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HYPERBOLICITY OF THE TIME-LIKE EXTREMAL SURFACES
IN MINKOWSKI SPACES

XIANGLONG DUAN

ABSTRACT. In this paper, it is established, in the case of graphs, that time-
like extremal surfaces of dimension 1+ n in the Minkowski space of dimension
1 4+ n + m can be described by a symmetric hyperbolic system of PDEs with
the very simple structure (reminiscent of the inviscid Burgers equation)

n m+n
QWS A (W), W =0, W (t,2) €R™"  W(t,a) e B

Jj=1

where each A;(W) is just a (n +m + (m:")) x (n+m+ (min)) symmetric
matrix depending linearly on W.

INTRODUCTION

In the (14 n 4 m)—dimensional Minkowski space R+ ("+7) we consider a time-
like (1 4+ n)—dimensional surface (called n—brane in String Theory [8]), namely,

(t,2) e AC R X R™ = X(t,2) = (X°(t,z),..., X" ™(t,z)) € RIF(Fm)

where (2 is a bounded open set. This surface is called an extremal surface if X is
a critical point, with respect to compactly supported perturbations in the open set
Q, of the following area functional (which is the Nambu-Goto action in the case

n=1)
—// \/ —det(Gw,) y G#y = 7’]MNa,u)(I\/[al/)(]V )
Q

where M, N =0,1,....,n+m, p,v=20,1,...,n, and n = (—1,1,...,1) denotes
the Minkowski metric, while G is the induced metric on the (1 + n)—surface by 7.
Here 0y = 0; and we use the convention that the sum is taken for repeated indices.

By variational principles, the Euler-Lagrange equations gives the well-known
equations of extremal surfaces,

(0.1) 9, (\/—GG“”&,XM) -0, M=01,....,n+m,

where G is the inverse of G, and G = det(G ). In this paper, we limit ourself
to the case of extremal surfaces that are graphs of the form:

(0.2) X0=t X'=2' i=1,...,n, X"T*=X"Tt2), a=1

5 geeey

The main purpose of this paper is to prove:

Date: June 13, 2017.
Key words and phrases. extremal surfaces, hyperbolic system of conservation laws, conserva-
tion laws with polyconvex entropy.
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Theorem 0.1. In the case of a graph as (03) the equations of extremal surfaces
(01) can be translated into a first order symmetric hyperbolic system of PDEs,
which admits the very simple form

(0.3) AW+ A;(W),, W =0, W:(t,x) e R > W(ta)e Rrtmt (")

j=1

where each A;(W) is just a (n+m~+ (")) x (n+m+ (™)) symmetric ma-
triz depending linearly on W. Accordingly, this system is automatically well-posed,

locally in time, in the Sobolev space W2 as soon as s > n/2+ 1.

The structure of (@3] is reminiscent of the celebrated prototype of all nonlinear
hyperbolic PDEs, the so-called inviscid Burgers equation d;u + ud,u = 0, where
u and x are both just valued in R, with the simplest possible nonlinearity. Of
course, to get such a simple structure, the relation to be found between X (valued
in RIFH7) and W (valued in R (" n)) must be quite involved. Actually, it
will be shown more precisely that the case of extremal surfaces corresponds to a
special subset of solutions of (03] for which W lives in a very special algebraic
sub-manifold of R™*™+("x n), which is preserved by the dynamics of (0.3]).

To establish Theorem [IL1] the strategy of proof follows the concept of system of
conservation laws with “polyconvex” entropy in the sense of Dafermos [4]. The first
step is to lift the original system of conservation laws to a (much) larger one which
enjoys a convex entropy rather than a polyconvex one. This strategy has been
successfully applied in many situations, such as nonlinear Elastodynamis [5] [7],
nonlinear Electromagnetism [I, B, @], just to quote few examples. In our case, the
calculations will crucially start with the classical Cauchy-Binet formula.

Finally, at the end of the paper, following the ideas recently introduced in [2], we
will make a connection between our result and the theory of mean-curvature flows
in the Euclidean space, in any dimension and co-dimension.

Acknowledgements. The author is very grateful to his thesis advisor, Yann Bre-
nier, for introducing the polyconvex system to him and pointing out the possibility
of augmenting this system as a hyperbolic system of conservation laws, in the spirit

of [I].
1. EXTREMAL SURFACE EQUATIONS FOR A GRAPH
Let us first write equations (L)) in the case of a graph such as ([(.2). We denote
Va = 8tXn+a, Fai :aanJra, o = 1,...,m, 1= 1,...,71.
Then the induced metric tensor G, can be written as

(G —14|V|? VTR
) = F'v L, +F'F )

We can easily get that
G =det(Gpy) = —det(I, + FTF)(1— [V + VTF(I, + FTF)'FTV).

So, in the case of graph, the extremal surface can be solved by varying the follow
Lagrangian of the vector V' and matrix F,

//L(V, F), L(V,F)=—V-G,
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under the constraints
8tFm- = &»Va, &»Faj = @Fai, o = 1, ceey My i,j = 1, e, N

The resulting system combines the above constraints and

Now let us denote

p _ 0LV, F) Vdet(I, + FTF)(I,, + FFT) V3
V. 1= VT(,, + FFT)-1V
and the energy density h by

WD, F)=supD-V — L(V,F) = \/det(I, + FTF) + DT(I,, + FFT)D.
\4

We have
Oh(D,F)  (Im+ FFT),3Dg
oD, h '
So, the extremal surface should solve the following system for a matrix valued
function F' = (Fpi)mxn and a vector valued function D = (Dg)a=1.2.....ms

Vo =

D, + F,;P;
(1.1) O Foi + 0; <%) =0,
(1.2) 9, + 0, (W%W) -
(13) 8jFai:8iFaj; 1§’L,]Sn, 1§Oz§m,
where
(1.4) P,=F,D,, h=+D2+P2+¢&F), 1<i,j<n, 1<a<m,
(15)  &(F) =det (I, + FTF), &(F)ai = %% = (F)(In + FTF);;' Fy,.

In fact, we can get the above equations directly from (OI]). Interested readers can
refer to Appendix A for the details. Moreover, we can find that there are other
conservation laws for the energy density h and vector P as defined in the above
equations, namely, (see Appendix B)

(1.6) OHh+V-P=0,
P F)(I, + FTF);;!
(17) 8,5Pi+8j <Rfj — 5( )( 5 )ZJ ) = 0.

