Model-based probabilistic reasoning for self-diagnosis of telecommunication networks: application to a GPON-FTTH access network - Archive ouverte HAL
Article Dans Une Revue Journal of Network and Systems Management Année : 2017

Model-based probabilistic reasoning for self-diagnosis of telecommunication networks: application to a GPON-FTTH access network

Résumé

Carrying out self-diagnosis of telecommunication networks requires an understanding of the phenomenon of fault propagation on these networks. This understanding makes it possible to acquire relevant knowledge in order to automatically solve the problem of reverse fault propagation. Two main types of methods can be used to understand fault propagation in order to guess or approximate as much as possible the root causes of observed alarms. Expert systems formulate laws or rules that best describe the phenomenon. Artificial intelligence methods consider that a phenomenon is understood if it can be reproduced by modeling. We propose in this paper, a generic probabilistic modeling method which facilitates fault propagation modeling on large-scale telecommunication networks. A Bayesian network (BN) model of fault propagation on gigabit-capable passive optical network-fiber to the home (GPON-FTTH) access network is designed according to the generic model. GPON-FTTH network skills are used to build structure and approximatively determine parameters of the BN model so-called expert BN model of the GPON-FTTH network. This BN model is confronted with reality by carrying out self-diagnosis of real malfunctions encountered on a commercial GPON-FTTH network. Obtained self-diagnosis results are very satisfying and we show how and why these results of the probabilistic model are more consistent with the behaviour of the GPON-FTTH network, and more reasonable on a representative sample of diagnosis cases, than a rule-based expert system. With the main goal to improve diagnostic performances of the BN model, we study and apply expectation maximization algorithm in order to automatically fine-tune parameters of the BN model from real data generated by a commercial GPON-FTTH network. We show that the new BN model with optimized parameters reasonably improves self-diagnosis previously carried out by the expert Bayesian network model of the GPON-FTTH access network.
Fichier principal
Vignette du fichier
JNSM_Tembo.pdf (3.26 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01533710 , version 1 (06-06-2017)

Identifiants

Citer

Serge Romaric Tembo Mouafo, Sandrine Vaton, Jean-Luc Courant, Stephane Gosselin, Michel Beuvelot. Model-based probabilistic reasoning for self-diagnosis of telecommunication networks: application to a GPON-FTTH access network. Journal of Network and Systems Management, 2017, 25 (3), pp.558 - 590. ⟨10.1007/s10922-016-9401-0⟩. ⟨hal-01533710⟩
572 Consultations
1459 Téléchargements

Altmetric

Partager

More