α}1“m

}Bαϕ}L2pT q, |ϕ|HmpBT q –
ÿ

αPN2,}α}1“m

}Bαϕ}L2pBT q,

with m respectively as in (10a10a) and (10b10b), }α}1 – α1 ` α2 and Bα – B
α1
1 B

α2
2 . Notice that, in the

second definition, ϕ and Bαϕ stand for the boundary traces of the function and of its derivatives
up to order m, respectively.

Let a mesh element T P Th be fixed. For u, v P H2pT q, we let a|T pu, vq –
`

AT∇2u,∇2v
˘

T
and

introduce the oblique biharmonic projector $l
T : H2pT q Ñ PlpT q such that, for any integer l ě 2

and any function v P H2pT q,

a|T p$
l
T v ´ v, wqT “ 0 for all w P PlpT q and π1

T p$
l
T v ´ vq “ 0. (11)

Optimal approximation properties for the oblique biharmonic projector are stated in the following
theorem, whose proof is given in Section 66.

Theorem 1 (Optimal approximation properties of the oblique biharmonic projector). There is
a real number C ą 0 independent of h, but possibly depending on A, % and l, such that, for all
T P Th, all s P t2, . . . , l ` 1u, and all v P HspT q, it holds

|v ´$l
T v|HmpT q ď Chs´mT |v|HspT q @m P t0, . . . , su, (12a)

and
|v ´$l

T v|HmpBT q ď Ch
s´m´1{2

T |v|HspT q @m P t0, . . . , s´ 1u. (12b)
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Remark 2 (Dependence on the material tensor). It can be checked that the constant C in the
right-hand side of (1212) actually depends on AT only through the ratio between A`T and A´T .

3 The Hybrid High-Order method

In this section we present the construction underlying the HHOmethod, state the discrete problem,
and discuss the main results.

3.1 Local discrete unknowns and interpolation

Let a mesh element T P Th and a polynomial degree k ě 1 be fixed. The local space of discrete
unknowns is defined as the set

Uk
T – PkpT q ˆ

˜

ą

FPFT

PkpF q2
¸

ˆ

˜

ą

FPFT

PkpF q

¸

. (13)

For a general collection of discrete unknowns vT P Uk
T , we use the standard HHO notation

vT “ pvT , pv∇,F qFPFT
, pvF qFPFT

q,

where vT contains the element-based discrete unknowns, v∇,F the discrete unknowns related to
the trace of the gradient on the face F , and vF the discrete unknowns related to the trace on F .
For a variation of the method with boundary unknowns representing the normal component of
the gradient, we refer the reader to Section 7.17.1.

The local interpolation operator IkT : H2pT q Ñ Uk
T is such that, for all v P H2pT q,

IkT v –
`

πkT v, pπ
k
F p∇vq|F qFPFT

, pπkF pv|F qqFPFT

˘

. (14)

Since the boundary of T is piecewise smooth, the trace theorem ensures that the restrictions v|F
and p∇vq|F of v appearing in (1414) are both well-defined.

3.2 Local deflection reconstruction

Let again a mesh element T P Th and a polynomial degree k ě 1 be fixed. We introduce the
local deflection reconstruction operator pk`2

T : Uk
T Ñ Pk`2pT q such that, for all vT P Uk

T , p
k`2
T vT P

Pk`2pT q satisfies for all w P Pk`2pT q

a|T pp
k`2
T vT , wq “

´ pvT , divdivMw,T qT ´
ÿ

FPFT

pv∇,F ,Mw,TnTF qF `
ÿ

FPFT

`

vF ,divMw,T ¨ nTF
˘

F
, (15)

where Mw,T – ´AT∇2w. Here, the notation Mw,T is used to emphasize the fact that Mw,T

is a moment tensor of virtual nature (with space of virtual deflections equal to Pk`2pT q) unlike
tensorM appearing in bilinear form a introduced in (22). The right-hand side of (1515) is conceived
so as to resemble an integration by parts formula where the roles of the function represented by
vT and of its gradient are played by element discrete unknowns inside volumetric integrals and by
face-based discrete unknowns on boundary integrals.

Since ker∇2 “ P1pT q, the compatibility condition for problem (1515) requires that the linear form
on the right-hand side vanish on the elements of P1pT q; since Mw,T “ 0 for all w P P1pT q, this
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condition is satisfied. The solution of (1515) is not unique: if pk`2
T vT P Pk`2pT q is a solution,

pk`2
T vT ` zT for any zT P P1pT q also is. To ensure uniqueness, we add the closure condition

π1
T p

k`2
T vT “ π1

T vT . (16)

Notice, in passing, that element discrete unknowns do not contribute to the right-hand side of (1515)
for k “ 1, and they only appear in the closure condition (1616).

For further use, we also observe that, since vT is smooth, performing an integration by parts on
the first term in the right-hand side of (1515) and using the symmetry of AT leads to the following
reformulation, which points out the non-conformity of the method:

a|T pp
k`2
T vT , wq “

a|T pvT , wq ´
ÿ

FPFT

pv∇,F ´∇vT ,Mw,TnTF qF `
ÿ

FPFT

`

vF ´ vT ,divMw,T ¨ nTF
˘

F
. (17)

The definition of pk`2
T is justified by the following proposition, which establishes a link with the

oblique biharmonic projector defined by (1111).

Proposition 3 (Link with the oblique biharmonic projector). It holds

pk`2
T ˝ IkT “ $k`2

T . (18)

Proof. We write (1515) for vT “ IkT v (cf. (1414) for the definition of the local interpolator). Since
w P Pk`2pT q and AT is a constant tensor, we infer that

divdivMw,T P Pk´2pT q Ă PkpT q

and, for all F P FT ,

pMw,T q|FnTF P PkpF q2, pdivMw,T q|F ¨ nTF P Pk´1pF q Ă PkpF q.

Consequently, recalling the definition (99) of πkT , π
k
F , and π

k
F , we have

pπkT v,divdivMw,T qT “ pv,divdivMw,T qT ,

pπkF p∇vq|F ,Mw,TnTF qF “ pp∇vq|F ,Mw,TnTF qF ,

pπkF v|F ,divMw,T ¨ nTF qF “ pv|F ,divMw,T ¨ nTF qF .

Plugging the above identities into the right-hand side of (1515), performing an integration by parts,
and using the symmetry of AT , we arrive at the following orthogonality condition:

a|T pp
k`2
T IkT v ´ v, wq “ 0. (19)

Comparing (1919) and (1616) with the definition (1111) of $k`2
T concludes the proof.

Remark 4 (Approximation properties for pk`2
T ˝IkT ). The above result implies that pk`2

T ˝IkT “ $k`2
T

has optimal approximation properties in Pk`2pT q, in the sense precised by Theorem 11.