Now, let’s take h and P as independent variables, then we can find that the system
(T, 2, (3D, (C),(T0) admits an additional conservation law for
. D? + P2+ ¢(F)
- 2h ’

namely,

h

SP
(1.8) 0S + V- (—) =0, =

E(F)In + FTF); (P — FajDoc)]
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2. LIFTING OF THE SYSTEM

2.1. The minors of the matrix F. In previous part, S is generally not a convex
function of (h, D, P, F), but a polyconvex function of F, which means that S can
be written as convex functions of the minors of F. Now we denote r = min{m, n}.
For 1 < k < r, and any ordered sequences 1 < a3 < ag < ... < a < m and

1<ip<ig<...<ip<mn,let A= {al,ag,...,ak}, I = {il,ig,...,ik}, then
the minor of F' with respect to the rows aq, as, ..., ar and columns 1,19, ..., i is
defined as

For the minors [F]4 1, let us first introduce the generalized Cauchy-Binet formula
which is very convenient for us to compute the minors of the product of two ma-
trices.

Lemma 2.1. (Cauchy-Binet formula) Suppose M is a m X | matriz, N is a

I x n matriz, I is a subset of {1,2,...,m} with k(< 1) elements and J is a subset
of {1,2,...,n} with k elements, then
(2.1) [MNl;o= > [M]x[Nlk.s
KC{1,2,...,l}
|K|=k

Now let us look at {(F) = det (In + FTF), we can show that it is a convex
function for the minors [F]4,7. In fact, we have,

§(F) =det (I, + FTF) =1+ zn: > [F'Flis

k=1 IC{1.2.....n}
|I|=k

(by the Cauchy-Binet formula)

<

-1+ [FT)r Al A

So we have

<

(2.2) §(F) =1+ [Fl% 1

The above equality tells us that £(F) is a polyconvex function of F. By introducing
all the minors of F' as independent variables, the energy S becomes a strictly convex
function of h, D, P, [F]4,;. Now we will see that the system can be augmented as a
system of conservation laws of h, D, P, [F|4 1.

2.2. Conservation laws for the minors [F]a ;. First, we will see that [F]4 s
satisfy similar equations as (I3]). For simplicity, we denote [F]a =1t A=1=

0.
Proposition 2.2. Suppose F satisfy [L3), then for any2 <k <r+4+1, A/ ={1<
g <ag<...<ap_1<mt I={1<i <izy<...<ir<n}, we have

k

(2.3) 3 (-1)%9, ([F]A,J\{iq}) ~0

q=1
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Proof. This can be showed quite directly, for the left hand side, we have

k
Lefo =" > (D)"Y F] o, 1.0 fiig} iy Forgi

q=1 1<q
1<p<k-—1

k
+> > (D TPYF] L o, 0 Ginig) Oy Fagin
=1

1>q
1<p<h-1

= Z (_1)l+p+q[F]A\{O‘p}vl\{ilaiq} (aiq Fo‘pil - 6ilF0‘pip)

I<q<k

<
<p<k—1

1

1
=0
O

With the above proposition, we can get the conservation laws for [F]4 . For
A={1<ap<a<..<ap<mhI={1<ii<iza<...<ip<n}, 1<k<r,
we have

O ([Flar) =

M=

(=1)PTIF] A\ fap 3.1\ {ig} O Foyiy

DO‘P + Fapjpj
h

p,q

M=~

(2.4) == ) (CU"M[Fla\(a,}.0\(i0) O,

p,q=1

=)
Il

[Fla\{a,},1\(ig) (Pay, + Fa,iP))
h

)=

(=170, l

p,q=1

2.3. The augmented system. Now let us consider the energy density h, the
vector field P and the minors [F| 4 1 as independent variables. The original system
([CI)-[C3) can be augmented to the following system of conservation laws. More
precisely, for h > 0, D = (Da)a=12,...m,» P = (Pi)i=1,2,..n, Ma y with A C
{1,2,...,m}, I C {1,2,...,n}, 1 < |A4| = |I| < r = min{m,n}, the system are
composed of the following equations

(2.5) Oh+V-P=0

Do P; Oa()+0:() o [ MarMagay iy | _
(2.6) atDa+ai( - >+ > (—nOa@torig, ; =0

AL
acA,iel

27) P+ > (—1)2DFOnm 0y, ( Aﬁ(f\{a};LU{ } AJ)
A

jeriE iy
P,P; 1+ M3
+8J—< J)_ai< oA A,I)_O

h
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M ; P
o (j)+0r1 (7) ANH UGS
(2.8) OMas+ E (=) TErn g, ( Y )

ij
i€l g I\{i}

M WD
OA Ot)+01 Z)a A\{O‘}J\{Z} o — 0
+ Z (—h
ocEA lEI
(2.9) 3 (-1)% 0, (MA,JW}) =0, 2<|I|=|A]+1<r+1

il
Here O4(«) represents the number such that a is the O4(«)th smallest element
in AU{a}. All the sum are taken in the convention that A C {1,...,m}, I C
{1,....,n},1<a<m,1<ij<n.

Note that there are many different ways to enlarge the original system since the
equations can be written in many different ways in terms of minors. Although our
above augmented system looks quite complicated, in the following part, we will
show that by extending the system in this way is quite useful. Now, let’s first
show that the augmented system can be reduced to the original system under the
algebraic constraints we abandoned we enlarge the system.

