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Abstract

Carrying out self-diagnosis of telecommunication networks requires
an understanding of the phenomenon of fault propagation on these
networks. This understanding makes it possible to acquire relevant
knowledge in order to automatically solve the problem of reverse fault
propagation. Two main types of methods can be used to understand
fault propagation in order to guess or approximate as much as pos-
sible the root causes of observed alarms. Expert systems formulate
laws or rules that best describe the phenomenon. Artificial intelli-
gence methods consider that a phenomenon is understood if it can be
reproduced by modeling. We propose in this paper, a generic proba-
bilistic modeling method which facilitates fault propagation modeling
on large-scale telecommunication networks. A Bayesian network (BN)
model of fault propagation on GPON-FTTH (Gigabit-capable Passive
Optical Network-Fiber To The Home) access network is designed ac-
cording to the generic model. GPON-FTTH network skills are used to
build structure and approximatively determine parameters of the BN
model so-called expert BN model of the GPON-FTTH network. This
BN model is confronted with reality by carrying out self-diagnosis of
real malfunctions encountered on a commercial GPON-FTTH network.
Obtained self-diagnosis results are very satisfying and we show how and
why these results of the probabilistic model are more consistent with
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the behaviour of the GPON-FTTH network, and more reasonable on
a representative sample of diagnosis cases, than a rule-based expert
system. With the main goal to improve diagnostic performances of the
BN model, we study and apply EM (Expectation Maximization) algo-
rithm in order to automatically fine-tune parameters of the BN model
from real data generated by a commercial GPON-FTTH network. We
show that the new BN model with optimized parameters reasonably
improves self-diagnosis previously carried out by the expert Bayesian
network model of the GPON-FTTH access network.

1 Introduction

Telecommunication operators make significant efforts to provide better qual-
ity services to their subscribers. Telecommunication networks must be re-
liable and robust to guarantee high availability of services to customers.
Network management has become a central issue for telecommunication op-
erators, which have triggered significant research in order to automate as
much as possible numerous complex operations of network management,
like fault management. Fault diagnosis is a central aspect of network fault
management [1].

The main goal of fault diagnosis is to locate as quickly as possible fail-
ures that degrade the quality of service provided to customers. Tradition-
ally, fault diagnosis has been performed manually by an expert or a group
of experts experienced in managing communication networks [1]. However,
the development of telecommunication networks has increased the size and
complexity of their architectures. Telecommunication networks have become
large-scale complex distributed systems. A fault occurence spreads, trigger-
ing other faults and alarms, which in turn trigger further faults and alarms.
The consequence of both fault and alarm propagation is that a single root
cause may result in a complex and distributed pattern of subsequent failures
and their corresponding alarms [2]. This is especially true when multiple
faults propagate simultaneously. Fault diagnosis has become too complex
for humans, who can keep track of only a few hypotheses in their reasonings.
Humans need a great deal of training to fully understand the fault propa-
gation phenomenon in large-scale networks. Fault propagation is a complex
phenomenon due to the dynamic, distributed and non-deterministic nature
of telecommunication networks. A single fault may generate multiple alarms,
and a single alarm may be triggered by several faults. Understanding fault
propagation in order to automate fault diagnosis has become a critical issue
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for operators. Understanding fault propagation is necessary to acquire rel-
evant knowledge needed to perform self-diagnosis by automatically solving
the problem of reverse fault propagation. This means using a configuration
of alarms observed on the network to go back to the recent past in order to
find their causal root explanations.

Two main types of methods can be used to understand fault propa-
gation phenomenon in order to perform reverse fault propagation. Early
self-diagnosis approaches of telecommunication networks, so-called expert
systems, were rule-based. Expert systems [3] [4], encode specialized reason-
ings on narrow diagnostic tasks in computer applications. Artificial science
methods consider that a phenomenon is understood if it can be reproduced
by modeling and simulation, for example. In this category, we may distin-
guish model-based approaches [5], which develop reasonings based on an ex-
plicit representation of the network. The blind methods based on machine
learning algorithms, like artificial neural networks [6] [7], and case-based
reasoning [8], infer diagnosis based on past experiences, without network
modeling.

In [9], we proposed an artificial method which combines the advantages
of model-based approaches and machine learning approaches. This generic
probabilistic method of network modeling integrates two fields: a decision
field and an artificial learning field. The decision field is based on Bayesian
network probabilistic reasoning [10] [11] in order to deal with the uncertain-
ties of fault propagation phenomenon. The artificial learning [12] field is
introduced and brings self-reconfiguration capabilities to the generic model
in order to deal with the dynamic nature of telecommunication networks.

This paper explains how and why probabilistic model-based methods
improve self-diagnosis of telecommunication networks by solving main draw-
backs of expert systems. We propose a Bayesian network (BN) model of fault
propagation on GPON-FTTH (Gigabit-capable Optical Network-Fiber To
The Home) [13] [14] access network. With our Python implementation of
this probabilistic model, we carry out self-diagnosis on a large-scale com-
mercial GPON-FTTH network. Parameters of the BN model, approximati-
vately determined from GPON-FTTH network skills, are optimized by ap-
plying EM (Expectation Maximization) algorithm from real GPON-FTTH
network data.

Section 2 of this paper presents a description and discussion of related
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work on fault diagnosis, as well as the comparison between expert systems
and probabilistic model-based methods. We also explain in this section why
and how a probabilistic model-based approach improves self-diagnosis of
telecommunication networks compared to expert systems. Section 3 recalls
basic concepts on Bayesian network models. Section 4 presents our de-
signed generic probabilistic model, which facilitates fault propagation mod-
eling on large-scale telecommunication networks. In Section 5, we apply and
implement this generic method to GPON-FTTH access network modeling.
Section 5 also presents and analyzes self-diagnosis results of our implemen-
tation compared with those of a rule-based expert system. We study EM
(Expectation Maximization) algorithm in Section 6 and apply it in Section
7 to automatically adjust parameters of the GPON-FTTH network model
from real data generated by a commercial GPON-FTTH network. Section 7
also presents and analyses diagnosis results of the probabilistic model with
optimized parameters comparativetely to diagnosis results of the previous
GPON-FTTH network model. We conclude and present future works in
Section 8.

2 Expert diagnosis systems and model-based ap-
proaches

Early self-diagnosis approaches were called expert systems. An expert diag-
nosis system [3] [4] attempts to infer the cause of a problem from symptoms
recognized in sensor data [2]. It is problem-solving software that embodies
specialized reasonings on narrow diagnotic tasks, usually performed by a
trained skilled human called an expert. The specialized reasonings can be
formalized with rules, list of facts, logic predicates, etc. Inference engines
are commonly based on forward-backward chaining algorithms. A review of
diagnostic expert systems is available in [3] [4].

2.1 Rule-based expert systems

In the telecommunication industry, the most commonly used expert sys-
tems are those that use rules to represent specialized diagnotic knowledge,
so-called rule-based expert systems. A rule may be equated to a matching
between observed symptoms and their corresponding causes. A rule takes
the form IF < condition > THEN < decision >. The condition may
be evaluated directly if required data are available. Automated checks or
tests on network components may also be necessary to evaluate the con-
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dition. These tests increase the load of network components and generate
additional network management traffic. If there are missing data, the con-
dition cannot be evaluated and no decision can be taken. The decision can
be the final diagnosis, i.e. the so-called conclusion, or the search for a more
appropriate rule by using the rule inference engine. The inference engine
has the ability to recognize input facts and infer output faults by searching
for the most suitable rules to the recognized facts. Diagnosis computing fol-
lows a cycle of fact recognition and rule inference that ends when the most
appropriate rule is found. If some facts cannot be recognized due to missing
data, the diagnosis computing cycle is interrupted and the expert system
does not produce a decision.

Fault propagation in telecommunication networks is naturally a dynamic,
distributed and non-deterministic phenomemon. This means that it is very
difficult for human experts to design a set of rules which covers all possible
situations that may occur on the network. Humans can keep track of only
a few hypotheses in their reasonings and need a long training period called
an expertise period to fully understand fault propagation on a network seg-
ment. But despite these significant efforts to fully master the network, there
are always unforeseen situations which require an extension of the expertise
period. The set of rules designed by human experts can become obsolete if
the new rules designed to cover an unforeseen situation require the modi-
fication of old rules. Rule-based expert systems suffer from this paradigm,
referred to as the knowledge acquisition bottleneck that make them very
difficult to maintain and unsuitable to carry out self-diagnosis of large-scale
telecommunication networks. An expert system is a static and deterministic
approach inappropriate to solving the non-deterministic problem of reverse
fault propagation in large-scale telecommunication networks.

2.2 Model-based approaches

Contrary to rule-based expert systems, model-based approaches no longer
encode specialized reasonings on narrow diagnostic tasks. Model-based
approaches use specialized knowledge about the network to build an ex-
plicit, structured representation of network topology and network behavior.
Model-based diagnostic approaches [15] [16] [17] [18] [19] [20] develop rea-
sonings based on explicit, formal representation of network structure and
network behavior. Network structure describes the network architecture.
Network behavior describes the process of alarm propagation and alarm
correlation [21]. Network structure and network behavior are then mod-
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eled [5]. The obtained model is the support of reasoning algorithms which
must be designed. Since reasonings are carried out on a model of the net-
work, model-based approaches cover more situations than expert methods.
They have the ability to deal with new problems or unforeseen situations,
although their performance may degrade in these cases. Model-based ap-
proaches are easier to maintain than expert systems. The model can be
designed in a modular or incremental fashion, facilitating updates as new
knowledge about the network is acquired.

