Hyperbolicity of the time-like extremal surfaces in minkowski spaces - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

Hyperbolicity of the time-like extremal surfaces in minkowski spaces

Résumé

In this paper, it is established, in the case of graphs, that time-like extremal surfaces of dimension $1+n$ in the Minkowski space of dimension $1+n+m$ can be described by a symmetric hyperbolic system of PDEs with the very simple structure (reminiscent of the inviscid Burgers equation) $$ \partial_t W + \sum_{j=1}^n A_j(W)\partial_{x_j} W =0,\;\;\;W:\;(t,x)\in\mathbb{R}^{1+n} \rightarrow W(t,x)\in\mathbb{R}^{n+m+\binom{m+n}{n}}, $$ where each $A_j(W)$ is just a $\big(n+m+\binom{m+n}{n}\big)\times\big(n+m+\binom{m+n}{n}\big)$ symmetric matrix depending linearly on $W$.
Fichier principal
Vignette du fichier
Extremal-sufaces-v2.pdf (259.93 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01538332 , version 1 (13-06-2017)

Identifiants

Citer

Xianglong Duan. Hyperbolicity of the time-like extremal surfaces in minkowski spaces. 2017. ⟨hal-01538332⟩
318 Consultations
45 Téléchargements

Altmetric

Partager

More