3.3 Local contribution

We introduce the local bilinear form aT p¨, ¨q on Uk
T ˆUk

T given by

aT puT , vT q – a|T pp
k`2
T uT , p

k`2
T vT q ` sT puT , vT q. (20)
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Here, the first contribution is the usual Galerkin term responsible for consistency. The second
contribution, in charge of stability, penalizes high-order differences between the reconstruction
and the unknowns and is such that, for all puT , vT q P Uk

T ˆUk
T ,

sT puT , vT q –
A`T
h4
T

´

πkT pp
k`2
T uT ´ uT q, π

k
T pp

k`2
T vT ´ vT q

¯

T

`
A`T
hT

ÿ

FPFT

´

πkF p∇pk`2
T uT ´ u∇,F q,π

k
F p∇pk`2

T vT ´ v∇,F q

¯

F

`
A`T
h3
T

ÿ

FPFT

´

πkF pp
k`2
T uT ´ uF q, π

k
F pp

k`2
T vT ´ vF q

¯

F
.

(21)

Remark 5 (Stabilization). Other expressions are possible for the stabilization term, and the specific
choice can affect the accuracy of the results. In particular, the discussion below remains true if
we replace (2020) by

aT puT , vT q – a|T pp
k`2
T uT , p

k`2
T vT q ` ηsT puT , vT q, (22)

with η ą 0 denoting a user-dependent parameter independent of h. In practice, it is important
that the numerical results be only marginally affected by the specific choice of the stabilization.
We refer the reader to Section 3.73.7 below for a study of the robustness of the method with respect
to η.

The following proposition states a consistency result for the stabilization bilinear form (2121).

Proposition 6 (Consistency of sT ). There is a real number C ą 0 independent of h, but possibly
depending on A, % and k, such that, for all v P Hk`3pT q,

sT pI
k
T v, I

k
T vq

1{2 ď Chk`1
T |v|Hk`3pT q. (23)

Proof. We have
sT pI

k
T v, I

k
T vq “ T1 ` T2 ` T3,

where, recalling Proposition 33 and using the linearity of projectors,

T1 –
A`T
h4
T

}πkT p$
k`2
T v ´ πkT vq}

2
T “

A`T
h4
T

}πkT p$
k`2
T v ´ vq}2T ,

T2 –
A`T
hT

ÿ

FPFT

}πkF p∇$k`2
T v ´ πkF p∇vqq}2F “

A`T
hT

ÿ

FPFT

}πkF p∇$k`2
T v ´∇vq}2F ,

T3 –
A`T
h3
T

ÿ

FPFT

}πkF p$
k`2
T v ´ πkF vq}

2
F “

A`T
h3
T

ÿ

FPFT

}πkF p$
k`2
T v ´ vq}2F .

By the boundedness of L2-projectors, along with the approximation properties (12a12a)–(12b12b) of
$k`2
T with s “ k ` 3 and, respectively, m “ 0 for T1, m “ 1 for T2, and again m “ 0 for T3, the

conclusion follows.

We equip the space Uk
T with the following local discrete seminorm:

}vT }
2
A,T – }A1{2

T ∇2vT }
2
T `

A`T
hT

ÿ

FPFT

}v∇,F ´∇vT }
2
F `

A`T
h3
T

ÿ

FPFT

}vF ´ vT }
2
F . (24)

The following result shows that the bilinear form aT induces on Uk
T a seminorm }¨}a,T uniformly

equivalent to }¨}A,T .
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Lemma 7 (Local coercivity and boundedness). There is a real number C ą 0 independent of h,
but possibly depending on A, % and k, such that, for all T P Th, the following inequalities hold
expressing, respectively, the coercivity and boundedness of aT :

C´1}vT }
2
A,T ď }vT }

2
a,T – aT pvT , vT q ď C}vT }

2
A,T @vT P Uk

T . (25)

Proof. See Section 5.15.1.

3.4 Global space, interpolation, and norm

We define the following global space of discrete unknowns:

Uk
h –

˜

ą

TPTh

PkpT q

¸

ˆ

˜

ą

FPFh

PkpF q2
¸

ˆ

˜

ą

FPFh

PkpF q

¸

. (26)

Note that interface unknowns in Uk
h are single-valued, i.e., their values match from one element

to the adjacent one. For a collection of discrete unknowns in Uk
h, we use the notation

vh “ ppvT qTPTh
, pv∇,F qFPFh

, pvF qFPFh
q ,

and we denote by vT “ pvT , pv∇,F qFPFT
, pvF qFPFT

q P Uk
T its restriction to a mesh element T P Th.

We also denote by vh (no underline) the broken polynomial function on Th such that

vh|T “ vT @T P Th.

We define the global interpolator Ikh : H2pΩq Ñ Uk
h such that, for all v P H2pΩq,

pIkhvq|T “ IkT pv|T q @T P Th. (27)

The space Uk
h is equipped with the following seminorm (cf. (2424) for the definition of }¨}A,T ):

}vh}
2
A,h –

ÿ

TPTh

}vT }
2
A,T . (28)

We notice that the couple of boundary conditions (1b1b)–(1c1c) is equivalent to the couple u “ 0 on
BΩ and ∇u “ 0 on BΩ. Indeed, the fact that u vanishes on BΩ implies its tangential derivative
to vanish on BΩ as well. Accounting for this remark, we introduce the following subspace that
incorporates the latter couple of boundary conditions in a strong manner:

Uk
h,0 – tvh P Uk

h : vF “ 0, v∇,F “ 0 for any F P Fb
hu. (29)

It is a simple matter to check that the image of the restriction of Ikh to H2
0 pΩq is a subset of Uk

h,0.

Proposition 8 (Norm }vh}A,h). The mapping Uk
h,0 Q vh ÞÑ }vh}A,h P R defines a norm on Uk

h,0.

Proof. The seminorm property is trivial. It then suffices to show that }vh}A,h “ 0 ùñ vh “ 0 P

Uk
h,0. Clearly, }vh}A,h “ 0 implies ∇2vT ” 0 for all T P Th and v∇,F ´∇vT ” 0 and vF ´ vT ” 0

for all F P Fh. By definition (2929), we have v∇,F ” 0 and vF “ 0 for all F P Fbh; thus, for
any T P Th, if FT X Fb

h ‰ H, then there exists F P Fb
h such that ∇vT ” 0 and vT ” 0 on F .

Since ∇2vT ” 0 in T , these facts imply that vT ” 0 in T , which in turn implies that vF ” 0
and v∇,F ” 0 for all F P FT . Repeating this argument for inner layers of elements yields the
assertion.
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3.5 Discrete problem

The discrete problem is formulated as follows: Find uh P Uk
h,0 such that

ahpuh, vhq “ pf, vhq @vh P Uk
h,0 (30)

with global bilinear form ah on Uk
h ˆUk

h obtained by element-by-element assembly setting

ahpuh, vhq –
ÿ

TPTh

aT puT , vT q. (31)

Remark 9 (Implementation). Problem (3030) can be efficiently solved by first eliminating all element-
based discrete unknowns by static condensation (the computation of a local Schur complement
inside each element), and then inverting a global matrix where only face unknowns appear. Thus,
for a given mesh Th, the main cost corresponds to the inversion of a sparse symmetric positive-
definite matrix.