Proposition 2.3. We can recover the original system ([[LI))-(L3) from the aug-
mented system (Z0)-@29)under the algebraic constrains

P FazDou h = \V4 D2 P2 +§ MAI - ]A,I

Proof. 1t suffices to show the following three equalities,

(2.10) € (F)ai = Z (=1) 04 FOT DRy 1 [Flay oy, 1 1y
(2.11) &(F)(I, + FTF); 1+Z

- Z (1) DFONADE] 4 (n iy Ui [Flau

AT
JELAgIN{j}

(2.12)
k O\ (i iy (4)+q 1 i
—1)9\Ga» Uts) [Flangnuigy ¢ 1\ {ig}
—DPTF] o\ 10 it Fo,i = ( (UL ’
pz;:( )P HF] avgayy 1\ Loy Fo {o jer\ {i,)

[2I2) is obvious because of the Laplace expansion. Now, since

28F (HZ ) - Z[F]A’I%([F]AJ)
i ~ i

= > (1 )OA(“”O’(”[F]A,I[F]A\{a},f\{i}

AT
acAiel

so ([ZI0) is true. Let’s look at (ZI1]). First, we have

E(F)0i; — E(F) (I + FTF) ;' = §(F)Fui(Im + FFT) [ F3;
= (-1)*YPE,[In + FFT )0y 15y Fj

gl(F)ai =
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Because
[w; + FF {a)e ()
O ()40 4 T
= Y (OO IEET] o rayye,ar Uishe
k=0 |A'|=k
m a,BgA!
= Y > (—1)OaFOADFABEET] 4 0y )
k=1 |A|=k
a,BEA
min{m,r+1}
_ Z Z (_1)OA(°‘)+OA(ﬁ)+a+ﬁ[F]A\{a}J, [Fa\ (5.1
k=1 [A|=F, |1/ |=k—1
a,BEA

then we have
E(F)i — E(F)(In + FTF) ;!

min{m,r+1}
= > > (=1)OMTOABNF] (o) 0 [Fla(sy,1 Foi Fs
k=1 \A\:k,\BIQA:k—l

Yo Y OO, L@ Flarug

k=1 |A|=k,|I'|=k—1
B¢ 1’

> (=) OF], Gy U [Fla

AT
JET ¢ IN{j}

Now we can show that the augmented system have a convex entropy.

Proposition 2.4. The system (Z3)-(Z9) satisfies an additional conservation law

for
1+D2+P2+ZAJM3‘J

S(h,D,P,Ma )= 57

More precisely, we have

P [ DaMa oy ran M
(2.13) ats+v-(%>+ 3 (_1)OA(06)+OI(1)81.< A\{a},1\{i} A,1>

AL h?
a€A i€l
: L@ a (PiMangyumMa Pj(1+ M3 ;)
+ E (—1)01 @D+ Wy, ( B —0; | | =0

JEI, 1&1\{1}

We leave the proof in Appendix C.

Remark 2.5. There are many possible ways to augment the original system because
of the different ways to write a function of minors. To find the write way to express
the equation ([L2)) and (LT) such that it has a convex entropy S is somehow a little
technical.

3. PROPERTIES OF THE AUGMENTED SYSTEM

3.1. Propagation speeds and characteristic fields. Let’s look at the special
case n = 1, where our extremal surface is just a relativistic string. In this case, the
augmented system coincides with the system of h, P, D, F', where the P is a scalar
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function and F = (Fy)a=1

—1....m becomes a vector. More precisely, the equations in
the case n = 1 are,

.....

D, + F,P
Oh+ 0P =0, OFn+0, <+7) —0,

h

P 1 D.P + F.
atp+am< - ):o, 8tDa+6m<+>:0.

Let us denote U = (h, P, D,, F,,) then, the system can be written as
o.U + A(U)O,U =0,

where

0 h 0 0
1 =2 9p 0 0
h —P%T” D PI, I,
—% F I, P,
We can find that, the propagation speeds are

P+1 P-1
Ap=——7, Ao =——

TR h
with each of them having multiplicity m + 1. The characteristic field for A; is
composed of

A(U) =

v?r =(h,P+1,D,F), vi =(0,0,e;,6;), i=1,...,m.
Here ¢; is the base of R™. The characteristic field for A_ is composed of
2 = (h,P—1,D,F), v' =(0,0,e;,—¢;), i=1,...,m.
We can easily check that
Or(U)

()
v =0 =5

So the augmented system is linearly degenerate in the sense of the theory of hyper-
bolic conservation laws [4].

' (U)=0, i=0,1,...,m.

3.2. Non-conservative form. Now let’s look at the non-conservative form of the
augmented system (Z)-(Z0). We denote
— 1 d= D _ P _ MA,I
_h,, _h7 v_h; ma,r = h
For simplicity, we denote ma ; = 7if A = I = (). We have the following proposition.
Proposition 3.1. Suppose (h, D, P, M 4 1) is a smooth solution of (2.0)-29), then
(1,d,v,ma. 1) is the solution of the following symmetric hyperbolic system,

(3.1) Oy + v;0;7 — TOjv; =0

T

(3.2)  Oda +vi0ida + Z Liaeaien (=)0 Om 4 oy iy Omar =0
Al

(33) i+ > Lerign iy (=)D ODmy Gy Uy dyma
A,lj

— E mA)]aimA)]—l—Ujaj’Ui—TaiT:O
Al
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(3.4)
dema,r +vi0imar+ Y Lperjen iy (=)D Omy iy Gy O
0]
—mar0iv; + Y Laeaien(—1)2 T 0m 4 oy 1y 0ide =0

a,t

We can prove the above proposition by just using ([Z9)). It is easy to verify that
this system is symmetric. If we set W = (7,dq,vi,ma 1) € R"er*(min), then the
equations can be written as

AW+ A; (W)W =0,
J

where A;(W) is a symmetric matrix, and more surprisingly, it is a linear function of
W. This is exactly the form ((3]) announced in the introduction. Notice that this
system does not require any restriction on the range of W! In particular the variable
7 may admit positive, negative or null values. This is a very remarkable situation,
if we compare with more classical nonlinear hyperbolic systems, such as the Eu-
ler equations of gas dynamics (where typically 7 should admit only positive values).

Now let us prove that the two system are equivalent when initial data satisfies

(PRe))

Proposition 3.2. Suppose the initial data for BI)-BA) satisfies 29), i.e.,
Z(—l)ol(i)ai(T_lmA/J\{i}) =0, 2<|I|= |AI| +1<r+1
icl

then the corresponding smooth solutions satisfy (2.3])-(2.9).

Proof. We only need to proof that the smooth solutions always satisfy ([2.9]) provided
that initial data satisfies it. For 2 < |I| =|A’| + 1 < r + 1, let us denote

oar =y (1), (TﬁlmA’,I\{i}) =0
il
then by BI),B4), we have
Oroar1= Z(—l)ol(i)ai (T_lathf,z\{z‘} - T_2mA',I\{i}‘9tT)
il
= —vj0jon 1+ Z (—1)04@FO1W g4\ (01 iy Oida
aez;?iel ) )

= D (@O 1y Ui

ieridn

Then we have the following estimate,
0> [ s < Vel IVl (3 [ o)
AT AT

Since the initial data o4/ ;(0) = 0, then by Gronwall’s lemma, we have o4/ 1 = 0.
With these equalities, it is easy to prove the statement just by doing the reverse
computation as in the previous proposition.