The term self-modeling is recently used in the literature to indicate a
model-based approach whose the model is built automatically. In [2] a
self-modeling method based on patterns describing in generic manner de-
pendencies among resources used by an IMS (IP Multimedia Subsystem)
service is proposed. A pattern is based on a Bayesian network, it is built
offline, automatically located and instantiated online when a fault occurs in
a given IMS service. In [22] a similar self-modeling method applied in the
context of SDN (Sofware Defined Network) and NFV (Network Functions
Virtualization) is proposed. It is based on templates which model SDN
elements. An algorithm parses the network topology given by the SDN con-
troller and a template based on a Bayesian network, is instantiated with
eventually additional dependencies. A Bayesian network formalism is also
used in [23], to model the propagation of a crosstalk attack in an optical
network architecture. The purpose of this work is to bring and evaluate
resiliency of optical network architectures under in-band crosstalk attacks.
In [24], a fault propagation model based on petri network is developped,
such that places on petri network represent fault and transitions represent
dependencies between fault. Transitions are eventually labeled by the corre-
sponding alarm pattern. The diagnosis amounts to compute the most likely
path given a sequence of observed alarms. Note that in above examples,
the model is graphic. But, the model can be analytic. In [25], analytics
models and monitoring metrics are used to locate physical layer impairment
in WDM (Wavelength Division Multiplex) optical networks.

A model-based approach seems natural when relationships between ob-
jects are graph-like and easy to obtain [1]. As we have seen in some above
examples, the model can be probabilized in order to deal with uncertainties
related to the non-deterministic nature of fault propagation.

However, it is quite difficult to build a model close enough to the struc-
tural and functional reality of the network, while maintaining a high enough
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level of abstraction to make the model independent of the various engineer-
ing techniques implemented in telecommunication networks. In addition,
the built model is reduced to a static image of the network and may be-
come rapidly obsolete when the network changes. In [9], we have proposed
a probabilistic generic model which embeds modularity and extensibility
properties in order to facilitate self-reconfiguration of the model when the
network changes.

2.3 Comparison between rule-based expert systems and a
probabilistic model-based approaches

Table 1 summarizes the comparison between rule-based expert systems and
probabilistic model-based approaches. We note that all the drawbacks
of rule-based expert systems are solved by probabilistic model-based ap-
proaches.

Table 1: Comparison between rule-based expert systems (RES) and proba-
bilistic model-based approaches (PMA).

Properties RES PMA

Scalability No Yes

Maintenance Heavy Easy

New problems No Yes

Uncertainty No Yes

Missing data No Yes

Ambiguous data No Yes

Scope Narrow Large

Learning No Possible

The brittleness of rule-based expert systems, i.e., their inability to deal with
unforeseen situations, is a consequence of their case-by-case reasoning lack-
ing generalized reasoning capabilities. In addition to their ability to deal
with uncertainty and missing data, probabilistic model-based approaches
have a very wide scope of reasoning that makes it possible to make global
or generalized intelligent analyses of all possible situations that may occur
on the network. Therefore, contrary to a probabilistic model, a rule-based
expert system does not scale and fails when it encounters new problems.
Expert systems do not have the ability to learn from experiences acquired
from early diagnostic tasks. However, a model-based approach with no
learning capability is a static image of the network. In [9], we proposed a
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probabilistic generic model-based approach which embeds modularity and
extensibility, two useful properties for easy self-reconfiguration of the initial
network model. This generic model is based on Bayesian networks formal-
ism. So we first recall this formalism.

3 Basic concepts on Bayesian networks

A Bayesian network [10] [12] [11] is a probabilistic directed acyclic graphi-
cal model which represents a set of random variables and their conditional
dependencies via a directed acyclic graph (DAG). See Figure 1.

Figure 1: A simple Bayesian network of 6 random variables.

In a Bayesian network (BN) nodes represent random variables and edges
represent dependencies. These random variables can be observations or
measurements, latent variables or hypotheses for example. Each node is
associated with a probability distributions that represent the distribution of
the variable represented by the node, conditionally to the values of its parent
nodes. These probabilities will be denoted as θi,j,k = P(Xi = k|pa(Xi) = j)
where this quantity stands for the probability that the value of node i is k
given that the value of its set of parent nodes is j. A bayesian network en-
codes dependencies and independencies between a set of random variables.
Indeed, any two variables in a BN model are dependent if one belong to the
Markov blanket of the other, otherwise there are independent. Note that
the Markov blanket of a variable in a BN is the union between the set of
parents and children of this variable and the set of other parents of children
of this variable.

There are different definitions of what a BN is. LetB = (X1, X2, . . . , XN )
be the set of nodes of the BN. One possible definition is to state that the joint
probability of random variables can be factored as the following product or
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equivalently that the joint log-likelihood can be factored as a sum:

P(B; Θ) =
∏N
i=1 P(Xi|pa(Xi)) =

∏N
i=1 θi,pa(Xi),Xi

L(B; Θ) = logP(B) =
∑N

i=1 log θi,pa(Xi),Xi

(1)

Here the notation P(B; Θ) (respectively L(B; Θ)) makes explicit that the
joint likelihood (respectively log-likelihood) depends on the set of parame-
ters Θ = (θi,j,k)i,j,k. A BN embeds powerfull and efficient computational ca-
pabilities. For example, it is possible to compute the conditional probability
of any random variable or subset of random variables given an observation
of one or many other variables, without performing heavy computations like
marginalization. Indeed, efficient inference algorithms use the structure of
the BN. Let’s consider for example the fragment of a tree BN depicted by
Figure 2.

Figure 2: Segment of a tree Bayesian network.

Assume we want to compute the conditional probability of values of
the variable X given some observed variables in the BN. The sum-product
algorithm developped in [10], compute such conditional probability BEL(x)
given observations e−X collected in subgraph G−X containing the descendant
nodes of X, and observations e+X from the rest of the tree, i.e, the subgraph
G+
X .

BEL(x) = P(x|e+X , e
−
X) = [P(e+X , e

−
X)]−1P(e+X , x, e

−
X)

= αP(e−X |e
+
X , x)P(x|e+X)

= αP(e−X |x)P(x|e+X)

= αλ(x)π(x)

(2)
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where λ(x) = P(e−X |x), π(x) = P(x|e+X) and α = [P(e+X , e
−
X)]−1 is normal-

izing constant. See [10] for detailled expressions of λ(x) and π(x). The
sum-product algorithm use the structure of the BN since Equation 2 is ver-
ified because variables in G+

X are conditionnally independent from those in
G−X given X. This conditional independence is true only for BN with no
disoriented loop, i.e, a BN in witch any variable X does not belong to the
set of its descendants, e.g. X /∈ G−X .

For BN with disoriented loops like the BN depicted by Figure 1, a kindly
simplification of such BNs, called junction tree, is proposed in [26] [27]. A
juntion tree is equivalent to a BN and inference algorithm on a junction tree
is independent of the structure of the initial BN. This means that inference
algorithm on a junction tree is very suitable for large and complex structures
of BNs. Construction of a junction tree and inference on this structure
is discussed in the next section which also describes our designed layered
generic model for self-diagnosis of telecommunication networks.

4 A probabilistic generic model with self-reconfiguration
capabilities

The generic model is based on a very simple principle: modeling the behavior
of a telecommunication network amounts to modeling the behavior of the
components that make it up. The generic model can be applied to any
distributed system for self-diagnosis purposes.

4.1 Description of the generic model

Each network component Ei is modeled by two Directed Acyclic Graphs
(DAG). One DAG, L2Ni, models local fault propagation on the component
in question (see Figure 3). Another DAG, L1Ni, models distributed fault
propagation between this component and components which are connected
to it. Distributed fault propagation occurs between linked network compo-
nents. The two DAGs L2Ni and L1Ni share some common variables. By
separating local fault propagation modeling from distributed fault propa-
gation modeling, the generic model also models network topology. In [9],
we discussed the roles of layer 1 agents cL1A, rL1A, layer 2 agents cL2A,
rL2A and layer 3 agents cL3A, rL3A (see Figure 3). We call layer 1 node,
a DAG L1Ni representing the network component Ei. We call layer 2 node,
a variable of a DAG L2Ni.

10



Figure 3: The 3-Layered Generic Model

The generic model has three layers. Layer 1 models the network topol-
ogy as well as distributed fault propagation between linked network com-
ponents. Any node Ei of this layer is represented by a Directed Acyclic
Graph (DAG) noted L1Ni which embeds distributed dependencies between
the network component Ei and its neighbors. Note that i ∈ {1, . . . n} where
n is the number of network components of the telecommunication network
modeled. Distributed dependencies model fault propagation between linked
network components. For example, the Figure 4 shows a very simple model
based on the generic model. It is the model of a network segment of three
components connected under a bus topology. In Figure 4, layer 1 node L1N2

contains distributed dependencies between E1 and E2 and between E3 and
E2.