The following lemma summarizes the properties of the global bilinear form ah.

Lemma 10 (Properties of ah). The bilinear form ah defined by (3131) has the following properties:

(i) Coercivity and boundedness. There is a real number C ą 0 independent of h, but possibly
depending on A, % and k, such that

C´1}vh}
2
A,h ď }vh}

2
a,h – ahpvh, vhq ď C}vh}

2
A,h @vh P Uk

h. (32)

(ii) Consistency. There is a real number C ą 0 independent of h, but possibly depending on A, %
and k, such that, for all v P Hk`3pΩq XH2

0 pΩq, it holds that

sup
whPU

k
h,0zt0hu

pdivdivA∇2v, whq ´ ahpI
k
hv,whq

}wh}A,h
ď Chk`1|v|Hk`3pΩq. (33)

Proof. See Section 5.15.1.

As a consequence of the first inequality in (3232), the discrete problem (3030) admits a unique solution.

3.6 Main results

We next present the main results of the analysis, namely error estimates in an energy-like norm,
in a jump-seminorm, and in the L2-norm. Inside the proofs of this section, we often abridge as
a À b the inequality a ď Cb with C ą 0 independent of h, but possibly depending on A, %, and k.

3.6.1 Energy error estimate

We introduce the global deflection reconstruction operator pk`2
h : Uk

h Ñ L2pΩq such that, for all
vh P Uk

h,
ppk`2
h vhq|T “ pk`2

T vT @T P Th.

We also define the stabilization seminorm |¨|s,h on Uk
h setting, for all vh P Uk

h,

|vh|
2
s,h –

ÿ

TPTh

sT pvT , vT q.

10



Theorem 11 (Energy error estimate). Let u P H2
0 pΩq and uh P Uk

h,0 denote the unique solutions
to the continuous (22) and discrete (3030) problems, respectively. Assume the additional regularity
u P Hk`3pΩq. Then, it holds that

}A1{2∇2
hpp

k`2
h uh ´ uq} ` |uh|s,h ď Chk`1|u|Hk`3pΩq, (34)

where ∇h denotes the usual broken gradient operator on Th and the real number C ą 0 is inde-
pendent of h (but possibly depends on A, %, and k).

Remark 12 (Regularity of the solution). Concerning the regularity assumptions on u, we mention
as an example that, for k “ 1, such regularity is satisfied by the solution of the biharmonic
problem with Dirichlet boundary conditions (obtained taking A “ I in (11)) posed on a cubic
three-dimensional domain, provided the load f is square-integrable (see, e.g., Maz’ya [2727, Chapter
4]). In two dimensions, under the weaker assumption that f P H´1pΩq, it holds that u P H3pΩq
provided Ω is convex (see, e.g., Grisvard [2424, Chapter 3]). In general, a regularity assumption
on the exact solution is actually the consequence of a compatibility condition between the datum
regularity and the domain geometry. As a further reference on the regularity for the solution of
fourth-order elliptic problems, we also refer the reader to Dauge [1818, Chapter 4].

Proof of Theorem 1111. Let, for the sake of brevity, puh – Ikhu. We start by proving that

}uh ´ puh}a,h À hk`1|u|Hk`3pΩq, (35)

with norm }¨}a,h defined by (3232). Using the linearity of ah in its first argument together with the
discrete problem (3030), and recalling that divdivA∇2u “ f a.e. in Ω, we have, for all vh P Uk

h,0,

ahpuh ´ puh, vhq “ pf, vhq ´ ahppuh, vhq ď sup
whPU

k
h,0zt0hu

pdivdivA∇2u,whq ´ ahppuh,whq

}wh}A,h
}vh}A,h.

Thus, choosing vh “ uh ´ puh and using the consistency (3333) of ah to bound the supremum in the
right-hand side, the basic estimate (3535) follows.

Let us now prove (3434). Using the triangle inequality, we infer that

}A1{2∇2
hpp

k`2
h uh ´ uq} ` |uh|s,h

ď }A1{2∇2
hpp

k`2
h uh ´ puhq} ` |uh ´ puh|s,h ` }A

1{2∇2ppk`2
h puh ´ uq} ` |puh|s,h

ď 2}uh ´ puh}a,h ` }A
1{2∇2ppk`2

h puh ´ uq} ` |puh|s,h,

where we have used the definition (3232) of the }¨}a,h-norm in the last line. The conclusion follows
using (3535) to estimate the first term in the right-hand side, the optimal approximation properties
(12a12a) of pk`2

T puT “ $k`2
T u with s “ k ` 3 and m “ 2 for all T P Th to estimate the second term,

and the consistency (2323) of sT for all T P Th to estimate the third term.

3.6.2 Convergence of the jumps

From the estimate of Theorem 1111, one can prove that the jumps of pk`2
h uh and of its gradient

converge to zero with optimal rate. To this end, define on H2pThq (cf. definition (33)) the following
jump seminorm:

|v|2J,h –
ÿ

FPFh

ˆ

AF
hF
}πkF r∇vsF }

2
F `

AF
h3
F

}πkF rvsF }
2
F

˙

,

where r¨sF is the usual jump operator if F is an interface (the sign is irrelevant), whereas rϕsF –

ϕ|F if F is a boundary face, and AF – minTPTF
A`T .
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Corollary 13 (Convergence of the jumps). Under the assumptions and notations of Theorem 1111,
there exists a real number C ą 0 independent of h, but possibly depending on A, %, and k, such
that

|pk`2
h uh|J,h ď Chk`1|u|Hk`3pΩq. (36)

Proof. Using the triangle inequality together with the uniform equivalence of the element and face
diameters expressed by (55), it is inferred that |pk`2

h uh|
2
J,h ď 2%´6|uh|

2
s,h. The desired result follows

using the estimate (3434) for the last factor in the right-hand side of the previous inequality.

Remark 14 (Nonconformity of pk`2
h uh). Broken polynomial functions are in H2

0 pΩq if, along with
their gradient, they are continuous across interfaces and vanish on boundary faces. Thus, the
quantity |pk`2

h uh|J,h can be interpreted as a measure of the nonconformity of pk`2
h uh. The esti-

mate (3636) then shows that pk`2
h uh approaches a H2

0 pΩq-conforming function as hÑ 0`.