O
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Now let us look at the connection with the original system. It is obvious that
the non-conservative form of the augmented system is symmetric, thus, the initial
value problem is at least locally well-posed. But for the original system, this kind
of property is not obvious. However, we can show that, the augmented system is
equivalent to the original system if the initial value satisfy the following constraints

(3.5) Pi=FyiDo, h=+/D>+P24+¢&(F), Maj=I[Flas

or, in the non-conservative form,
(3.6) TV = Maida, 1=d+0}+7°+m?%, mas=r7[Flas

Now let us denote

1
A=+l +di +mi = 1), wi=Toi = maida
0% = (=10 1 ymai = L{agay ™A U a)1

Ghr =Y (=124 O oy 1mai — Ly Tmar gy
a€cA
It is obvious that (7, v;, do, ma 1) satisfy the above constraints ([3.0]) if and only if A,
Wi, % 1,1/)27 ; vanish for all possible choice of A, I, «,i. Furthermore, we can show
that the algebraic constraints ([B.0]) are preserved by the non-conservative system
BI)-@B4). First, we have the following lemma.

Lemma 3.3. If (7,v;,do, ma,1) solves the non-conservative system B.1)-(B34),
then X\, w;, ‘P%,I:@/’f&u as defined above satisfy the following equalities,
(3.7)

Ouon = widj0; w00y —v;Ojwit O+ D 1en (=1 DTN D0ima 19y 15y

A,lj
(3.8)
DN = —0;0; AT D00+ Z ]-{i,jel/}(_1)Oﬂ(i)+oﬂ(j)mA,I/\{j}aj (mA,I/\{i}wi)
A I'>2,4,5 T
O 4/ () 407 (4) O 1o
+ Y. Men(=1)% man @ | =
A3 2,0,
(3.9)
Orph 1 = 2@%,1@%‘%@@3,1—2 Ljerrgn iy (1) RT010) oo (NG Utk 930k
ik
+ > Vpeajery (1) OTOADTOMNG (0FO01W g, o0 1 D5ds

B,J

(3.10) 3t¢f4,1 = 2¢2,Iajvj - Ujaj¢f4,1 - Z(_l)ol(i)Jrol(k)%/Jﬁ,Iaivk
k

i Z 1)04B)+01(G)+01(0)+0n (53 () wZ\{B},I\{j}ajdﬁ
BeA,jel

_ Z Lijerreniin (_1)01(i)+01 (N+O0n iy () +O0\ (i) ULky (i)@bfax,(l\{j}) U{k}ajvk
5.k
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The proof of this lemma requires very lengthy and tedious computation. Inter-
esting readers can refer to appendix D for the details of the proof. By the above
lemma, we can show that the algebraic constraints are preserved. We summarise
our result in the following proposition.

Proposition 3.4. Supposed (7,v;,do,ma 1) is a solution to the non-conservative
equations BID)-BA) and the initial data satisfies the constraints

2 2 2 2
TV = Maide, 1=dy+v; +7°+ma, mar=7[Flar
where Fo; = 7" Ymqs, then the above constraints are always satisfied.

Proof. Let us denote

1
A= 5(72+v?+d3+m?471—1), Wi = TU; — Meidg

0% = > (1) 1 ymai — L{agay ™A U a) 1
el

Y= > (1) oy mai — LagnTma g
acA
It is enough to show that A, wj, cij,z/JiU always vanish. Since goj)l,wiu sat-
isfy (39) and (BI0), which are linear symmetric system of PDEs when we see
(7,vi,do,ma,r) as fixed functions. It is easy to know that 0 is the unique solution
when initial data is 0. So we get ¢4 ; = 1/)271 = 0 for all possible choice of A, I, «, 1.
Therefore, we know that ma ; = 7[F]a.;, where F,; = 7~ mq;. So, by B.7) and
B18), we know that A, w; solves the following linear system of PDEs

(3.11) DA = 7Z;0jw; + fiw;

(312) thi = 7'81/\ + CijWs

where D, = 0, +v -V, Z;; = &(F)(L, + FTF);j1 is a positive definite matrix,
fi = 0;Zsj5, cij = 0;5V - v — O;v;. This system is of hyperbolic type and looks very
like the acoustic waves. Now, since Z;; is positive definite, we can find a positive
definite matrix Q such that Z = Q2. Now we do the change of variable &; = Q;;wj,
then A, w; should solve the following linear symmetric system of PDEs

(313) D)\ = TQijaj(:)i + ﬁ(:}z
(3.14) Dy@; = 1Qi 05\ + ¢ij@;
where

fi= TZk0kQy;' + Qi fir iy = (DiQuk + Quer) Q)

By the standard method of analysis of PDEs, it is easy to know that this linear
symmetric system has a unique solution. Since A = @w; = 0 at ¢ = 0, so we have
A =w; =0. So we have w; = 0, which completes the proof.

O
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4. TOWARD MEAN CURVATURE MOTIONS IN THE EUCLIDEAN SPACE

We conclude this paper by explaining how mean curvature motions in the Eu-
clidean space are related to our study of extremal surfaces in the Minkowski space.
This can be done very simply by the elementary quadratic change of time § = ¢2/2
in the extremal surface equations (0.I)). Let us work in the case where X°(¢,z) = t.
We do the change of coordinate § = #2/2, and in the new coordinate system, the
extremal surface is denoted by X (6, ). The chain rule tells us

2X%=1, XM =00,XM, M=1,....m+n

Now for fixed 6, the slice of X (0,2) = (X*(0,z),..., X™"(,r)) is a n dimensional
manifold ¥ in R™*". Let us denote the induced metric on ¥ by g;; = (9, X, 9;X),
i,j =1,...,n. Denote g = det g;;, g the inverse of g;;. Then we can get that

Gop = -1+ 9/2|89X|2, Goi = Gip = 9/<89X, 8ZX> = H’hi, Gij = 0ij

—1+0%|0,X > 0'hy

G = det ( o'n; o

) =—[1+20 (hihjg"” —0sX|*)] g

V=G = /g [1+ 0 (hihjg7 —|0sX|*) + O(6°)]
G = —1+20 (hih;g"7 — |0sX|?)+0(6%), G = G = 0'¢g"h;+0(0), G = g +0O(0)
Therefore, (O] can be rewritten as
0=0; (V=GG™) + o, (V-GG
= 0" [~85 (v9) + Vg (hihjg? — 06X [*) + 8; (/99" hy)] + O(6)
0=0, (V=GG00,XM) + 0 (V=GGa,x™M) + 0, (V-GG X )
=0, (0/vgonX™) + 0, (6 V39" h;00X ™) + 0, (Va9 0;X™) + O(9)
= —/g0e XM + 0; (/gg" 0, X™) + O(0)

In the regime 6 < 1, we have the following equations

(4.1) 9o (V9) + V39106 X |* = 0; (Vag" hj) + /ghihjg”
(4.2) O XM = \%ai (Vag?o; XM, M=1,....m+n
7

([A2) is exactly the equation for the n dimensional mean curvature flow in R™*+",
and (AT is just a consequence of ([L2).