Layer 2 models local fault propagation on each network component. For
example, in Figure 4, DAGs L2N1, L2N2 and L2N3 respectively model local
fault propagation on network component E1, E2 and E3. Layer 2 DAG
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Figure 4: A simple example of the 3-Layered Generic Model.

L2N2 is connected to layer 2 DAGs L2N1 and L2N3 through layer 1 DAG
L1N2. The distributed nature of a telecommunication network introduces
mutual dependencies between linked network components. These mutual
dependencies lead to undirected loops between some variables of the BN
model. For example in Figure 4, layer 2 DAG L2N1 contains the local
undirected loop [A,B,D,C,A] on network component E1. In Figure 4, the
undirected loop [C,D,G,H, I,D,C] is distributed between components E1

and E2.

Gr =

n⋃
i=1

[L2Ni ∪ L1Ni] (3)

Layer 3 is the junction tree representation [26] [27] [28] [11] of layer 1 and
layer 2, i.e, the junction tree of the Bayesian network Gr defined by Equa-
tion 3. We call layer 3 node, a clique Cp of the junction tree. As every
junction tree, layer 3 satisfies the running intersection property which en-
sures that, the intersection Cp ∩ Cq is a subset of every clique and sepa-
rator of cliques on the path between Cp and Cq. For example, in Figure
4, G = {GDBC} ∩ {GKML} belongs to cliques {GDHO}, {GMO} and
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separators {GD}, {GO} and {GM} which form the path between cliques
{GDBC} and {GKML}.

Note that, layer 1 and layer 2 are useful for the self-reconfiguration field
of the generic model, since they provide useful modularity and extensibility
properties. Layer 3 is useful for the decision field of the generic model since
inference can be easily done in this layer, regardless of network topology
complexity at layer 1 and network behavior complexity at layer 2. See [9]
for more details.

The fault propagation model on a large-scale telecommunication network
of n components is decomposed in 2n sub DAGs, interconnected. This de-
composition brings useful, easy self-reconfiguration properties to the model,
modularity and extensibility [9]. Therefore, the fault propagation model of a
large-scale telecommunication network can be build incrementally, network
component by network component. The model can easily follow changes in
network topology like adding or removing a network component. The im-
portant consequence is that we can start the network modeling by building
a simple initial model from prior knowledge on a network segment. This
initial model can be easily extended in order to take into account another
network segment on which we recently acquired some knowledge about their
behavior.

We introduced in [9] the specification of a reconfiguration protocol in
order to automate the addition of a new network component into the initial
network model or the removal of a network component from the current
network model.

4.2 Construction of the junction tree

Consider the directed acyclic graph Gr defined by Equation 3. The fisrt step
to build a junction tree that forms layer 3, is to moralize DAGGr = (V e,Ed)
where V e is the overall set of layer 2 nodes and Ed is the edges between
them. The moral graph Gm = (V e,Em) of Gr is obtained by Equation 4
where Em is the set of edges of the moralized graph Gm.

(u, v) ∈ Em⇐⇒ [(u→ v) ∈ Ed] ∨ [(v → u) ∈ Ed]

∨ [∃w ∈ V e | u, v ⊂ parent(w)]
(4)

The second step is to build a chordal graph Gc = (V e,Ec) from the
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moralized graph Gm. We note ζ the set cycles of Gm, ve(C) the set of
vertices of a cycle C ∈ ζ, |ve(C)| the number of vertices of C and ed(C) the
set of edges of the cycle C. The chordal graph Gc is defined by Equation 5.

(u, v) ∈ Ec⇐⇒ [(u, v) ∈ Em] ∨ ∃C ∈ ζ with |ve(C)| > 3

such that [u, v ∈ ve(C) ∧ (u, v) /∈ ed(C)]
(5)

Note that the quality of the triangulation largely determines the effi-
ciency of the inference algorithm on junction tree. Triangulation is an opti-
mization NP-hard problem. Indeed, an optimal triangulation is that which
adds the smallest number of chords in the moralized graph, so-called mini-
mum fill-in triangulation. In [29], a minimum fill-in triangulation algorithm
is proposed.

The third step to build a junction tree is to compute the maximal
weighted spanning tree of the trianguled graph Gc. The maximal span-
ning tree of the graph Gc is a subgraph that is a tree consisting of the
subset of edges which together connect all cliques of Gc, while maximizing
the total sum of weights on the edges. The weight is the size of the inter-
section between adjacent cliques, i.e, the number of layer 2 nodes shared by
adjacent cliques. The maximal spanning tree of an undirected graph can be
computed using the Kruskal algorithm.

4.3 Diagnostic computations of the generic model

Layer 3 is the junction tree representation of the large bayesian network Gr
obtained by combining layer 1 and layer 2 as shown by Equation 3. This
means that layer 3 is sufficient to compute diagnostic decisions using, for
example, the well-known exact inference algorithm on a junction tree [26]
[27]. In Figure 3, layer 3 nodes Cp, Cq, Spq are respectively the cliques Cp
and Cq of the junction tree and their common separator Spq. A layer 3 node
is a compound variable of some layer 2 nodes. At initialization, a clique Cp
has the potential φCp and a separator Spq has the potential φSpq as follows:

φCp =
⊗

X∈Layer2,X∈Cp,pa(X)⊂Cp∨pa(X)=∅

P(X|pa(X))

φSpq = 1

(6)

We note pa(X), the parent set of layer 2 node X. The potential φCp

of a layer 3 node Cp represents the joint conditional probability of the
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layer 2 nodes that compose it. We recall that the product of distributions
P(Xi|pa(Xi)) of Equation 6 is not a matrix product but a tensor product
of functions. Indeed, a distribution P(Xi|pa(Xi)) is a function of variables
(Xi, pa(Xi)).

We call evidence e, a configuration or a combinaison of values taken by a
subset E of some layer 2 nodes. Let E = {X1, X2, . . . , Xt} and E ⊂ Layer2,
then e = {x1, x2, . . . , xt} such that xi for i ∈ {1, . . . , t} is a value taken by
the layer 2 node Xi ∈ E.

The diagnostic decisions computed at layer 3 are based on evidence prop-
agation on a junction tree. This algorithm starts by recomputing the initial
potential of each observed clique or layer 3 node by setting observed layer
2 nodes belonging to this clique. A clique is observed if at least one layer 2
nodes of this clique is observed. After that, the evidence propagation algo-
rithm essentially consists to update the potentials of any couple of adjacent
cliques. Assume Cp, Cq to be neighboring layer 3 nodes with their common
separator Spq (see Figure 3). The algorithm updates the potentials of cliques
Cp and Cq toward the separator Spq.

φ∗Spq
=

∑
Cp\Spq

φ∗Cp
(7)

φ∗Cq
= φCq

φ∗Spq

φSpq

(8)

Assume for example that the potential of Cp has been already updated
and the potential of Cq has not yet been updated, i.e, the propagation algo-
rithm has already reached clique Cp but not yet the adjacent clique Cq. The
evidence propagation algorithm proceeds in two steps. Firstly, the potential
of the separator Spq is updated by applying the marginalization operation
of Equation 7. Secondly, the potential of the clique Cq is updated by the
product of Equation 8. The notation Cp \ Spq represents the set of layer
2 nodes of clique Cp which does not belong to separator Spq. We say that
clique Cq absorbs evidence from Cp [21] or that clique Cp brings evidence to
Cq.

Updating operations of potentials of cliques and separators are carried
out in two recursives stages. The first stage called collect is initiated by
collecting evidence from leave cliques to root cliques. This assumes that we
arbitrarily choose an orientation on the junction tree by designating some
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pending cliques as leave cliques of the tree and the other pending cliques
are therefore root cliques of the tree. Root clique and leaves cliques respec-
tively denote cliques with no predecessor and cliques with no successor in
the junction tree according to orientation choosen. Collection of evidence
to a clique Cp is done by collecting evidence to all children of Cp followed
by absorption of evidences from each child. The second stage is initiated
by distributing evidence from root cliques to leave cliques. Distribution of
evidence from a clique consists to bring evidence to each child followed by
distribution of evidence from the child.

Note that the update operations of the potentials of layer 3 nodes are
carried out by an agent called computing Layer 3 Agent cL3A. The cL3A
updates the potential of each layer 3 node when it receives evidence (ob-
served layer 2 nodes) from its layer 2 counterpart called cL2A. When cL2A
receives updated layer 3 node potentials, it computes the marginals (beliefs)
of layer 2 nodes. These two agents may communicate using a simple mech-
anism like shared memory through an interface between layer 2 and layer 3,
which we call the L2-L3 Interface (see Figure 5).

Figure 5: Communication between layer 2 and layer 3 for belief updating of
layer 2 nodes

After updating the potential of all layer 3 nodes, the updated potential
φ∗Cp

of the clique Cp is the joint probability of layer 2 nodes belonging to
this clique and evidence e.

φ∗Cp
= P(Cp, e) (9)

This means that the likelihood P(e) of evidence e and the conditional
marginal probability P(X|e) of a layer 2 node X given e, can be computed
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by applying Equation 10.