3.6.3 L2-error estimate

A sharp L2-norm error estimate can also be inferred assuming biharmonic regularity, in the fol-
lowing form: For all q P L2pΩq, the unique solution z P H2

0 pΩq to

apz, vq “ pq, vq @v P H2
0 pΩq (37)

satisfies the a priori estimate
}z}H4pΩq ď Cbiell}q}, (38)

with Cbiell ą 0 only depending on Ω.

Theorem 15 (L2-error estimate). Let u P H2
0 pΩq and uh P Uk

h,0 denote the unique solutions
to the continuous (22) and discrete (3030) problems, respectively. Assume biharmonic regularity,
u P Hk`3pΩq, and f P Hk`1pThq. Then, there exists a real number C ą 0 depending on A, %, and
k, but independent of h, such that

}pk`2
h uh ´ u} ď Chk`3

`

}u}Hk`3pΩq ` }f}Hk`1pThq

˘

. (39)

Proof. Let, for the sake of brevity, puh – Ikhu. By the triangle inequality, we have that

}pk`2
h uh ´ u} ď }p

k`2
h puh ´ u} ` }p

k`2
h puh ´ puhq} — T1 ` T2.

By the approximation properties (12a12a) of pk`2
T ˝ IkT “ $k`2

T (cf. Remark 44) with s “ k ` 3 and
m “ 0, we immediately have that

T1 À hk`3}u}Hk`3pΩq.

For the second term, on the other hand, we observe that

T2
2 “

ÿ

TPTh

}pk`2
T ppuT ´ uT q}

2
T

À
ÿ

TPTh

´

h4
T }A

1{2

T ∇2pk`2
T ppuT ´ uT q}

2
T ` }π

1
T ppuT ´ uT q}

2
T

¯

À h4}puh ´ uh}
2
a,h ` }puh ´ uh}

2,

where we have used the triangle inequality and the approximation properties of π1
T for s “ 2 and

m “ 0, as well as the closure condition (1616) to pass to the second line, and the definition of the
}¨}a,h-norm to conclude. Using (3535) and Lemma 1616 below to bound respectively the first and
second addend in the right-hand side, the conclusion follows.
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The following lemma, used in the proof of Theorem 1515 above, shows that element-based discrete
unknowns behave “almost” like the L2-orthogonal projection of the exact solution on the space of
broken polynomials of total degree at most k on Th.

Lemma 16 (Supercloseness of element discrete unknowns). Under the assumptions and notations
of Theorem 1515, it holds that

}puh ´ uh} ď Chk`3
`

}u}Hk`3pΩq ` }f}Hk`1pThq

˘

, (40)

where puh and uh are the broken polynomial functions of total degree at most k such that puh|T –

puT “ πkTu and uh|T – uT for any mesh element T P Th.

Proof. Set, for the sake of brevity, eh – puh ´ uh and eh – puh ´ uh. Let z solve (3737) with q “ eh
and set pzh – Ikhz. Integrating by parts, using the linearity of ah in its first argument, as well as
the continuity of moments and shear forces at interfaces, and letting qzT – $k`2

T pz|T q, we have
that }eh}2 “ T1 ` T2, with

T1 –
ÿ

TPTh

ÿ

FPFT

´

`

AT∇2pz ´ qzT q
˘

nTF , e∇,F ´∇eT qF

´ pdivAT∇2pz ´ qzT q ¨ nTF , eF ´ eT qF

¯

´
ÿ

TPTh

sT ppzT , eT q,

T2 – ahppuh,pzhq ´ pf, π
k
hzq,

(41)

where πkh is such that pπkhvq|T “ πkT pv|T q for all T P Th and all v P H2pΩq. The Cauchy–Schwarz
inequality then yields

|T1| À

˜

ÿ

TPTh

ˆ

hT

A`T

ÿ

FPFT

}AT∇2pz ´ qzT q}
2
F

`
h3
T

A`T

ÿ

FPFT

}divAT∇2pz ´ qzT q}
2
F

˙

` |pzh|
2
s,h

¸1{2

ˆ
`

}eh}
2
A,h ` |eh|

2
s,h

˘1{2
.

The approximation properties (1212) of $k`2
T with s “ 4, and the stability of ah together with the

energy error estimate (3535) allow to conclude that

|T1| À h2|z|H4pΩqh
k`1}u}Hk`3pΩq À hk`3}u}Hk`3pΩq}eh},

where in the last estimate we have used the biharmonic regularity hypothesis. Turning to T2,
using the fact that pf, πkT zqT “ pπ

k
T f, zqT and exploiting the orthogonality property (1919), we have

T2 “
ÿ

TPTh

a|T p$
k`2
T u´ u,$k`2

T z ´ zq `
ÿ

TPTh

sT ppuT ,pzT q ` pf ´ π
k
hf, zq — T2,1 ` T2,2 ` T2,3.

We have that |T2,1| À hk`3}u}Hk`3pΩq}eh} by the Cauchy–Schwarz inequality, the approximation
properties of $k`2

T , and biharmonic regularity. An analogous bound can be obtained for |T2,2|.
Finally, we observe that T2,3 “ pf ´ πkhf, z ´ πkhzq by the definition (99) of the L2-orthogonal
projector. Using the approximation properties (10a10a) of πkT with l “ k, m “ 0, and s “ k ` 1 for
the first factor, s “ 2 for the second, we obtain

|T2,3| ď }f ´ π
k
hf}}z ´ π

k
hz} À hk`1}f}Hk`1pThq

h2}z}H2pΩq À hk`3}f}Hk`1pThq
}eh}.

This concludes the proof.
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3.7 Numerical examples

We solve problem (11) for A “ I (i.e., the biharmonic equation) in the unit square Ω “ p0, 1qˆp0, 1q,
with the right-hand side f set in agreement with the exact solution

upx, yq “ x2p1´ xq2y2p1´ yq2,

on three different meshes: triangular, cartesian and hexagonal (cf. Fig. 11). Figures 22 and 33 show
convergence results in the energy norm and in the L2-norm, respectively, for different meshes and
polynomial degrees, up to three. We consider }puh ´ uh}a,h and }πkhu ´ uh} as measures of the
error in the energy norm and in the L2-norm, respectively. The numerical results show asymptotic
convergence rates that match those predicted by the theory in all of the three cases.