Remark 4.1. It can be easily shown that [E2)) is equivalent to the following equa-
tion

(4.3) Do XM = g9, XM — gl g XM X N0 Xy
Therefore,

hi = 0pXM0; X 1= (g7 0 XM — g7* g™ O X M0, XN 0 X ) 0: X s
= ¢%0;, XM0; X nr — g7 9" 910 XN 051 X v
=0
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As a consequence, we have
L M
8{9 (\/E): ﬁgg 81'9X 8jXM
= 0;(v/99"7 06 XM 0; X 1) — 0 X™M0; (/99" 0; X 1)
= —/910s X|?
which is exactly [@EI)) since h; =0, 1=1,...,n.

So, we may expect to perform for the mean-curvature flow the same type of
analysis we did for the extremal surfaces, which we intend to do in a future work.

5. APPENDIX A

Let us denote
F§ =0, XP, V* =9, XV, &y = bij + FGFaj, Cap = 0ap + F,'Fai,
and let €7, ¢ be respectively the inverse of &ij, Cap, € = det&;; = det (ug, 4,j =
1,...,n, o, = 1,...,m. Since &;F,J = Fo; + FlFgFj = F’(s,, we have

¢V F,; = (*PFs;. By using the above notations, the induced metric G, has the
following expression,

—1+|V]* P9V, 2 | gij pa B o
(G#V): ( FO{VOL éj ) G:_é. (1_|V| +§JFiFjV0‘V5) :_5 (1_< 5V0¢V5)

- 1 —(*BV, Fg;
Gy =Gt ( Ve, )
( ) 5 —CQ'BVaF,Bi (_1 + |V|2)§” + (é'lké']l _ f”fkl)F%FﬁlVaVB
Now let’s start looking at the equation ([@I)). The equation for X% i = 1,..., n,
reads

5 ( VECPVaFpi ) 5 \/g[(—1+|V|2)€ij+(§ik§ﬂ—5”5“)F°}€F€Vavﬁ}
¢ —Yj

Pt =0
\/1—CO‘BVO¢VB \/1—CO‘BVO¢V/3
We denote
_ apf

V1= PV V1= BV, Vs
Then we have
—D® — Fapi
Ve = ——, h=+/{+|D]*+|P]?
VE+ D2+ |PJ?

Therefore, the equation can be rewritten as
PP =69\ _
- =

(1) or+0;
The equation for X° = t reads,
BV, Fg;
—0 Ve +0; VEVaFy -0
V1=(*PV, V3 V1 —=(*PV, V3
which can be rewritten by using our new notations as

(5.2) Oih + 0;P; = 0
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The equation for XP™® « =1,...,m, reads,
-0y VEWVa = (PRI Fp; V) +0; \/Z(CBWF/BJVVVQ - FaigikFiVﬁfle’;Vv)
V1= PV, Vs ! NEICAAT

+0; <\/Z 1-— Co‘ﬁVaV5§iij> =0

which can be rewritten as

DozP’ ijFai
(5.3) 0Dy + 0; (%) =0
At last, since 0 Fo; = 0; Vi, 0iFo; = 0;F i, we have
D, + F,;PJ
(5.4) O, Fi + 0; (%) =0, OiFa; = 0;,Fa

EI)-E4) are just the equations that we propose.

6. APPENDIX B

First, let’s prove the equation (L6l). Quite directly, we have
O&(F
EF) 5, Fm-)

aFai
o DaatDoz + Piat(FaiDoz) + gl(F)aiatFai
N h

. P. X / .
_ <Da+Fasz)8tDa+ <DaPz+§(F)az>atFai

1
O h = o7 <2Da8tDa + 2P0 P; +

h h
_ Doz+Fo¢ij O DaPi+§I(F)ai _ DQH+§/(F)ai O Da+Faij
N h ! h h ! h
o, (Lot F)Da 46 (F)e)
() 2

Now, since
& (F)ai(Da + FojP) = £(F)I + FTF) ;' Far (Do + Fo; Fj)
=&(F)(I + FTF);}(Py + Far.Fuj Pj)
= E(F) I+ FTF) (I 4+ FTF)y Py = £(F)6i; Py = E(F)P;
So we have

— (<D2+P22+5<F>>Pi) Cap

Now, let’s look at the equation for P; = F,,;D,. We have
a151:)1' - 8t(FaiDoc) - DaatFoci + FaiatDa
The first term

Dy + Fui P;
DaatFai = _Daai (%)
(Di + DaFaij> D.,0;D, + PjFajaiDa
= —0; J7J ) 4 - Jjta
h

Y <D2 + P2 > \ DadiDa + P0i(Fa;Da) + & (F)a;OiFaj _ PiDadiFuj + & (Fa;0iFa;

h h h
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__a, (h2 —h§(F)> b — (Dan +h§’(F)aj) 0 F;

_ o (L}J;)) B <Dan +h§'(F)aj) 0

) / ]
Fa’iatDa = _Fazaj <w)

S ((FaiDoz)Pj ZFa&'(F)a‘j) n (Dan +h§'(F)aj) 0, Fu
_ o, (Pz'Pj +F;(Z¢i§I(F)aj) N <Dan +h§'(F)aj) O F;

PPy + Foi€'(F)aj — £(F)5ij)
h

The second term

So we have

0P = —0; (

Now, since
(I + FTF)3! (01 + FajFar) = 6
then we have
Foi (F)aj = €(F)dig = &(F)((I + FTF) Fog Far = 0i5) = =€(F)(I + FTF)5!

