Metric gradient flows with state dependent functionals: the Nash-MFG equilibrium flows and their numerical schemes - Archive ouverte HAL
Article Dans Une Revue Nonlinear Analysis: Theory, Methods and Applications Année : 2017

Metric gradient flows with state dependent functionals: the Nash-MFG equilibrium flows and their numerical schemes

Résumé

We investigate the convergence of a relaxed version of the best reply numerical schemes (also known as best response or fictitious play) used to find Nash-mean field games equilibriums. This leads us to consider evolution equations in metric spaces similar to gradient flows except that the functional to be differentiated depends on the current point; these are called equilibrium flows. We give two definitions of solutions and prove that as the time step tends to zero the interpolated (`a la de Giorgi) numerical curves converge to equilibrium flows. As a by-product we obtain a sufficient condition for the uniqueness of a mean field games equilibrium. We close with applications to congestion and vaccination mean field games.
Fichier principal
Vignette du fichier
equilibrium_flows_metric_spaces_turinici_final_nonlin_analysis2017.pdf (390.08 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01528480 , version 1 (29-05-2017)
hal-01528480 , version 2 (07-10-2017)

Identifiants

Citer

Gabriel Turinici. Metric gradient flows with state dependent functionals: the Nash-MFG equilibrium flows and their numerical schemes. Nonlinear Analysis: Theory, Methods and Applications, 2017, 165 (December 2017), pp.163-181. ⟨10.1016/j.na.2017.10.002⟩. ⟨hal-01528480v2⟩
251 Consultations
370 Téléchargements

Altmetric

Partager

More