(a) Triangular (b) Cartesian (c) Hexagonal

Figure 1: Meshes used for the numerical tests
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Figure 2: }puh ´ uh}a,h vs. h for three different meshes

We also test the robustness of the variant of the HHO method based on the local bilinear form
(2222) with respect to the user-dependent parameter η. In Figures 44 and 55 we plot, respectively, the
energy- and L2-norms of the error when η varies from 10´3 to 103 on fixed meshes corresponding to
the third refinement level of the ones in Figure 11. From these plots, the robustness of the method
can be appreciated, as the energy error spans only two orders of magnitude and the L2-error spans
four orders of magnitude, while the user-dependent parameter η spans six orders of magnutide.
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Figure 3: }πkhu´ uh} vs. h for three different meshes
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Figure 1: Energy error vs. ⌘ for the third refinement level of the Triangular, Cartesian, and Hexagonal
meshes.

k = 1 k = 2 k = 3

10�3 10�2 10�1 100 101 102 103
10�12

10�10

10�8

10�6

10�4

10�2

(a) Triangular

10�3 10�2 10�1 100 101 102 103

10�10

10�8

10�6

10�4

10�2

(b) Cartesian

10�3 10�2 10�1 100 101 102 103

10�10

10�8

10�6

10�4

10�2

(c) Hexagonal

Figure 2: L2-error vs. ⌘ for the third refinement level of the Triangular, Cartesian, and Hexagonal
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Figure 4: }puh ´ uh}a,h vs. η for the third refinement level of the Triangular, Cartesian, and
Hexagonal meshes
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Figure 1: Energy error vs. ⌘ for the third refinement level of the Triangular, Cartesian, and Hexagonal
meshes.
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Figure 5: }πkhu´uh} vs. η for the third refinement level of the Triangular, Cartesian, and Hexagonal
meshes
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4 Local principle of virtual work and laws of action-reaction

Let a mesh element T P Th be fixed. At the continuous level, the deflection field u satisfies, for all
v P PkpT q,

a|T pu, vq `
ÿ

FPFT

pMTnTF ,∇vqF ´
ÿ

FPFT

pdivMT ¨ nTF , vqF “ pf, vqT , (42a)

where MT – ´AT∇2u. Equation (42a42a) expresses the principle of virtual work in the context of
Kirchhoff–Love plates, written for the mesh element element T and with PkpT q as the space of
virtual deflections. The quantities MTnTF and divMT ¨nTF are internal actions and represent,
respectively, the moment and the (scalar) shear force exerted on the face F P FT by the adjacent
element. These two facts can be viewed as two-dimensional counterparts of Cauchy’s hypothesis
that the contact force density c at a point of an oriented surface Σ in a three-dimensional continuum
depend on Σ only through the normal n to Σ at that point; indeed, this implies that there is a
second-order tensor field, the Cauchy stress S, such that, at each point of the three-dimensional
body, c “ Sn.

For an interface F P FT1
X FT2

, with T1, T2 distinct elements of Th, since nT2F “ ´nT1F , both
moments and shear forces obey the following laws of action-reaction:

MT1nT1F `MT2nT2F “ 0, divMT1 ¨ nT1F ` divMT2 ¨ nT2F “ 0. (42b)

The denomination for equations (42b42b) emphasizes the fact that the moment (resp., shear force)
exerted on element T1 by element T2 through the common interface F is the opposite of the
moment (resp., shear force) exerted on T2 by T1 through F .

We next show that the solution to discrete problem (3030) satisfies discrete counterparts of (42a42a)
and (42b42b). This requires a reformulation of the stabilization contribution in terms of the differences
between face-based and element-based discrete unknowns. Define the space

Dk
BT –

˜

ą

FPFT

PkpF q2
¸

ˆ

˜

ą

FPFT

PkpF q

¸

and the boundary difference operator δkBT : Uk
T Ñ Dk

BT such that, for all vT P Uk
T ,

δkBTvT ”
`

pδk∇,FvT qFPFT
, pδkFvT qFPFT

˘

–
`

pv∇,F ´∇vT qFPFT
, pvF ´ vT qFPFT

˘

.

Proposition 17 (Boundary difference reformulation of sT ). The local stabilization bilinear form
sT defined by (2121) can be rewritten as

sT puT , vT q “ sT pp0, δ
k
BTuT q, p0, δ

k
BTvT qq. (43)

Proof. As a consequence of (1818), for all vT P PkpT q Ă Pk`2pT q it holds

pk`2
T IkT vT “ $k`2

T vT “ vT , (44)

where we have used the fact that, as a projector, $k`2
T preserves polynomials up to degree pk`2q.

Now, using (4444) and the linearity of pk`2
T , we have

pk`2
T vT ´ vT “ pk`2

T pvT ´ IkT vT q “ pk`2
T p0, δkBTvT q. (45)

Also, for all F P FT , it holds

∇pk`2
T vT ´ v∇,F “∇ppk`2

T vT ´ p
k`2
T IkT vT q ´ pv∇,F ´∇vT q “∇pk`2

T p0, δkBTvT q ´ δ
k
∇,FvT (46)

and, analogously,

pk`2
T vT ´ vF “ pp

k`2
T vT ´ p

k`2
T IkT vT q ´ pvF ´ vT q “ pk`2

T p0, δkBTvT q ´ δ
k
FvT . (47)

Using (4545), (4646), and (4747) respectively in the first, second, and third term in the right-hand side
of (2121), the conclusion follows.
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Define now the residual operator

Rk
BT ”

`

pRk
∇,F qFPFT

, pRkF qFPFT

˘

: Uk
T Ñ Dk

BT

such that, for all vT P Uk
T and all αBT ” ppα∇,F qFPFT

, pαF qFPFT
q P Dk

BT ,

pRk
BTvT , αBT q0,BT –

ÿ

FPFT

´

pRk
∇,FvT ,α∇,F qF ` pR

k
FvT , αF qF

¯

“ sT pp0, δ
k
BTvT q, p0, αBT qq (48)

Problem (4848) is well-posed as a consequence of the Riesz representation theorem for the L2-like
product in the left-hand side.

Lemma 18 (Local principle of virtual work and laws of action-reaction). Denote by uh P Uk
h,0

the unique solution to (3030) and, for all T P Th and all F P FT , define the discrete moment and
shear force

Mk
TF puT q – ´

`

pA∇2pk`2
T uT qnTF `R

k
∇,FuT

˘

,

SkTF puT q – ´divA∇2pk`2
T uT ¨ nTF `R

k
FuT .

(49)

Then, the following discrete counterparts of (42a42a) and (42b42b) hold, respectively: For any mesh
element T P Th,

a|T pp
k`2
T uT , vT q `

ÿ

FPFT

pMk
F puT q,∇vT qF ´

ÿ

FPFT

pSkTF puT q, vT qF “ pf, vT qT , @vT P PkpT q,

(50a)
and, for any interface F P FT1

X FT2
, with T1, T2 distinct elements of Th,

Mk
T1F puT1

q `Mk
T2F puT2

q “ 0, SkT1F puT1
q ` SkT2F puT2

q “ 0. (50b)

Proof. Recalling the definition (2020) of aT , and using the reformulation (7474) of sT together with
the definition (4848) of the residual operator, it is inferred from the discrete problem (3030) that, for
all vh P Uk

h,0, it holds

ÿ

TPTh

´

a|T pp
k`2
T uT , p

k`2
T vT q ` pR

k
BTuT , δ

k
BTvT q0,BT

¯

“ pf, vhq. (51)

Using the definition (1717) of pk`2
T vT with w “ pk`2

T uT for the first term, and recalling (4848) and
(4949), we can rewrite (5151) as

ÿ

TPTh

˜

a|T pp
k`2
T uT , vT q ´

ÿ

FPFT

pMk
TF puT q,v∇,F ´∇vT qF `

ÿ

FPFT

pSkTF puT q, vF ´ vT qF

¸

“ pf, vhq.