So we get

=0

P,P; FYI+FTF);!
6tﬂ+aj(hj_€( )( . )U>

7. APPENDIX: C

We have that

Do Dy + POy P + My 10 My 1 1+D2+P12+Mfu
oS = W . =~ — 572 '~ Oh

Let’s look at the first term,

D,0,D D D.P;\ D , Ma 1M a\(ay,1\ {4}
Zattma oy, aty ) _Zo 1 OA(a)+OI(Z)3Z. d >
= (%) G 2 e i

acAiel

(since [29), we have Ziel(—l)oA(O‘Hof(i)&MA\{a}J\{i} =0,)

D? D? Do Mg\ 1\ i , M
) (_a> _DeMavornin g~ (qpoa@rontg, (#)

2h2 h _ h
A,1,i
acA,iel

For the second term,
P;0.P;
h

=L+ Lo

where

P, . M D M
L=-0 Y (pooronmoy, ( Ay(l\{a}})LU{} AJ)
Jerid R

P; P; P; P; 1+ M?
L2:_—6j J —i——Jaj M
h h h h
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Now let’s first prove the following equality,
OMar = Ligngy (DO O My 1y U
jel
In fact, since 1{j€],i¢]\{j}} = 1{j€],i¢]} + 1{jel,i:j}7 we have
Right = lggry Y (=1)"DTON D9 My 1) + LiendiMa
jel
For i # j, we can check that
01()+01\{J}() OI()—FOIU{}()—I—l (mod 2)
So the right hand side

Right = —Ligry D (=17 OFO00D0; My (1 gy + LizendiMar
JeI

= —lugny »_ (=02 D9My umngy + (Lign + Lien)0Mar
Jerut
Because of (2.9), we finally get

D gy (DO DMy 1y Uy = 0Ma

jeI
So we have
P,M PM 1 UL - ; M
L =— Z = AT g Mg A,(I}\L{J})U{ } Z (_1)OI(J)+OI\{]~}(’L)aj ( 2,1)
AT A,I,j
JjElI, 1¢I\{J}
For Lo, we have
P? p? Pi(1+M3,)\ 1+M;, [P
Ly = —550;P; — P;0; (2h2) +9; ( 2 B (7)
Since
1+ M3, Py 1+MAI 1+ M3, PMAI
so we have
PP BiMa gy Ut Or(j G, (Mag
i i ) -1 I(J)+OI\{J}(Z)8- ’
h h ; ( ) J h
jerig\{5}
1+ P2+ M3 1+ P? + M} Pj(1+ M3
_ ALy, P, — Po; < AL 4o, B+ M)
h? 2h? h?
Therefore, we have
D,0, Dy, + P;0yP; + M 10, M. 25 S
t + th+ A10eMA T 8P P@()—i—Lg
where
Pi(1+ M3 ) 0140 5. [ FMaaG) Uy Mar
L e R S B

JEIigI\{j}
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a I3 DOtMA a}, I iMA,I
— 3 (1)oat )+o;()ai< Me G )

A,I,i
acAiel

So we have

25 S S SP;
0:§ = ——=0;F; — F;0; <E> Ly = 70ih = =0; <TJ> + L3

which completes the proof.

8. APPENDIX D
Equation for w;. First, let’s compute 0;w;, by definition,
Orw; = Oy + TO; — OpMmaide — MeiOrda
The first two terms are,
Oy Tv; + TO; = vi(TOjv; — v;0,T) + T( Z ma,10ima,r —vj0;v; + 7'(91'7') +3
AT
= (1v;)05v; — v;0;(Tv;) + %81»(7'2 +mZ) + 21
where

Y= =7 ) Lgerignn (C1) TN Omy gy ygay man
Alj

Here we use the equation for m;:
O + vjajmai + maj(?ivj — mm»ajvj +70;dy =0
The last two terms are,

—O0rMaide —MaiOrdy = dg (vjajmai—i—maj@ivj —mmﬁjvj +T(9ida)+maivj6jda+22

= —(maida)ﬁjvj + Ujaj(maida) + %[Mdi + 1)]2) — (T’L)j — majda)aivj + 2o
where

3= Z Liaeajery (1) OO D ima fay, 1\ (53 05ma.1
Al a,j

Now, we have
.
Orw; = (T’Ui — maida)ajvj — ’Ujaj (T’Ui — maida) + 561'(7'2 + ’U]2< + di + m12471)

—(Tv; — Majda)0iv; + X1 + X2
= w;0jv; —w;0;v; —v;0jw; + TOA+ X1 + X
It is easy to check that
148 = Y 1yen (=)D O0ma 1 1y

ALj
So w; should satisfy the following equation
815&)1‘ = Wiajvj —wjaivj—vjajwi+7'8i/\+ Z l{jEI} (—1)Ol(j)+ol\{j}(i)aij,Id}il,[\{j}
ALj
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Equation for \. Now let’s compute 0;\, we have,
O = TOT + v;01v; + doOrdo + ma, 10ma. 1
= 7(10jv; — v;0;T) + vi(ma,1Oima, — v;0;v; + TO;T) + X3
—davj0jda + X4+ ma (ma 10;v; —vj0imar) + X5 + X6
= —ﬁaj(r2 + 07 4+ di +mZ ;) + T0:i(Tvi) + ma 10;(ma,1v;)

2
+33 4+ X4 + X5 + X6
where
S5 == ) lgerignun (DO Omy gy yrayvidyma
Ali,j
Y4 =— Z Liaea,icry(=1)24 O W m 1 tay 1 (i3 daOima,s
A I,
U5 = — Z Liaeaiery (=)0 OO Wm0y 1 iy ma,10ida
AT,
L6 =~ Y lyerignun (DO Dmy 4 y) yyma 9o
A,li,g
It is easy to see that
S5+ %6 =~ Y Lgeragngn (~D7 VTN Omy gy Uy 05 (marvi)
Ali,j

(since l{jel igI\{j}} = ]-{jeI i¢1} =+ l{jEI i:j})

==Y lgenmardima )= Y Lerign (=)D Omy Gy Uy 05 (ma o)
Al A,li,g

(since 1{ieI} =1- ].{g]})

= —ma,10;(ma, 1v;) Z Liigr,j—iy (— )Ol(i)+OIU{i}(j)mA,(IU{i})\{j}aj(mA,IUi)
A l,i,j