P(e) =
∑
Cp

φ∗Cp
and P(X|e) =

∑
Cp\X

P(Cp|e) (10)

Where P(Cp|e) = φ∗Cp
/P(e) is the joint probability of layer 2 nodes be-

longing to the clique Ci. The intersection property verified by a junction tree
ensures coherence between updated potentials, i.e, the conditional marginal
of a layer 2 node X given evidence e, is the same regardless of the clique Cp
on which the marginalization operation is made. The most probable state
of the layer 2 node X that is consistent with evidence, is the one that has
the highest conditional marginal probability. The most propable state of
layer 2 root nodes give us the diagnosis decision. Note that there is an al-
ternative approach to finding the diagnosis without performing summation
operations on updated potentials. With this approach, the diagnosis r∗, is
computed from the most probable explanation w∗, of evidence as follows:
w∗ =

⋃
C∈Layer3w

∗
C such that φC(w∗C) = maxwC φC(wC), where wC is a con-

figuration of layer 2 nodes belonging to layer 3 node C and w∗C maximizes
the potential φC of C. Diagnosis r∗ is the most probable configuration of
layer 2 root nodes defined by r∗ = w∗ \ i∗, where i∗ is the most probable
configuration of non-root layer 2 nodes consistent with the evidence.

5 Case study: self-diagnosis of the GPON-FTTH
access network

In this section, we apply the generic model to build an initial probabilistic
model of the GPON-FTTH network. We force this model of self-diagnosis
to confront reality by carrying out fault diagnosis on an operating GPON-
FTTH network. The diagnostic results obtained with the probabilistic
model are presented, analyzed and compared with those obtained by a rule-
based expert system. Let us start with the presentation of the GPON-FTTH
network and the probabilistic model-based approach for self-diagnosis of this
network.

5.1 The GPON-FTTH access network

The GPON-FTTH access network has two main network components. The
Optical Line Termination (OLT ) is located on the operator side, and the
Optical Network Termination (ONT ) is located on the customer side, and
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the OLT and ONT are connected through an Optical Distribution Net-
work (ODN ), which is the optical infrastructure made of fibers and passive
components like splitters. A Passive Optical network (PON ) is a point-
to-multipoint link inside the ODN. A PON has a tree-like topology which
connects an OLT with a maximum of 64 ONTs in our example (see Figure
6). Each ONT is connected to an RG (Residential Gateway) via an Eth-
ernet link. Since there is no interaction between PONs in ODN, and all
PONs have the same behavior, we modeled one single PON. This model can
be replicated to any PON of a GPON-FTTH access network. All ONTs
connected to the same PON temporally share the upstream optical channel
of the PON. The downstream channel of the PON is a secured broadcasting
channel.

Figure 6: GPON-FTTH network architecture

Figure 7.A depicts the model of OLT component for self-diagnosis pur-
pose. As designed by the generic model, this component is modeled by
two DAGs. One DAG called layer 2 DAG for local fault propagation and
a layer 1 DAG for distributed fault propagation between OLT and ONT
components. The two DAGs are connected since they have some common
variables. Figure 7.B depicts the model of ONT component. The two models
are connected since they share common distributed dependencies via layer
1 (see Figure 7). Figure 7 presents the application of the generic model for
modeling the topology and behavior of a PON of the GPON-FTTH access
network. The obtained model has two layer 1 nodes, i.e., the components
OLT and ONT. Some variables called layer 2 nodes are vectors in order to
respect the tree-like topology of a PON. Indeed such layer 2 nodes represent
a particular value (for example an alarm, a counter or a scalar parameter) at
the different ONTs of the PON. Each element i of the vector refers to ONT
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Figure 7: The GPON-FTTH model based on the generic model.

number i in the PON. For reasons of simplicity, layer 3 is not depicted. We
have three types of layer 2 nodes on Figure 7: faults or root causes, inter-
mediate faults and alarms. The root causes are highlighted in Figure 7.

The transport optical fiber of the PON denoted by FiberT can take three
states. The OK state means that there is no transmission anomaly on this
fiber. The AT and BR states mean respectively that the fiber is experienc-
ing high attenuation or that the fiber is broken. The temperature of OLT
denoted by T cOLT , is a continous variable that we discretize. The power
supply of OLT denoted by AltOLT may or may not be faulty. The node
FaultyONT denotes an ONT which transmits an upstream signal outside
of its granted time slot, which may conflict with data sent by other ONTs
on the PON and cause data disruption for a random set of ONTs, making
the PON unusable. A FaultyONT can cause a Drift of Windows DOW .
The component OLT raises a DOW [i] alarm when an ONT [i] transmits a
signal beyond the time slot allocated to it. See ITU-T G984.3 [13] [14] for
more details. We note i ∈ {1, ..., 64} the position of this ONT on the PON.
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The Software Version SWV [i] alarm means that there is an incompati-
bility between the Image Operating System (IOS) of ONT [i] and those of
the OLT. The node ONTConfMis (ONT Configuration Mistake) denotes a
configuration error during ONT provisioning. The OLT transmitted power
TxOLT is regulated by the bias current IOLT . This leads to the local de-
pendency IOLT −→ TxOLT . The OLT received power RxOLT [i] from an
ONTi depends on the OLT voltage VOLT and the state of the feeder fiber
FiberT . The OLT received power of ONTi also depends on the state of the
drop fiber denoted by FiberDB[i] and the transmitted power of this ONTi
denoted by TxONT [i]. Note two local dependencies (FiberT −→ RxOLT ,
VOLT −→ RxOLT ) and two distributed dependencies (FiberDB −→ RxOLT ,
TxONT −→ RxOLT ). Note in Figure 5 that the distributed dependencies
are part of the edges of the layer 1 OLT, node which is a DAG as designed
in the generic model.

The Bit Interleaving Parity denoted by BIPus[i] depends on the Bit Er-
ror Rate BER of an upstream data transmission between an ONTi and OLT.
A poor upstream signal reception can cause bit errors, leading to the local
dependency RxOLT −→ BIPus. Upstream transmission bit errors impact
the quality of the signal received by OLT, which may raise some alarms re-
lated to signal quality like SD (Signal Degraded), SF (Signal Fail), LCDG
(Loss of GEM Channel Delineation) and MEM (Message Error Message).
See ITU-T G984.3 [13] recommendation for more details.

When the received power RxONT [i] of an ONTi is less than a preconfig-
ured minimum threshold, this ONT raises the (Level Low) LLO[i] alarm.
The (Level High) LHI[i] alarm is raised by ONTi when RxONT [i] is greater
than a preconfigured maximum threshold. For simplicity and because the
LEV ELLO alarm denoted by LLO and the LEV ELHI alarm denoted by
LHI can not be observed simultaneously, we have considered them to be
states of the layer 2 node called N2(LLO,LHi,+). The state denoted by +
means that there is no LLO or LHI alarm observed. The received power
RxONT [i] depends on voltage VONT [i], the state of drop fiber FiberDB[i], the
state of feeder fiber FiberT of the PON and the transmitted power TxOLT of
OLT. Note the local dependencies VONT −→ RxONT , FiberDB −→ RxONT
and the distributed dependencies TxOLT −→ RxONT , FiberT −→ RxONT .

Now, suppose we need to extend this model by adding another layer
1 node: a Residential Gateway RG node, for example (see Figure 6). An
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RG is a home network component that provides services to customers. It
is not a GPON-FTTH network component, but adding it to the model
will enable the model to correlate the faults and alarms of the GPON-
FTTH network with customer service malfunctions. For example, in Fig-
ure 5, we can make such a correlation with the distributed dependency
N1, N2, LOFds, LCDGds −→ IPConnect, where IPConnect denotes the
Internet access service provided by an RG. To add the layer 1 RG node,
we will need only to specify and quantify the uncertainties of its local de-
pendencies and distributed dependencies with the layer 1 ONT node, which
already exists in the model.

5.2 Parameters estimation of the GPON-FTTH network model

In the last subsection, we have showed how we can use skills about GPON-
FTTH network to design a fault propagation model of this network. Here,
we also show how these skills can be used to turn this model into a bayesian
network by approximatively determining the parameters of this model, i.e,
a probability distribution of each layer 2 node conditionally to its parents,
which aims to quantify uncertainties on dependencies. Obviously, it is more
pratice to adjust the parameters of a statistical model by applying machine
learning techniques from a dataset. But, our choice to use expert knowledge
about GPON-FTTH network, in order to find an estimation of parameters,
is motivated by the fact that machine learning algorithm for parameters
estimation of a bayesian network model is based on maximum likelihood
principle of the dataset. This algorihm requires an initial value of parame-
ters vector to perform estimation from incomplet dataset as it is often the
case for a telecommunication network dataset. This initial value should not
be aberrant, it must be quite realistic to hopefully avoid problems related
to local optimum of the likelihood of data. Therefore parameters approx-
imatively determined with GPON-FTTH network skills in this subsection,
so-called expert parameters can later serve as initialization point to an algo-
rithm such that EM (Expectation Maximization) [30] [31] which can there-
fore adjust them automatically from GPON-FTTH network data.