(52)
Thus, for a given mesh element T P Th, choosing in (5252) vh such that vT spans PkpT q, vT 1 ” 0
for all T 1 P ThztT u, v∇,F ” 0 and vF ” 0 for all F P Fh immediately yields (50a50a). Next, for a
given interface F P FT1

X FT2
, choosing in (5252) vh such that vT ” 0 for all T P Th, v∇,F 1 ” 0 for

all F 1 P FhztF u, vF ” 0 for all F P Fh, and letting v∇,F span PkpF q2 yields the first equation
in (50b50b). Similarly, choosing in (5252) vh such that vT ” 0 for all T P Th, v∇,F ” 0 for all
F P FhztF u, vF 1 ” 0 for all F P FhztF u, and letting vF span PkpF q yields the second equation
in (50b50b).

5 Properties of the discrete bilinear form

This section contains the proofs of the technical Lemmas 77 and 1010.
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5.1 Local coercivity and boundedness

Proof of Lemma 77. Let a mesh element T P Th be fixed, and let vT P Uk
T .

(i) Coercivity. Taking w “ vT P PkpT q Ă Pk`2pT q in (1717) gives

a|T pvT , vT q “ a|T pp
k`2
T vT , vT q `

ÿ

FPFT

pv∇,F ´∇vT ,MvTnTF qF ´
ÿ

FPFT

`

vF ´ vT ,divMvT ¨ nTF
˘

F
.

Using the Cauchy–Schwarz inequality to bound the first term in the right-hand side, the Cauchy–
Schwarz and discrete trace (7a7a) inequalities to bound the second, and the Cauchy–Schwarz, discrete
trace (7a7a) and inverse (7c7c) inequalities to bound the third, and simplifying we obtain:

}A1{2

T ∇2vT }T À

˜

}A1{2

T ∇2pk`2
T vT }

2
T `
A`T
hT

ÿ

FPFT

}v∇,F ´∇vT }
2
F `

A`T
h3
T

ÿ

FPFT

}vF ´ vT }
2
F

¸1{2

.

(53)
It remains to estimate the boundary terms inside the parentheses in terms of the }¨}a,T -seminorm.

(i.a) Bound on A`T
hT

ř

FPFT
}v∇,F´∇vT }

2
F . For all F P FT , inserting ˘πkF∇

`

pk`2
T vT ´ π

k
T p

k`2
T vT

˘

into the norm and using the linearity of πkF and the fact that it preserves polynomials in PkpF q2
as a projector, we obtain

}v∇,F ´∇vT }F

“ }πkF
`

v∇,F ´∇pk`2
T vT

˘

` πkF∇
`

pk`2
T vT ´ π

k
T p

k`2
T vT

˘

`∇
`

πkT p
k`2
T vT ´ vT

˘

}F

À }πkF
`

v∇,F ´∇pk`2
T vT

˘

}F`}π
k
F∇ppk`2

T vT ´ π
k
T p

k`2
T vT q}F`}∇πkT pp

k`2
T vT ´ vT q}F

— T1 ` T2 ` T3,

(54)

where we have used the triangle inequality to pass to the second line. By the definition (2121) of
sT , we readily infer that

h
´1{2

T

b

A`T |T1| À }vT }a,T .

Using the L2pF q2-boundedness of πkF followed by the discrete trace inequality (7a7a), we can write
|T2| À h

´1{2

T }∇ppk`2
T vT ´ π

k
T p

k`2
T vT q}T . Then, by the approximation properties (10a10a) of πkT with

l “ k, m “ 1, and s “ 2, we infer that

|T2| À h
1{2

T |p
k`2
T vT |H2pT q À h

1{2

T }∇
2pk`2
T vT }T ,

so that
h
´1{2

T

b

A`T |T2| À }vT }a,T .

Finally, the third term in the right-hand side of (5454) can be estimated using the discrete trace
(7a7a) and inverse (7c7c) inequalities together with the definition (2121) of sT as follows:

h
´1{2

T

b

A`T |T3| À h´2
T

b

A`T }π
k
T pp

k`2
T vT ´ vT q}T ď }vT }a,T .

Hence, multiplying (5454) by h´
1{2

T

b

A`T , squaring, summing over F P FT , using the above estimates
for T1, T2, T3, and recalling the uniform bound (66) on cardpFT q, we have

A`T
hT

ÿ

FPFT

}v∇,F ´∇vT }
2
F À }vT }

2
a,T . (55)
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(i.b) Bound on A`T
h3
T

ř

FPFT
}vF ´ vT }

2
F . For all F P FT , inserting ˘πkF

`

pk`2
T vT ´ π

k
T p

k`2
T vT

˘

into the norm, and using the linearity of πkF and πkT together with the fact that they preserve
polynomials up to degree k as projectors, we have that

}vF ´ vT }F “ }π
k
F

`

vF ´ p
k`2
T vT

˘

` πkF
`

pk`2
T vT ´ π

k
T p

k`2
T vT

˘

` πkT pp
k`2
T vT ´ vT q}F

ď }πkF pvF ´ p
k`2
T vT q}F ` }π

k
F pp

k`2
T vT ´ π

k
T p

k`2
T vT q}F ` }π

k
T pp

k`2
T vT ´ vT q}F

— T1 ` T2 ` T3.

(56)

By the definition (2121) of sT , it is readily inferred that

h
´3{2

T

b

A`T |T1| À }vT }a,T .

The second term can be estimated as follows:

|T2| À h
´1{2

T }pk`2
T vT ´ π

k
T p

k`2
T vT }T À h

´1{2

T h2
T |p

k`2
T vT |H2pT q À h

3{2

T }∇
2pk`2
T vT }T ,

where we have used the L2pF q-boundedness of πkF , the discrete trace inequality (7a7a), the uniform
equivalence of face and element diameters (55) to replace hF with hT , and the approximation
property (10a10a) with l “ k, s “ 2, and m “ 0. Hence,

h
´3{2

T

b

A`T |T2| À }vT }a,T .

Finally, using the discrete trace inequality (7a7a) followed by the definition (2121) of sT , we have

h
´3{2

T

b

A`T |T3| À }vT }a,T .