- Z Lgrjen(—1)9" (+On ) (i)mA,(I Ufih\{51 05 (ma,1vs)
Ali,j

Now we can easily check that for any ¢ ¢ T and j € I,

01(i) + 01y () = O1() + Ony 3 (i) +1 (mod 2)
[We can prove this equality by discussing in the cases ¢ < j and i > j.]
Because 1{7;%[)]‘:7:} + ].{ig[)jel} = ].{i%[)je] U{i}}» we have

Y3+X6+ma 10;(ma,rvi) = Z 1{z‘¢1,jelU{z‘}}(—1)01(i)+OIU{”(j)mA,(JU{i})\{j}aj(mA,lvi)
AT

(let I' = T\U{i})

= Y ey (=0T Wmy 1 305 (ma i iy vi)
AN 52,05,

(‘and, since my 11 (;yvi = 2 (w; + mgda)

/(G e MA N\ Wi T A N {1} Maide
= Y ey (1O OO G ( e )
A 22,0,5,
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Also, we have

Yy+3s=— Z Liaea,ieny (1) T O oy 195 (mearda)
A I,

(let A" = A\ {a})
= —70;(Maida) — Z Liagariery(—1)C4 OO Wm 1 130i(mar gay.1da)

A’ NI >2,00

Since
Liagarymar U(ay,1da
1 .
S (Z(_UOA,<a>+oz<a>mA,J\{j}maj _ wi/,z) a.

g JeI

we have
«@ 7 Qoa/ da
Bt B = —70i(Maida) Z l{iEI}(_l)OA'( )+01( )mA/7I\{i}ai < A: )
A/7|I|22>O¢7i
i . mar 1\{j ma‘da
B Z i jery (1)1 OO Wiy, 1 (105 (%)
AT >2,0,i,5

We find that the last term is cancel when we add it up with 33 + 3¢, so we have
. . m AN
0N = —v M0t Y Tgigery (1) DHOr D g0y (FALMIE

.
A =251,

+ > 1{1’61}(_1)OA/(a)+01(i)mA’,I\{i}ai(
A |T[>2,00

‘P%/,Ida
T

Equation for ¢ ;. Now let’s find the equation for ¢4 ;. We only consider the
case |A| > 2. We have

8154%7%71 =0 (Z(—l)oA(Q)JFOI(i)mA,I\{i}mM — 1{o¢§éA}7'mA U{a}>1>
el

= Z(_l)oA(a)+OI(i)mai (mA,I\{i}ajUj _ Ujaij,I\{i}) + 3+ 3%
iel
— Z(—l)oA(a)JFOI(i)mA)]\{i} (vjajmm- + maj&-vj — maiajvj + Taida)
el
~Lagaymay(ey,1(T9v;—0;0;7) = 1iag a3 7(Ma{ay, 10505 —0;0imayfa},1) + o+ E10
= 2@%)18]‘1)]‘—Ujaj(pxl—Z(—l)oA(a)+01(i)m,41]\{i} (majaivj—i—TBida)+E7+Eg+29+210

iel
where
S7 ==Y Ligjerrgn i (~1)OAOTOrOTONG NG Bin y (1 5y ey maid;or
7,7,k
S5 == Y Liseaupien (—1) A @OHOOTOADFONG Wiy, 5y 1\ (3,3 Maidids
B

So =Y Lagajerrgn gy (DO T rmy ey (ngh Uk 95k
7,k
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Oay{ay(B)+01(5)

S10 =Y HagaseaUiayjer (—1) TMAU{ap\18}, 1\ {51058

B.j
Now let’s look at Y7, first, since

Liizjerkg\{ij}yy = Ljerien Gy eg NG}y T Ljerien () h=i}
we have

1= =) Leriengpaen g (-1 OTOOTON@ DTN By i gy Gy maidsve
N
+ > gerwen gy (DA D imy pgymardjor
7,k
Here we use the fact that, for k& # j,
O1(k) + Onxy (7)) = 01(j) + Onyy (k) + 1 (mod 2).

Further more, for different number i, j, k, we have the following equality

O1(1) + On (i3 (4) + On\ (i3 (k) = On 3 (k) + O1(5) + O\ 5y Uy (4) (mod 2)
Then, we have

(—1)0a(@)F0n 3 ()FO01(G)FOm Gy sy Dy

Sr ==Y l{jerien i} k¢n\i}) (I\{ij}) U{k} Mai O Uk

.5,k

+ Y ()OO pgymardioe =) Lgeragn iy (=1 Dmy gy mardjo
jelk Ji.k

(since 1ijerien iy een\{iy + Myerkgn\(ihi=k} = L{jer kg N\ {i}ie(\ {7} Uik}

O0a(a)+0n (53 (F)+01(N+O01\ {53 ULk} (1)

==Y Ljerngngriea\ G Uy (= 1)

4,5,k

MAL(1\{j}) Ufk D\ (i} MaiOjVk

+ Z (—1)OA(a)+01(j)mA,I\{j}makaj'Uk
Jjelk
Together with g, we have
St Y — Z (—1)OA(a)+ol(j)mA,I\{j}makajUk - Z 1{jel,k§£l\{j}}(_1)01\“}(k)+01(j)</7%,(1\{j})U{k}ajvk
jelk 7,k

Now let’s look at 1. Since

Taga,seaUial,jery = Yaga,peajery T l{ag¢a p=a,jer}
and, for any a ¢ A, 8 € A,

Oavipy(@) + Oa(ar(B) = Oala) + 04(8) +1 (mod 2)
then we have

(_1)OA(O‘)+OA(B)+OA\{L3}(a)"l‘ol €]

S10 ==Y Ljagaseajen TMA\{8}) U{a}, 1\ {5} 9548

B3
+ 2 Hagay (=)0 OTO D rm g (5305
jel
Now because ]-{agéA,BeA,jEI} = l{aﬁéA\{ﬂ},BEA,jEI} - l{a:ﬂEA,jEI}v we have

T10 = = Lagav(sy.seajery (—1) A OFOAOTONG OFO1 O 4 5y ey (53 5o

B.j
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+ > (Laeay + Lagay) (=) O rm y 1 (;10;ds
Jjel
Since for any i # j € I,
Or1(i) + On iy (4) = O1(4) + Op 53 (4) + 1 (mod 2)
Then we have
Sg+ Tio — 3 (1) Wrmy 1 (y05da
jel