Consider a layer 2 node Xi of the GPON-FTTH model depicted by Fig-
ure 7. We note θi,j,k = P(Xi = k|pa(Xi) = j) the probability that the
variable Xi takes the value k when the combinaison of values taken by
its parents is j. We propose to approximatively determine the conditional
probability distribution θi = P(Xi|pa(Xi)), based on GPON-FTTH network
skills. The idea is not precisely to find proportions θi,j,k, but rather to
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develop a structured reasoning consistent with the behavior of the GPON-
FTTH network. We recall in the words of Glenn Shafer (a pioneer of the
theory of probability applied to artificial intelligence) that ”Probability is
not really about numbers; it is about the structure of reasoning”. For our
problem, we search two orders of magnitude. An order of magnitude be-
tween proportions of the vector θi,j,•, for all possible values of k, with the
constraints

∑
k θi,j,k = 1 and θi,j,k ∈ [0, 1]. An order of magnitude between

the probabilities of the vector θi,•,k, for all possible values of j. In order
words, we search an order of magnitude between elements of each lign and
an order of magnitude between elements of each column of the 2-dimensions
matrix θi = P(Xi|pa(Xi)). We illustrate with some examples below how
such magnitude orders can be determined based on GPON-FTTH network
skills.

The first exemple concerns the estimation of conditional probability dis-
tribution P(LOFus|O1,LCDGus). Table 2 represents this distribution. We
note +lof , the event of loss of data frame that is manisfested by the ob-
servation of LOF (Loss Of Frame) alarm. ¬lof is the complementary of
+lof event. On the upstream channel between OLT and one ONT, it is
more probable that the loss of a data frame (+lof) occurs when an error
of delineation of frames (+lcd, loss of gem channel delineation) transmitted
by this ONT occurs, than when OLT carry out frames delineation with-
out error (¬lcd). This technical knowledge about GPON-FTTH network is
represented by constraint 11 in which the event +e corresponds +lcd and
the complementary ¬e of +e corresponds to ¬lcd, (see Table 2). Numerical
values in this table are consistent with constraints 11, 12 and 13.

θ¬ep,q ≤ θ+ep,q for p = 1, q ∈ {1, 2, 3} (11)

Futhermore, since transmission errors rate is more important when SF
(Signal Fail) alarm is observed than when SD (Signal Degraded) alarm
is observed, then it is more likely that loss of frames occurs when signal
degradation level is high (SF ) than when it is medium (SD). We represent
this information by constraint 12.

θ+ep,q ≤ θ+ep,q+1

θ¬ep,q ≤ θ¬ep,q+1 for p = 1, q ∈ {1, 2}
(12)

Finally, we can say that it is more likely that a loss of frames occurs
on the upstream channel when its two potential causes occurred, i.e, the
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observation of a high or medium signal degradation via SFus alarm or SDus

alarm, and the observation of a frames delineation error via LCDGus, than
when only one of two potential causes occurred. So, we can also consider
the constraint 13 (see Table 2).

θ¬e1,2 ≤ θ+e1,3 and θ¬e1,3 ≤ θ+e1,2 (13)

Table 2: The 2-Dimensions matrix that represents the conditional probabil-
ity distribution P(LOFus|O1, LCDGus).

O1 LCDGus +lof ¬lof
+ θ+lcd1,1 ≈ 0.700 1− θ+lcd1,1

SD +lcd θ+lcd1,2 ≈ 0.800 1− θ+lcd1,2

SF θ+lcd1,3 ≈ 0.800 1− θ+lcd1,3

+ θ¬lcd1,1 ≈ 0.100 1− θ¬lcd1,1

SD ¬lcd θ¬lcd1,2 ≈ 0.700 1− θ¬lcd1,2

SF θ¬lcd1,3 ≈ 0.700 1− θ¬lcd1,3

The conditional probabilities of the distribution P(LOFus|O1, LCDGus)
must satisfy the three constraints formalized by inequations 11, 12 and
13. In other words, these three constraints formalize GPON-FTTH net-
works skills encoded in the distribution P(LOFus|O1, LCDGus). Table 2
gives an approximative value of each conditional probability consistent with
order of magnitude defined by these three constraints. The second ex-
emple concerns the estimation of the conditional probability distribution
P(LCDGus|BIPus,DOW). Table 3 shows how this distribution is approx-
imatively determined based on constraints 11, 12 and 13 on which event +e
corresponds to event +dow and the complementary ¬e of +e corresponds
to ¬dow. The first constraint expresses that, for any transmission errors
rate, it is more probable that an error of frames delineation occurs (+lcd
event) when a drift of slot transmission time is observed (+dow event), than
when it is not the case (¬dow event). The second constraint 12 formalizes
that, regardless of +dow event, the probability that an error of frames delin-
eation occurs, increases with transmission errors rate BIPus. According to
the third constraint 13, it is more likely that an error of frames delineation
occurs on the upstream channel when its two potential causes occurred, i.e,
the observation of a drift of windown alarm, and a high or medium trans-
mission errors rate, than when only one of two potential causes occurred.
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Table 3: The 2-Dimensions matrix that represents the conditional probabil-
ity distribution P(LCDGus|BIPus, DOW ).

BIPus DOW +lcd ¬lcd
+ θ+dow1,1 ≈ 0.100 1− θ+dow1,1

low +dow θ+dow1,2 ≈ 0.800 1− θ+dow1,2

high θ+dow1,3 ≈ 0.900 1− θ+dow1,3

+ θ¬dow1,1 ≈ 0.001 1− θ¬dow1,1

low ¬dow θ¬dow1,2 ≈ 0.700 1− θ¬dow1,2

high θ¬dow1,3 ≈ 0.700 1− θ¬dow1,3

A similar probabilistic reasoning to those developped in Tables 2, 3 and
constraints 11, 12 and 13 is used to approximatively determine the distribu-
tion of each variable of the GPON-FTTH network model depicted by Figure
7. These distritutions turn the directed acylic graph Gr defined by Equa-
tion 3 into a bayesian network (BN). Since the structure of the bayesian
network Gr is designed by skilled humans on GPON-FTTH network, Gr is
a causal bayesian network. Indeed, for humans, a simple and intelligible way
to represent causes and effects relationships describing fault propagation, is
a causal dependency graph. However if the structure had been learned by a
machine learnig algorithm from a data sample, arrow between two variables
will not necessarily express causality but rather correlation between them.

We have used this bayesian network (BN) model to perform self-diagnosis
of the GPON-FTTH network. In order to validate and assess performances
of self-diagnosis with the BN model, we have used two different approaches.
A first approach described in [9] was to set up a physical testbed with
a PON with two ONTs. Different faults were emulated, and alarms as
well as counters were collected. The diagnosis of the root cause of alarms
was performed with the BN approach. Seven usual fault scenarios were
considered. Diagnosis results were inspected manually in order to assess
their reliability. This demonstrated that self-diagnosis based on a BN model
was a reliable and promising approach. In a second phase, the BN model
is confronted with reality by carrying out self-diagnosis on an operating
GPON-FTTH network.
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5.3 Self-diagnosis results on an operating GPON-FTTH ac-
cess network

We present and analyze in this section the network fault diagnosis results
carried out by our application and implementation of the generic model to
perform self-diagnosis of a GPON-FTTH network. The experiments were
performed on an operating GPON-FTTH network on which we have con-
sidered different PONs. For each PON considered, we call the ONT being
tested, the first ONT of this PON, i.e., ONT1. The other ONTs connected
to this PON are called the neighbors of ONT1. We collected the alarms
raised by the operating PON network components, i.e., OLT and ONTs.
We also read, if available, the values of counters BIPus, BIPds and scalar
parameters RxOLT , RxONT , TxOLT , TxONT , voltages VOLT , VONT , bias cur-
rent IOLT , IONT , temperatures T cOLT , T

c
ONT of OLT and ONTs connected

to the considered PON.

A database of 10611 real diagnosis cases collected by Orange on a com-
mercial GPON-FTTH network in july-august 2015 was analysed. Two tools
are compared: PANDA, the self-diagnosis tool based on the BN approach de-
scribed in this paper, and DELC, a self-diagnosis tool based on deterministic
decision rules. DELC is currently used to diagnose faults in the operational
network. DELC is based on Drools, a business rules management system
solution developed by the JBoss community, that provides a core business
rules engine. We present and analyze quantified self-diagnosis results of a
GPON-FTTH network carried out separately by DELC rule-based expert
system and our probabilistic model-based tool PANDA. A 2-dimension con-
fusion matrix depicted by Table 4 is used to compare the results obtained
with each of the two methods.