Multiplying (5656) by h´
3{2

T

b

A`T , squaring, summing over F P FT , using the above estimates for
T1, T2, T3, and recalling the uniform bound (66) on cardpFT q, we arrive at

A`T
h3
T

ÿ

FPFT

}vF ´ vT }
2
F À }vT }

2
a,T . (57)

(i.c) Conclusion. Combining (5353), (5757), and (5555), the first inequality in (2525) follows.

(ii) Boundedness. Taking w “ pk`2
T vT in (1717), using the Cauchy–Schwarz, discrete trace (7a7a) and

inverse inequalities (7c7c), and simplifying, we get

}A1{2

T ∇2pk`2
T vT }T À }vT }A,T , (58)

which bounds the portion of }vT }a,T stemming from the consistency term in (2020).

It remains to bound on the local stabilization terms in sT pvT , vT q.

(ii.a) Bound on A`T
h4
T
}πkT pp

k`2
T vT ´ vT q}

2
T . Inserting ˘p

k`2
T vT into the norm and using the triangle

inequality, we have that

}πkT pp
k`2
T vT ´ vT q}T ď }π

k
T p

k`2
T vT ´ p

k`2
T vT }T ` }p

k`2
T vT ´ vT }T — T1 ` T2. (59)

For the first term, using the approximation property (10a10a) with l “ k, m “ 0, and s “ 2, and
(5858), we get

h´2
T

b

A`T |T1| À }vT }A,T .

For the second term, inserting 0 “ ´π1
T p

k`2
T vT ` π1

T vT into the norm (see (1616)) and using the
triangle inequality, we obtain

|T2| “ }p
k`2
T vT ´ π

1
T p

k`2
T vT ` π

1
T vT ´ vT }T ď }p

k`2
T vT ´ π

1
T p

k`2
T vT }T ` }π

1
T vT ´ vT }T .

19



The approximation property (10a10a) with l “ 1, m “ 0, and s “ 2 gives }pk`2
T vT ´ π1

T p
k`2
T vT }T À

h2
T }∇2pk`2

T vT }T and }vT ´ π1
T vT }T À h2

T }∇2vT }T so that, accounting for (5858),

h´2
T

b

A`T |T2| À }vT }A,T .

Squaring (5959), multiplying the resulting inequality by A`T {h4
T , and using the above estimates for

T1 and T2 together with the uniform bound (66) on cardpFT q, we conclude that

A`T
h4
T

}πkT pp
k`2
T vT ´ vT q}

2
T À }vT }

2
A,T .

(ii.b) Bound on A`T
hT

ř

FPFT
}πkF p∇pk`2

T vT ´ v∇,F q}
2
F . For any F P FT , inserting ˘∇vT into the

norm, invoking the linearity of πkF together with the fact that it preserves polynomials in PkpF q2
as a projector, and using the triangle inequality, we have that

}πkF p∇pk`2
T vT ´ v∇,F q}F ď }π

k
F∇

`

pk`2
T vT ´ vT

˘

}F ` }∇vT ´ v∇,F }F

À h
´3{2

T }pk`2
T vT ´ vT }T ` }∇vT ´ v∇,F }F

À
h

1{2

T
b

A`T
}vT }A,T ` }∇vT ´ v∇,F }F

(60)

where to pass to the second line we have used the L2pF q2-boundedness of πkF , the discrete trace
inequality (7a7a), and the inverse inequality (7c7c), while to pass to the third line we have estimated
the first addend as the term T2 in (5959). Thus, squaring the above inequality, summing over
F P FT , multiplying it by A`T {hT , and using the uniform bound (66) on cardpFT q, we finally infer

A`T
hT

ÿ

FPFT

}πkF p∇pk`2
T vT ´ v∇,F q}

2
F À }vT }

2
A,T . (61)

(ii.c) Bound on A`T
h3
T

ř

FPFT
}πkF pp

k`2
T vT ´ vF q}

2
F . For any F P FT , inserting ˘vT into the norm,

invoking the linearity of πkF together with the fact that it preserves polynomials in PkpF q as a
projector, and using the triangle inequality, we infer that

}πkF pp
k`2
T vT ´ vF q}F ď }π

k
F pp

k`2
T vT ´ vT q}F ` }vF ´ vT }F

À h
´1{2

T }pk`2
T vT ´ vT }T ` }vF ´ vT }F

À
h

3{2

T
b

A`T
}vT }A,T ` }vF ´ vT }F ,

(62)

where to pass to the second line we have used the L2pF q-boundedness of πkF followed by the
discrete trace inequality (7a7a) and the uniform equivalence of the element and face diameters
expressed by (55), while to pass to the third line we have estimated the first addend as the term T2

in (5959). Hence, multiplying (6262) by h´
3{2

T

b

A`T , squaring, summing over F P FT , recalling (5959),
and using the uniform bound (66) on cardpFT q, we conclude that

A`T
h3
T

ÿ

FPFT

}πkF pp
k`2
T vT ´ vF q}

2
F À }vT }

2
A,T . (63)

(ii.d) Conclusion. The second inequality in (2525) then follows combining (5858), (6363), and (6161) and
recalling the definition (2424) of }¨}A,T .
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5.2 Global coercivity, boundedness, and consistency

Proof of Lemma 1010. (i) Coercivity and boundedness. The norm equivalence (3232) is an immediate
consequence of Lemma 77 together with the definition (2828) of the }¨}A,h-norm.

(ii) Consistency. Let us prove (3333). An element-wise integration by parts yields

pdivdivA∇2v, whq “
ÿ

TPTh

ˆ

pAT∇2v,∇2wT qT ´
ÿ

FPFT

pdivAT∇2v ¨ nTF , wF ´ wT qF

`
ÿ

FPFT

`

pAT∇2vqnTF ,w∇,F ´∇wT
˘

F

˙

,

(64)

where we have used the fact that moments and Kirchhoff shear forces are continuous at interfaces
owing to the regularity of v (see (42b42b) for the expression of these continuity properties for the
exact solution u) and that homogeneous boundary conditions are embedded in Uk

h,0. Now, let

pvh – Ikhv, pvT – IkT pv|T q and qvT – pk`2
T pvT “ pk`2

T IkT pv|T q; (65)

we have

ahppvh,whq “
ÿ

TPTh

ˆ

pAT∇2
qvT ,∇2wT qT ´

ÿ

FPFT

`

divAT∇2
qvT ¨ nTF , wF ´ wT

˘

F

`
ÿ

FPFT

`

pAT∇2
qvT qnTF ,w∇,F ´∇wT

˘

F
` sT ppvT ,wT q

˙

.

(66)

Thus, letting Ehpwhq – pdivdivA∇2v, whq ´ ahppvh,whq, (6464) and (6666) yield

Ehpwhq “
ÿ

TPTh

ˆ

pAT∇2pqvT ´ vq,∇2wT qT `
`

pAT∇2pqvT ´ vqqnTF ,w∇,F ´∇wT
˘

F

´
ÿ

FPFT

pdivAT∇2pqvT ´ vq ¨ nTF , wF ´ wT qF

˙

`
ÿ

TPTh

sT ppvT ,wT q

— T1 ` T2 ` T3 ` T4.