=D geajeny(~1)OMDIFOADFONE (@OFO1W a0 11305

In summary, we have

O 1 = 2@3,1@%‘—“3‘@@%,]"‘2 Lipeajery(—1)04(0FTOAD Oy ()FO1G )SDA\{ﬁ} n19ids
B.J

O k)+O
= Lgerrgnpn ()OS OFOIDGs 4 Ui ok
7,k

Equation for 7,/1%1 - Now we compute 7,/1%1 1, and we only consider the case when
|I| > 2. We have

Oy 1 = 5t( Z (—1)QA T Dy 4 (g rMai — Lggrymma s U{i})
acA

= (=10 OFO Oy (may oy, 10505 = 0;0ma\fay,1) + E11 + Sio
acA
= > (1)OAOFOI O 1oy 1 (0;05mai + MajOi0; — Maidjvj + TOida)
acA
—LignyT(ma, Uiy 050 — v;05marygy) + X1z + X
—Ligryma,rygiy (795v5 — v;057)
= 20 (0jv; —vj0;0y 1+ Y11 + V12 + X1z + Xia
— Z OA a)+oj(l)mA\{a}7] (majaivj + Taida)

acA
where

1)04(@)+01()+01()+0r 133 (k)

Si=— Y Laeajermgniiyy (- M A\{a},(1\{5}) Uk} MaiOj Uk

a,j,k
Yig = — Z Liazsea jery (—1)04@FO1OF0u @ 0@y 4\ (o 1 iymaidids
a,B,j
_ O i it (k)+O iy (J .
Tis = Y Lgagrjer Ulip ke Ul () (- 1)U BFO0s Orm e ) Utk 050k
7,k

1)OA(L‘3)+OI Uiy (9)

S =Y Vpeaigrjerutiyy (- TMa\{8},(1 UL\ {1958

8,3
First, let us consider the most complicated part ;3. Since

Liigrjer Utiy ke 1 UGH\GY = MigLierog(NGH UG + Ligrj=ike1}
we have

Y13 = Z Liigry (1) " OO Oy 1o + Dl
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where

Shs = Y Lgrjergngy Uty (—1)CO VO ETOuma Orm y (1 gy Uty Uy 0508
7,k

Now fori ¢ I, je I, k¢ I\{j}, k1, we can prove that

Oy Uiy (B)+O0rygy () = O1(0) + 01 (5) +On 53 (k) + O(n 5y Ugry (1) (mod 2)

(We can show this equality by discussing in the 4 cases: i < min{j,k}, i >
max{j,k}, j<i<kand k <i<j.) So X, can be written as

S
S5 = Y LgrierbgnGh UG (=D 5 Tma Gy Utiy Utk 950k
7,k
where S = Oy (i) + Or(j) + O[\{j} (k) + O([\{j}) U{k} (7). Now we claim that
Liigrjerkg(1\Gh Utiyy = g\ {i}) U{k}jer kg I\{5} — Ni=jjelkgr}
(In fact, we can prove the equality step by step:
Liigrjerkg(\Gh ULy = Ligrjerkgn\(i}y — Ligr.er k=i}
Liigrjerrgn\{53y = lagn\giygerken\iiyy — Wi=jjer kg 1\ 5}
Ligngy.ger kg NG}y = Lig(\5}) ULk} jer kg 1\{j}y T Li=kjer kg 1\{i}}
Lii—jjerken\{53y = Yi=jjerngry + Li=j=kjer}
L=k jerken\{j}y = Li=k,jer.ke¢ry + Lii=j=k jer}

by adding up the above equalities we get the desired result.) Then X5 can be
written as

S
S5 = Y g\ Gh Utkhser ke 1 (=1 Tma (i Uy Uiy 950k
7,k

Y Len ()OO WFOUm Orm 1o
K

We can easily verify that fori € I, k ¢ I,
O[\{i} (k) + O Uk} (Z) = O[(k) + O](’L) +1 (mod 2)

So we have
Y3 = Z(_l)OI(k)JrOI(i)TmA,I Uik}
k
s
+ Z Lig(\{jp) Utkhgen ke g1 (1) Tma (1 (5y) Utk Ui 95 vk
3.k

Then we have

Yo+ Ys — Z (—1)OA(Q)JFOI(i)mA\{a},]makai'Uk
aEAk

= = 2 ()OO Bk = 3 Lggerngnin (SD 8 () e 05k
k J:.k
Now let’s look at 14. Since
Ligeaagrjeruiiyy = Ypeajigrjery + 1{pea,i¢grj=iy

we have ‘
Yy = Z 1{i¢1}(—1)0*‘(BHO’(”TmA\{g}J@idﬂ + ¥,
BEA
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where

S = Y Vseaigrjen (—1)OAITO0 Orm oy G ) 95ds
B,J

We can check that for i ¢ I, j € I, we have
O1(i) + On 53 (1) + O1(j) + Orygiy(j) =1 (mod 2)

So ¥/, can be written as

Sha ==Y Lseaigr jery(—1)OAPTOOTONGOFOODm o\ oy (1 Uiy ) 058

5.
Because
Ligea,igr jeny = L{peaign{j}.jert — 1{pea,i=jjery
Then
Sha ==Y Lpeaignyieny (—1) AT OTONG RO rm 4 oy (1 G5y 95
x;

+ D aen (1) Orm 1) 10idg
BeA
Since for a # § € A,

Oa(a) + OA\{Q} (B)=04(8) + OA\{g}(a) +1 (mod 2)
We finally have

Y2+ X1 = Z (_1)OA(ﬂ)+OI(j)+OI(i)+ol\{j}(i)¢f4\{ﬁ}>l\{j}ajd3
BeEA,jEI

+ D (=) O g g5y, 101
BeA
In summary, we have

aﬂﬁfq,l = 2#’?4,1‘%‘”3‘ - Ujaj¢f4,1 - Z(_l)OI(iHOI(k)%/J,]Z,IBiUk

k
4 Z (_1)oA<ﬁ>+01<j>+oz<z‘)+01\m<i>¢f4\{ﬂ}y1\{j}ajdﬁ
BeA,jel
_ Z Lijer e\ (i)} (_1)Or(i)+01(j)+01\{j}(k)+0<1\m> U{k}(i)q/,f“I\{j}) U{k}ajvk
gk
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