Characterization of bijective digitized rotations on the hexagonal grid - Archive ouverte HAL
Article Dans Une Revue Journal of Mathematical Imaging and Vision Année : 2018

Characterization of bijective digitized rotations on the hexagonal grid

Résumé

Digitized rotations on discrete spaces are usually defined as the composition of a Euclidean rotation and a rounding operator; they are in general not bijective. Nevertheless, it is well known that digitized rotations defined on the square grid are bijective for some specific angles. This infinite family of angles has been characterized by Nouvel and Rémila and more recently by Roussillon and Cœurjolly. In this article, we characterize bijective digitized rotations on the hexagonal grid using arithmetical properties of the Eisenstein integers.
Fichier principal
Vignette du fichier
article.pdf (2.3 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01540772 , version 1 (16-06-2017)
hal-01540772 , version 2 (30-11-2017)

Identifiants

Citer

Kacper Pluta, Tristan Roussillon, David Cœurjolly, Pascal Romon, Yukiko Kenmochi, et al.. Characterization of bijective digitized rotations on the hexagonal grid. Journal of Mathematical Imaging and Vision, 2018, 60 (5), pp.707-716. ⟨10.1007/s10851-018-0785-1⟩. ⟨hal-01540772v2⟩
664 Consultations
383 Téléchargements

Altmetric

Partager

More