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Introduction

Let X be a a Polish geodesic metric space (see [START_REF] Burago | A course in metric geometry[END_REF] for an introduction to metric spaces) and C(•, •) : X × X → R a functional. We investigate in this work the equation:

∂ t x t + ∇ 1 C(x t , x t ) = 0, x 0 = x. ( 1 
)
1 Such an equation is called an equilibrium flow or partial flow for reasons that will be made clear in the sequel. Discrete (numerically computable) versions of this evolution equation are the numerical schemes defined by the recurrence:

x τ 0 = x, x τ k+1 ∈ argmin y∈X d(y, x τ k ) 2 2τ + C(y, x τ k ), k ≥ 0. (2) 
These numerical schemes are relaxed versions of the best reply / best response / fictitious play algorithms (see [START_REF] Blanchet | Remarks on existence and uniqueness of cournot-nash equilibria in the non-potential case[END_REF]); the original schemes take sometimes τ = ∞ i.e., omit the first term in [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF].

Our goal is to give a rigorous definition of the concept of solution of (1) and show that the numerical schemes (2) converges, when τ → 0, to a solution of [START_REF] Ambrosio | Modelling and Optimisation of Flows on Networks: Cetraro, Italy[END_REF]. Finally we give examples that show that the equilibrium flows can be successfully used in the study of mean field games equilibriums.

The present work provides thus a rigorous treatment of a two-argument (partial) gradient flow distinct from previous, time-dependent approaches; this allows to obtain the convergence of the "best reply" numerical schemes (2) but also novel uniqueness results for MFGs.

These results are not available with previous techniques from [START_REF] Ambrosio | Modelling and Optimisation of Flows on Networks: Cetraro, Italy[END_REF][START_REF] Lucas | Gradient flows of time-dependent functionals in metric spaces and applications to pdes[END_REF][START_REF] Kopfer | Gradient flow for the Boltzmann entropy and Cheeger's energy on time-dependent metric measure spaces[END_REF][START_REF] Lucas | Gradient flows of time-dependent functionals in metric spaces and applications to pdes[END_REF][START_REF] Rossi | A metric approach to a class of doubly nonlinear evolution equations and applications[END_REF][START_REF] Mielke | Variational convergence of gradient flows and rate-independent evolutions in metric spaces[END_REF][START_REF] Mielke | Nonsmooth analysis of doubly nonlinear evolution equations[END_REF]), see remark 5 after the proof of theorem 1; in order to succeed, we introduce a new index Υ dependent of the trajectory (see definition [START_REF] De | New problems on minimizing movements[END_REF] and formalize its expected properties in assumptions (A 7 ) and (A 8 ), which we prove to be compatible with many different MFG applications (see sections 3.1 to 3.4 and their application-dependent metric spaces that fulfill assumptions (A 7 ) and (A 8 )); the manipulation of the index Υ requires to obtain some upper bounds (see the proof of theorem 1, one of our main results); finally we are able to obtain estimates of the partial flow divergence by making use of the hypothesis (A 8 ).

Motivation and literature review

The equilibrium in non-cooperative multi-player games are often formulated as mixed strategy Nash equilibriums (see [START_REF] Nash | Non-cooperative games[END_REF]). The computation of such equilibriums and the procedure for players to reach them has been the object of many contributions and give rise to several proposals e.g., replicator dynamics and fictitious play / best reply / best response dynamics, see [START_REF] Fudenberg | The theory of learning in games[END_REF] for details.