In Table 4, each row of the confusion matrix is labelled by a diagnosis re-
sult obtained with the expert system. Each column is labelled by a diagnosis
result obtained with the probabilistic model-based approach. Although the
probabilistic model simultaneously carries out the diagnosis of all ONTs
connected to the PON being considered, we have limited the comparison
to the diagnosis of only one ONT . That is because the expert system out-
puts only the diagnosis of one ONT , namely the ONT under test, i.e., the
ONT named ONT1 in our PON model. The comparison is made on 10611
diagnosis cases. Observations of each case are collected from an operating
GPON-FTTH network. For each case, the expert system and the probabilis-
tic model separately perform a diagnosis based on the same observations.
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Table 4: A 2-dimension confusion matrix between the results of the rule-
based expert system and the probabilistic model-based system.
Root Causes 1 2 3 4 5 6 7 8 9

1 No Default 7210 183 39 17

2 Faulty ONT 3

3 Configuration Mistake 0

4 Attenuate drop fiber 72 18

5 Broken drop fiber 1463

6 Power Supply shutdown 2 780

7 Attenuate feeder fiber 0

8 Broken feeder fiber 1 57

9 Unknown root cause 716 4 19 27 0

In Table 4, bold numbers placed on the matrix diagonal represent cases
for which the expert system and the model have given the same diagnosis
result for ONT1 consistent with the results supervised by the oracle (GPON-
FTTH network engineers). For example, as expected by oracle analysis of
observations, we note 7210 cases, 3 cases, 72 cases, where the two methods
have respectively concluded that no default is identified on the PON, the
ONT under test is faulty and the drop fiber of this ONT is experiencing
attenuation. See Table 4. We focus our analysis on cases placed outside the
diagonal of the matrix, i.e, the cases for which diagnosis results of the two
methods do not converge.

There are 183 cases for which the expert system is unable to detect
a configuration mistake during ONT provisioning. The reason for this is
simply that there is not yet expert rule that handles this situation. Table 5
shows the diagnosis of the probabilistic model for this simple situation.

Table 5: The PON has forty ONTs. The NewONT [1] alarm is observed on
ONT1. Counters and scalar parameters of all ONTs are nominal.

Root causes States Beliefs

ONTConfiguration [OK,¬OK] [0.020, 0.980]

We note 39 cases for which the expert system returns no default while
the probabilistic model diagnoses that the drop fiber of ONT1 under test is
experiencing attenuation. In order to explain this difference, we looked very
closely at the observations collected for these cases. Either the upstream
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Table 6: The PON has forty ONTs. No alarm is observed. The upstream
received power of ONT1 is non-nominal, i.e. node RxOLT [1] has low value.
The downstream received power of ONT1 is not mesured, i.e, node RxONT [1]
is missing. Counters and scalar parameters of neighboring ONTs are nomi-
nal.

Root causes States Beliefs

FiberDB1 [OK,AT, BR] [1.e-03, 0.93, 5.e-02]

FiberDBi6=1
[OK, AT,BR] [0.92, 8.e-02, 2.e-06]

FiberT [OK, AT,BR] [0.99, 2.e-09, 1.e-48]

received power or the dowstream received power of ONT1 is low, and other
is missing while the power levels of its neighbors are nominal. The expert
rules do not clearly describe this situation, while the model does so naturally.
Indeed, expert rule needs both upstream and downstream received powers to
diagnose the state of the optical link, while probabilistic model is capable to
deals with missing of one received power level since it make a global analysis
of the PON. An instance of this case is described by Table 6. Note in Table
6 that the feeder fiber noted FiberT does not attenuate since power levels of
neighbors of ONT1 are nominal. Note that when power levels of neighbors
are also low, the probabilistic model understands that it is the feeder fiber
of the PON shared by all ONTs which is experiencing attenuation (see
Table 7). This last situation is encountered in 17 cases for which the expert
system does not detect any fault. This situation also explains the 18 cases
for which the expert system returns that the drop fiber is attenuating (when
both RxOLT [1] and RxONT [1] are lows) while the model says us that it is
rather the feeder fiber which is experiencing attenuation.

Table 7: The PON has forty ONTs. No alarm is observed. The upstream
received power of ONT1 is non-nominal, i.e. node RxOLT [1] has low value.
The downstream received power of ONT1 is not mesured, i.e, node RxONT [1]
is missing. Received power levels of neighboring ONTs are non-nominal.

Root causes States Beliefs

FiberDBi [OK, AT,BR] [0.62, 0.37, 2.e-06]

FiberT [OK,AT, BR] [2.e-02, 0.97, 9.e-06]

There are 780 cases for which both the expert system and the probabilis-
tic model diagnose that the power supply of ONT1 is down or faulty. See
Table 8. Table 9 shows that the most probable values of missing counters
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and scalar parameters of the ONT in question, computed by the probabilis-
tic model, enforce the belief that the power supply of this ONT is shut down
or defective. The most probable state of the bias current of this ONT is
I0, i.e., a null bias current. The voltage is null with a belief of 0.95. The
transmitted and received powers of this ONT have very low values, with a
belief of 0.99.

Table 8: The PON has twenty ONTs. DG alarm is observed on ONT1, i.e.,
node DG[1] takes value 1. Counters and scalar parameters of ONT1 are
missing. Counters and scalar parameters of neighboring ONTs are nominal.

Root causes States Beliefs

AltONT1 [OK,¬OK] [0.001, 0.999]

AltONTi6=1
[OK,¬OK] [0.999, 0.001]

Table 9: The most probable states of missing observations useful to detecting
shutdown or defective power supply in table 8.

Root causes States Beliefs

IONT1 [I0, I1] [0.95, 0.05]

VONT1 [V0, V1] [0.98, 0.02]

RxOLT1 [Rx0, Rxl, Rxn] [ 0.99, 2.e-03, 1.e-03]

RxONT1 [Rx0, Rxl, Rxn] [ 0.99, 4.e-03, 4.e-03]

TxONT1 [Tx0, Txl, Txn] [ 0.99, 3.e-02, 3.e-03]

Confusion matrix depicted by Table 4 also shows 2 cases for which the
model returns no default, while expert system said that power supply is
down. This difference is due to the fact that the expert rule concludes that
the power is down when the DG[1] alarm is observed. This narrow rule
does not consider the situation where the DG[1] alarm is observed but the
counters and scalars of ONT1 are still available and nominal. The model
clearly understands this situation and deduces that power supply of ONT1
is not down but it is going to be shut down, i.e., there is no default at this
time. See Table 10.

The most significant cases for which the probabilistic model clearly out-
performs the rule-based expert system are the cases for which the expert
system has trouble computing the diagnosis due to missing observations
or unforeseen situations, i.e., the situations not yet covered by the existing
rules. For each of these cases the expert system returns unknown root cause,
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Table 10: The PON has twenty ONTs. DG[1] alarm is observed on ONT1.
Counters and scalar parameters of ONT1 are nominal. Counters and scalar
parameters of neighboring ONTs are nominal.

Root causes States Beliefs

AltONT1 [OK,¬OK] [0.910, 0.090]

AltONTi6=1
[OK,¬OK] [0.999, 0.001]

i.e., it is not able to output any conclusion, while the probabilistic model
naturally computes the most probable diagnosis based on available observa-
tions even if some of them are missing.

There are 716+4+19+27 cases for which the expert system fails because
observations are not sufficient to run its rules, while the model uses the few
available observations in order to complete the observations by infering the
most probable states of useful missing observations. The diagnosis is then
computed based on completed observations. For example, there are 19 cases
for which the expert system fails to compute the diagnosis based on the ob-
servation of the LEV ELLO[1] alarm with missing received power levels of
ONT1. For each of these cases, the probabilistic model infers that the most
probable values of these received powers are very low, i.e, Rx0 in Table 12,
and deduces that the most probable explanation of the LEV ELLO[1] alarm
is the drop fiber attenuation of ONT1. See Table 11. We also note among
these cases, 716 cases for which the expert system fails while the probabilis-
tic model returns no default. This result may seem trivial, however it has a
capital interest for a telecommunication operator. Indeed, this result indi-
cates a nominal operation of the GPON-FTTH infrastructure and allows to
deduce that the fault is certainly in the home network of the complaining
subscriber. Therefore, this result allows operator to avoid triggering use-
less interventions on GPON-FTTH infrastructure, but rather to intervene
eventually on the home network of the subscriber. So, this result allows to
reduce the number of technical interventions and save time and money to
customer service of the operator.

Self-diagnostic results of the probabilistic model are more consistent with
the behaviour of the GPON-FTTH access network, and more reasonable on
a representative sample of cases, than the rule-based expert system. Note
for example that for 7% of cases, the expert system fails, while the prob-
abilistic model correctly computes a diagnosis. The principal explanation
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Table 11: The PON has forty ONTs. The LEVELLO alarm is observed
on ONT1, i.e., N2[1] = LLO. Upstream and downstream received power of
ONT1 are missing. Counters and scalar parameters of neighboring ONTs
are nominal.

Root causes States Beliefs

FiberDB1 [OK,AT, BR] [5.e-02, 0.94, 1.e-06]

FiberDBi 6=1
[OK, AT,BR] [0.91, 8.e-02, 1.e-06]

FiberT [OK,AT, BR] [0.99, 2.e-021, 5.e-105]

Table 12: The most probable levels of missing received powers useful in
detecting feeder fiber attenuation in table 11.

Nodes States Beliefs

RxOLT1 [Rx0, Rxl, Rxn] [ 0.88, 0.10, 0.02]

RxONT1 [Rx0, Rxl, Rxn] [ 0.82, 0.17, 0.01]

of these differences is that the probabilistic model has a wide scope of rea-
soning that allows it to make global or generalized intelligent analyses of
situations. Doing so, the model covers unforeseen situations encountered
by the rule-based expert system, which reasons case-by-case. Therefore the
rule-based expert system lacks generalized reasoning capabilities.