By the definition (1111) of the oblique biharmonic projector, we have that

T1 “ 0. (67)

Also, using the approximation properties (1212) with l “ k ` 2, s “ k ` 3, and m “ 2, 3, we infer
that

|T2 ` T3| À hk`1|v|Hk`3pΩq}wh}A,h. (68)

Moreover, we have sT ppvT ,wT q ď sT ppvT ,pvT q
1{2sT pwTwT q

1{2; as for the first factor, by (2323) we have

sT ppvT ,pvT q
1{2 À

b

A`T h
k`1
T |v|Hk`3pT q, whereas the second inequality in (2525) gives sT pwT ,wT q

1{2 À

}wT }A,T , so that
|T4| À hk`1|v|Hk`3pΩq}wh}A,h. (69)

Using (6767), (6868), and (6969) to estimate Ehpwhq, and using the resulting bound in the supremum in
(3333) concludes the proof.
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6 Proof of Theorem 11

(i) Proof of (12a12a). We apply [1919, Lemma 3]. Therefore, proving (12a12a) amounts to proving the
following estimates:

}∇2$l
T v}T À }∇2v}T , (70a)

}∇$l
T v}T À

`

}∇v}T ` hT }∇2v}T
˘

, (70b)

}$l
T v}T À

`

}v}T ` hT }∇v}T ` h
2
T }∇2v}T

˘

. (70c)

where a À b means a ď Cb with C ą 0 as in (1212).

We start by proving (70a70a). The definition (1111) of $l
T implies that

b

A´T }∇
2pv ´$l

T vq}T ď }A
1{2

T ∇2pv ´$l
T vq}T

ď }A1{2

T ∇2pv ´ πlT vq}T À
b

A`T }∇
2v}T ,

(71)

where we have used the definition of A´T (see Section 2.12.1) in the first line, the characterization of
$l
T as arg minzPPlpT q }A

1{2

T ∇2pv´ zq}T in the second line, along with the definition of A`T and the
H2-stability of the L2-orthogonal projector (resulting from (10a10a) with s “ m “ 2) to conclude.
Thus, using again the triangle inequality, we have that

}∇2$l
T v}T ď }∇2p$l

T v ´ vq}T ` }∇2v}T À }∇2v}T ,

and (70a70a) is proved.

To prove (70b70b), we introduce the quantities 0 “ ´∇π1
T$

l
T v `∇π1

T v (recall the second condition
in (1111)) and ˘∇v inside the L2pT q-norm of ∇$l

T v to infer that

}∇$l
T v}T ď }∇p$l

T v ´ π
1
T$

l
T vq}T ` }∇pv ´ π1

T vq}T ` }∇v}T

À hT }∇2$l
T v}T ` hT }∇2v}T ` }∇v}T À

`

}∇v}T ` hT }∇2v}T
˘

,

where we have used the approximation estimate (10a10a) for π1
T with m “ 1 and s “ 2 together with

the fact that, for any w P H2pT q, |w|H2pT q À }∇2w}T to estimate the first two terms, and (70a70a)
to conclude.

The proof of (70c70c) is completely analogous. We obtain

}$l
T v}T ď }$

l
T v ´ π

1
T$

l
T v}T ` }v ´ π

1
T v}T ` }v}T

À h2
T }∇2$l

T v}T ` hT }∇v}T ` }v}T

À
`

h2
T }∇2v}T ` hT }∇v}T ` }v}T

˘

,

where we have used (10a10a) to estimate the first two addends in the first line, with m “ 0 and s “ 2
for the first one and with m “ 0 and s “ 1 for the second one. This concludes the proof of (12a12a).

(ii) Proof of (12b12b). For m ď s ´ 1, by applying the continuous trace inequality (7b7b) to w “

Bαpv ´$l
T vq P H

1pT q for all α P N2 such that α1 ` α2 “ m, we have

h
1{2

T |v ´$
l
T v|HmpBT q À |v ´$

l
T v|HmpT q ` hT |v ´$

l
T v|Hm`1pT q.

The conclusion follows using (12a12a) for m and m` 1 to bound the terms in the right-hand side.
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7 Concluding remarks

Some concluding remarks are in order.

7.1 Other choices for the boundary gradient unknowns

It is possible to devise a local deflection reconstruction by using scalar face-based unknowns playing
the role of the normal derivative of the deflection, in place of vector face-based unknowns, playing
the role of its gradient. For this, one has to replace the local space of unknowns defined by (1313)
by

rU
k

T – PkpT q ˆ

˜

ą

FPFT

PkpF q

¸

ˆ

˜

ą

FPFT

PkpF q

¸

,

rU
k

T Q rvT “ pvT , pvn,F qFPFT
, pvF qFPFT

q ,

(72)

and reformulate (1515) as follows: Find rpk`2
T : rU

k

T Ñ Pk`2pT q such that, for all w P Pk`2pT q,

a|T prp
k`2
T rvT , wq “ ´ pvT , divdivMwqT ´

ÿ

FPFT

pvn,F ,MwnTF ¨ nTF qF `

`
ÿ

FPFT

`

vF ,divMw ¨ nTF ` Bτ pMwnTF ¨ τ q
˘

F
,

(73)

where τ denotes the unit tangent vector to the boundary of the element. Correspondingly, the
expression (2121) of stabilization bilinear form has to be modified as follows (compare, in particular,
the terms in the second line): For all pruT ,rvT q P rU

k

T ˆ
rU
k

T (cf. (7272)),

rsT pruT ,rvT q –
A`T
h4
T

´

πkT prp
k`2
T ruT ´ uT q, π

k
T prp

k`2
T rvT ´ vT q

¯

T

`
A`T
hT

ÿ

FPFT

`

πkF pBnTF
rpk`2
T ruT ´ un,F q, π

k
F pBnTF

rpk`2
T rvT ´ vn,F q

˘

F

`
A`T
h3
T

ÿ

FPFT

´

πkF prp
k`2
T ruT ´ uF q, π

k
F prp

k`2
T rvT ´ vF q

¯

F
.

(74)

7.2 Mixed formulations

The results of this paper concern the primal formulation (11) of the Kirchhoff–Love plate bending
model problem. As it is well known, this problem admits dual and mixed formulations that
have been the basis for the development of mixed and hybrid nonconforming finite elements (see,
e.g., [1111]). A HHO discretization based on a mixed formulation will make the object of a future
work, as well as the study of its relation with the method presented here and its variations. We
notice, in passing, that a similar study for a second-order elliptic problem has been carried out
in [11].
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