Note that in tables above, the numbered root causes correspond to the
final diagnosis decision. It is a podium of the most problable root causes
that explains observations. This final diagnosis decision is computed from
beliefs or posterior probabilities of all root causes of the GPON-FTTH model
depicted in Figure 7. Beliefs of root causes are computed by the well-known
algorithm of evidence propagation on the junction tree. To compute the fi-
nal diagnostic decision from root cause beliefs, we proceed in two steps. We
start the algorithm by finding the set R0 of root causes whose the beliefs
are not equally probable. This step aims to discard hypotheses for which
the model has trouble selecting the most probable state. In the next step,
from R0, we find the set R of negative hypotheses, i.e., the set of root causes
for which the most probable states are negative states. The order of the
set R gives us a podium of the most probable root causes identified by the
probabilistic model.

In summary we have shown that the Bayesian network model designed
in this paper, even with parameters manually and roughly determined by

30



skilled humans on GPON-FTTH network, gives very satisfying self-diagnosis
results of an operating GPON-FTTH network. Nevertheless, we think that
we can improve these self-diagnosis results if the parameters, i.e. the con-
ditional probability distributions of the GPON-FTTH network model are
fine-tuned by a machine learning algorithm from tremendous amount of
data generated by the components of this network. The next section studies
EM (Expectation Maximization [30] [32], an algorithm for parameters esti-
mation of a statistical model based on maximum likelihood of the learning
dataset.

6 Maximum Likelihood Estimation from incom-
plete dataset with EM algorithm

Maximum Likelihood Estimation (MLE) can be apply to perform param-
eters estimation of a statistical model based on a complete or incomplete
dataset. Our interest is focused on the case for which dataset is incomplete
since real dataset generated by an operating telecommunication network is
almost always incomplete. So we focus the study of MLE on EM algorithm
[30] [31] which is capable to deals with missing data. However basic concepts
on MLE from complete data is detailled in [33] with a particular study of
the case of bayesian network model.

6.1 Incomplete dataset

In statistics, missing data occur when no data value is stored for some vari-
ables in an observation. This can occur because measurements are not
performed properly or because some variables are not reported. In BN some
nodes are observations/measurements whereas other nodes are hypotheses
or latent variables. Latent variables (as well as hypotheses) are not directly
observed but rather inferred from measurements. BN is consequently a set-
ting in which incomplete data occur.

MLE from incomplete data is not straightforward. Indeed most of the
time it is not possible to compute the value of the likelihood of the dataset
with incomplete data. Indeed let us assume that X is the vector of ob-
served data (or measurements) and Y is a vector of missing data (or latent
variables). Computing the joint likelihood P(X,Y ) of the complete data
(X,Y ) is supposed to be straightforward under the considered model. As
Y is not measured it is unfortunately not possible to tune the parameters

31



of the model by maximizing P(X,Y ; θ) with respect to θ. Rather, the like-
lihood of observed data P(X; θ) should be maximized with respect to θ.
But the computation of P(X; θ) is most of the time not tractable. Indeed
P(X; θ) =

∑
Y P(X,Y ; θ) and the number of terms in the sum

∑
Y is huge

since this the product of the number of states of each component of the vector
Y . The complexity grows exponentially fast with the number of components
in Y (e.g. number of nodes that represent a latent variable in the BN). As
the likelihood of the observed data P(X; θ) is not computationally tractable
it is even more an issue to maximize P(X; θ) with respect to θ.

6.2 The Expectation Maximization (EM) algorithm

The problem of MLE from incomplete data can be solved with the EM
algorithm [30]. As explained above computing the log-likelihood logP(X; θ)
of the observed data is not possible, whereas computing the log-likelihood of
the complete data logP(X,Y ; θ) would be possible if only Y was not missing.
It would then be possible to maximize logP(X,Y ; θ) with respect to θ. As
Y is missing, rather than maximizing logP(X,Y ; θ) with respect to θ, the
EM algorithm attempts to maximize iteratively the expected value of the
log-likelihood of the complete data. Let us introduce Q(θ, θ

′
) as follows:

Q(θ, θ
′
) = E(L(X,Y ; θ)|X; θ

′
) (14)

In the equation above E(•|X; θ
′
) stands for the expected value under the

probability distribution of the missing data Y conditionally to the measure-
ments X (for the value θ

′
of the model parameters set). EM is an iterative

algorithm. At each iteration Q(θ, θr) = E(L(X,Y ; θ)|X; θr) is maximized
with respect to the first parameter θ, that is to say:

θr+1 = Argmax
θ
Q(θ, θr) (15)

Each iteration is decomposed into two steps: the expectation step (E
step), and the maximization step (M step). The E step computes the prob-
ability distribution of missing data Y conditionally to the measurements X
under the model with parameter θr (i.e. the current value of the parameter
estimate). In practice this comes down to computing some statistics that
summarize this conditional probability distribution, as it is explained in the
particular case of the Bayesian network model in [33]. The E step is the
most demanding step in the EM algorithm.
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In the M step the function Q(θ, θr) is maximized with respect to the
first parameter θ so that an updated value θr+1 of the parameter estimate is
obtained. Very often there exists a closed-form solution of this maximization
problem so that the problem is simple to solve.

As stated before the EM algorithm is an iterative algorithm. It must
be initialized with a value θ0. At each iteration the parameter estimate is
updated as follows: at iteration 1, θ1 = ArgmaxθQ(θ, θ0), then at iteration
2 θ2 = ArgmaxθQ(θ, θ1) and so on until the algorithm converges to a stable
value of θ. It has been proven that each iteration of EM increases the log-
likelihood of measurement data, that is to say:

L(x; θr+1) ≥ L(x; θr). (16)

As a consequence θr converges to a maximum of the log-likelihood L(X; θ)
of measurement data (or a saddle point). It is important to note that this
maximum can be a local (but not necessarily global) maximum. In practice
this means that the initial value θ0 must be selected with care in order to
avoid problems of convergenge to local (but not global) maximum.

The EM algorithm has been adapted to the particular case of bayesian
networks [31]. We have performed a detailled study of EM algorithm for BN
model in [33]. So, we focus in this paper to show how EM can be apply to
fine-tune the parameters roughly determined of our bayesian network model
of the GPON-FTTH network for self-diagnosis purposes.

7 Application of EM Algorithm to GPON-FTTH
access network

We recall that the reason for which we use EM is that, dataset generated
by the components of GPON-FTTH network is not complete, i.e, there are
some missing facts. Moreover, we strongly think that, these data, even
incomplete, contain relevant knowledge about fault propagation in GPON-
FTTH network, that even a proven skilled human on this network does not
guess.

7.1 GPON-FTTH network data

The GPON-FTTH network data contain alarms, transmitted and received
power of network components, transmission error counters, currents, volt-
ages, temperatures and so on. The dataset corresponds to two months of
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measurement on a commercial PON of the Orange FTTH access provider
in july-august 2015. It contains 10611 diagnosis cases. A diagnosis case is
a combination of value of states or values taken by some variables of the
GPON-FTTH model depicted by Figure 7. In pratice, there is always some
situations where the network management system fails to get some values
from some network components. These situations may be due for example
to the filtering policy of network data applied by the network operator, or
due to the communication loss between the network management system
and one or many network components or due to some older devices that
may not generate some facts. These situations lead to missing variables.
That is why we have used the EM algorithm in order to automatically fine
tune the expert parameters of the GPON-FTTH network model. We have
divided the dataset into two subsets. The first subset corresponds to 5121
real diagnosis cases collected by Orange on a commercial GPON-FTTH net-
work in july 2015 and the second subset corresponds to 5490 real diagnosis
cases collected in august 2015. The first subset is the training dataset used
to learn the parameters of the BN model with the EM algorithm. The sec-
ond subset is the test dataset that we use to assess the performance of fault
localization with the fine tuned BN model.

As explained in section 6, the EM algorithm is initialized with a value
θ0 of the parameters vector. In our case θ0 has been determined from oper-
ational expertise in diagnosing GPON-FTTH networks, i.e, θ0 is the value
of parameters vector roughly determined in Section 5.

7.2 Results of the application of EM algorithm for parame-
ters learning of the GPON-FTTH network model

In this section, we assess the benefits of fine tuning the parameters by the
EM, with respect to a diagnosis based on a BN which parameters have been
set by an expert. For doing so we compare the diagnosis results of PANDA
over 5490 experimental cases in two situations: the model parameters have
been set by an expert, or they have been moreover fine tuned with an EM
by mining the training dataset.

Figure 8 displays the evolution along the first iterations of the EM al-
gorithm of the log-likelihood value of the 5121 real diagnosis cases collected
by Orange in july 2015 on an operational GPON-FTTH network. As stated
by Equation 16 one can observe on Figure 8 that the log-likelihood of mea-
surement data increases at each iteration of the EM algorithm. The log-
likelihood stabilizes at a maximum value after 7 or 8 iterations, and the
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Figure 8: The Evolution of the Loglikelihood of network data with iterations

algorithm then converges. From a practical point of view it is important
to mention that we have encountered a few numerical problems with real
measurement data. These problems appear when data do not perfectly fit
to the theoretical model (which bounds to happen when one deals with real
data), for example if the dataset contains outliers [33].

7.3 Diagnosis results of the probabilistic model with opti-
mized parameters by EM algorithm

At that point we had two models: the expert probabilistic model with pa-
rameters roughly determined by a skilled human on GPON-FTTH network,
and the model with parameters learned by EM, so-called learned model.
We have performed the diagnosis on the same cases separately with the two
models. Table 13 shows a 2-dimensions confusion matrix which compares
self-diagnosis results of the two models. The rows and columns of this matrix
respectively represent self-diagnosis carried out with the expert model and
with the learned model. Fine tuning the parameters of the model changed
the diagnosis results in 185 cases out of the 5490 cases. This means that the
order of magnitude of the parameters had been evaluated correctly by the
expert. However it is interesting to analyze into more details cases where the
diagnosis was different with a finely tuned BN, i.e. the cases corresponding
to non-zero values outside the diagonal of the confusion matrix. For exam-
ple Table from 14 and 15 compare the two models for two instances of those
cases. The title of each of these tables is a short description of observations
collected on the operating GPON-FTTH network for the considered case.
Note that the comparison of the two models for each instance of those cases
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is done in [33].

Table 13: 2-Dimensions Confusion Matrix of self-diagnosis results between
the two models.
Root causes 1 2 3 4 5 6 7 8 9

1 No Default 4030 7 6 9

2 Configuration Mistake 183

3 Faulty ONT 0

4 ONT power supply 402

5 Drop fiber attenuated 56

6 Drop fiber broken 14 602 1

7 Feeder fiber attenuated 148 32

8 Feeder fiber broken 0

9 Unknown root cause 0

Table 14 shows that, on a PON of forty ONTs, when the upstream
received power of an ONT denoted by ONT1 is low while the downstream
received power of ONT1 is nominal, the expert model does not detect any
fault. This is a wrong diagnosis carried out by the expert model since the
upstream optical channel between the OLT and ONT1 is experiencing at-
tenuation. On the other hand, the learned model computes the appropriate
diagnosis, i.e. attenuation of the drop fiber FiberDB1 of ONT1. Note that
OK, AT and BR denote a fiber which does not attenuate, which attenuates
or a broken fiber. This situation appears in 6 cases in the test dataset.

Table 14: PON with forty ONTs. No alarm on the PON. Upstream received
power RxOLT [1] of ONT1 is low. Downstream received power RxONT [1]
of ONT1 is nominal. Received powers of neighbor ONTs are nominal.

Model Root causes States Beliefs

Expert FiberDB1 [OK, AT,BR] [0.9, 8.e-02, 3.e-06]
FiberDBi 6=1

[OK, AT,BR] [0.9, 8.e-02, 3.e-06]

Learned FiberDB1 [OK,AT, BR] [9.e-02, 0.9, 2.e-06]
FiberDBi 6=1

[OK, AT,BR] [0.9, 8.e-02, 3.e-06]

Table 15 shows a case for which the received power levels of ONT1 are
nominal while those of neighbors of ONT1 are low. In this situation the
expert model diagnoses that the drop fiber of each neighbor of ONT1 ex-
periences attenuation. Doing so, the expert model assumes that when the
received power levels of at least one ONT on the PON are nominal, then
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the feeder fiber (denoted by FiberT ) shared by all ONTs connected on the
PON cannot experience attenuation although the received power levels of
other ONTs are low. This reasoning is not always true since for this di-
agnosis case it is the feeder fiber that attenuates. But this attenuation has
not affected ONT1 since its received power levels were very high before the
beginning of the feeder fiber attenuation. On the other hand, the received
power levels of neighbors of ONT1 were nominal but very close to the lower
bound of the range of nominal power values. We have observed 9 occurences
of this case.

Table 15: The PON has forty ONTs. No alarm is observed on the PON.
The upstream and downstream received powers RxOLT [1] and RxONT [1]
of ONT1 are nominal. The received powers of neighbors of ONT1, i.e.,
RxOLT [i] and RxONT [i] for i ∈ {2, ..., 40} are low.

Model Root causes States Beliefs

Expert FiberDB1 [OK, AT,BR] [0.9, 8.e-02, 3.e-06]
FiberDBi 6=1

[OK,AT, BR] [8.e-02, 0.9, 3.e-06]

FiberDB1 [OK,AT,BR] [0.9, 9.e-02, 2.e-06]
Learned FiberT [OK,AT, BR] [5.e-03, 0.99, 5.e-39]

FiberDBi 6=1
[OK, AT,BR] [0.68, 0.31 , 0.001]

Tables 13, 14 and 15 show that the learned model reasonably improves
self-diagnosis on GPON-FTTH network, previously carried out by the ex-
pert probabilistic model, and Table 4 shows that expert probabilistic model
outperforms the rule-based expert system.

8 Conclusion

We have presented in this paper a comparative study between rule-based
expert systems and probabilistic model-based approaches for self-diagnosis
of telecommunication networks. The study shows why and how probabilis-
tic reasoning improves self-diagnosis of telecommunication networks com-
pared to rule-based expert systems. We have presented self-diagnosis re-
sults obtained with our designed probabilistic model of the GPON-FTTH
access network, as well as the results of the comparative study to this net-
work. A 2-dimension confusion matrix shows that the probabilistic model-
based method outperforms the rule-based expert system for carrying out
self-diagnosis of a large-scale operating GPON-FTTH access network. Nev-
ertheless, we noticed that the probabilistic model-based method can be used
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to complete and improve rules of the expert system. But why make the
choice to do so? Indeed, a probabilistic GPON-FTTH network model al-
ready embeds powerful computational capabilities useful in performing effi-
cient self-diagnosis on this network.

With the main goal to improve performances of the GPON-FTTH proba-
bilistic model, we have studied and applied EM (Expectation Maximization)
algorihm in order to automatically fine-tune parameters of this model manu-
ally and approximatively determined from GPON-FTTH network skills. As
expected, the new probabilistic model with optimized parameters improves
self-diagnosis comparatively to the previous probabilistic model. Note that
the use of EM in this way may be very interesting for telecommunication
operators. For example, a practical application of this work could be to im-
plement a fully autonomous self-diagnostic system in which a closed loop is
created between the probabilistic self-diagnosis model integrating machine
learning capabilities, diagnostic results leading to interventions on network
infrastructure and data reported by the technicians of interventions that
will be used to automatically adjust the probabilistic model to make it more
efficient. However, the reliability of these data must be guaranteed to avoid
doing rather derive the model instead of improving it.

An interesting perspective of this work would to automatically fully ad-
just the entire expert probabilistic model (dependencies and parameters)
with the aim to further improve diagnostic results. An algorithm such as
SEM (Structural EM) could be applied in this case. We also plan to refine
and upgrade the probabilistic model in order to consider GPON network
evolutions like xGPON, NG-PON (Next Generation PON) and NG-PON-2.

References

[1] M Steinder and A S Sethi. A survey of fault localization techniques
in computer networks. Science of Computer Programming, 53:165–194,
January 2004.

[2] Carol Hounkonnou. Active self-diagnosis in telecommunication net-
works. PhD Thesis, European University of Brittany, University of
Rennes 1, INRIA, ISTIC, France, 2013.

[3] L F Pau. Survey of expert systems for fault detection, test generation
and maintenance. Expert Systems, 3:100–110, April 1986.

38



[4] W T Scherer and C C White. Knowledge-Based System Diagnosis,
Supervision, and Control. Chapter 16: A survey of expert systems for
equipment maintenance and diagnostics. Springer US, 1989.

[5] R D Gardner and D A Harle. Alarm correlation and network fault
resolution using the Kohonen self-organising map. Global Telecommu-
nications Conference (GLOBECOM 1997), pages 1398–1402, 1997.

[6] R J Patton, J Chen, and T M Siew. Fault diagnosis in nonlinear dy-
namic systems via neural networks. International Conference on Con-
trol, 2:1346–1351, 1994.

[7] A Goel, J Ramanujam, and P Sadayappan. Towards a ’neural’ architec-
ture for abductive reasoning. IEEE International Conference on Neural
Networks, pages 681–688, 1998.

[8] Lundy Lewis. A case-based reasoning approach to the resolution of
faults in communication networks. In Proceedings of the third interna-
tional symposium on Integrated network management, pages 671–682,
1993.

[9] Serge Romaric Tembo, Jean Luc Courant, and Sandrine Vaton. A
3-layered self-reconfigurable generic model for self-diagnosis of telecom-
munication networks. IEEE SAI International Conference on Intelli-
gent Systems, INTELLISYS, London, 2015.
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Stéphane Gosselin joined the R & D of France Tele-
com in 1993. He is currently in charge of a research
project on network operations and management in
Orange Labs in Lannion, France, and is the technical
leader of European project COMBO. He authored or
co-authored about 70 papers or communications.

42



Michel Beuvelot is an MBA and Engineer gradu-
ate. His carrer started in France Telecom, pursued
in Corvis, a telecommunication systems supplier and
later in the Open Group where he lead applications
development teams. He now serves again Orange in
its Innovation Marketing and Technologies division,
as an R & D team manager.

43