The relatively recent introduction of the mean field games (abbreviated from now on as MFG) by Lasry and Lions [START_REF] Lasry | Jeux à champ moyen. II: Horizon fini et contrôle optimal[END_REF][START_REF] Lasry | Jeux à champ moyen. I: Le cas stationnaire[END_REF][START_REF] Lasry | Mean field games[END_REF] and conjointly by Huang, Malhamé and Caines [START_REF] Huang | Large population stochastic dynamic games: closed-loop mckean-vlasov systems and the Nash certainty equivalence principle[END_REF][START_REF] Huang | Nash equilibria for large-population linear stochastic systems of weakly coupled agents[END_REF] (see also [START_REF] Louis | Cours at Collège de France: Théorie des jeux de champ moyen et applications[END_REF][START_REF] Cardaliaguet | Notes on Mean Field Games[END_REF][START_REF] Benoussan | Mean Field Games and Mean Field Type Control Theory[END_REF][START_REF] Diogo | Regularity theory for mean-field game systems[END_REF][START_REF] Cardaliaguet | Second order mean field games with degenerate diffusion and local coupling[END_REF][START_REF] Cardaliaguet | Mean field games systems of first order[END_REF][START_REF] Diogo | Timedependent mean-field games in the superquadratic case[END_REF][START_REF] Diogo | Time-dependent mean-field games in the subquadratic case[END_REF][START_REF] Porretta | Weak solutions to Fokker-Planck equations and mean field games[END_REF][START_REF] Porretta | On the planning problem for the mean field games system[END_REF][START_REF] Carmona | Probabilistic Theory of Mean Field Games with Applications I-II[END_REF] for entry points to the literature) allow to extend this concept to games with an infinite number of players. In this context the players are considered similar (or decomposed in several classes, each with an infinite number of individuals) and an equilibrium is attained when all agents in a class use same mixed strategy, which is optimal in the Nash sense. Mixed strategies are probability measures over the state of pure strategies and thus form a metric space (we will come back later to the topological description of that space); in order to gain in generality we will suppose from now on that the space of all mixed strategies is metrizable and will be denoted X . The cost of the individual strategy x depends on the choice of everybody else's strategy y ∈ X and is encoded through the cost function C(x, y). A MFG equilibrium is thus a point x ∈ X such that C(x, x) ≤ C(z, x), ∀z ∈ X .

(

) 3 
In this context, the relaxed best reply algorithm, which corresponds to (2) has been proposed and tested (see e.g., [START_REF] Blanchet | Remarks on existence and uniqueness of cournot-nash equilibria in the non-potential case[END_REF][START_REF] Blanchet | From Nash to Cournot-Nash equilibria via the Monge-Kantorovich problem[END_REF]) with successful results. However only very few works concern the behavior of solutions for τ → 0 in the general framework of metric spaces or the meaning to be given to the limit equation [START_REF] Ambrosio | Modelling and Optimisation of Flows on Networks: Cetraro, Italy[END_REF].

Note that when C is independent of the second argument, i.e.,

C(x, y) = E(x), (4) 
the relation (2) becomes the celebrated implicit Euler-type scheme of Jordan, Kinderlehrer and Otto [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF] for the definition of gradient flows in metric spaces

∂ t y t + ∇E(y t ) = 0, y 0 = ȳ, (5) 
and received considerable attention (see [START_REF] Villani | Optimal transport. Old and new[END_REF][START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF][START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF] for instance). However, the situation when E has dependence on other variables has not been treated to the same extent and the related contributions involve gradient flows of time dependent functionals E(t, u) with a known dependence on time (see [START_REF] Kopfer | Gradient flow for the Boltzmann entropy and Cheeger's energy on time-dependent metric measure spaces[END_REF][START_REF] Lucas | Gradient flows of time-dependent functionals in metric spaces and applications to pdes[END_REF][START_REF] Rossi | A metric approach to a class of doubly nonlinear evolution equations and applications[END_REF][START_REF] Mielke | Variational convergence of gradient flows and rate-independent evolutions in metric spaces[END_REF][START_REF] Mielke | Nonsmooth analysis of doubly nonlinear evolution equations[END_REF]). Of course, formally one can set

E(t, u) = C(u, x t ). ( 6 
)
However the cited papers use implicit (in time) optimization

y τ 0 = x, y τ k+1 ∈ argmin y∈X d(y, y τ k ) 2 2τ + E((k + 1)τ, y τ k ), k ≥ 0, (7) 
which are not equivalent to the numerical scheme (2) because ( 7) is fully implicit while the (relaxed) best-reply scheme is semi-explicit. Furthermore, technical assumptions invoked in previous works assume that the timedependence of E(t, u) is smooth (e.g., in [42, assumption (2.19c) page 109])

or that its differentiability points have additional properties (for instance independent of x in [17, assumption E3.1], [29, assumption A4]) while here the mere absolute continuity of t → x t does not allow to fulfill a priori such assumptions. Nevertheless our contribution ows much to all these previous works which it translates to this specific setting.

2 Theoretical results

Basic reminders and motivation

The absence of a vector operations in a metric space does no allow to develop fully a differential calculus and requires adaptation of notions of derivative. Accordingly the definition of evolution equations have to use alternative properties.

We recall below the main ideas of such an alternative formulation (see [START_REF] Ambrosio | Modelling and Optimisation of Flows on Networks: Cetraro, Italy[END_REF]) for the particular case (4)-( 5); suppose for a moment than X is an Euclidian space and E a smooth (C 1 or above) function; then:

d dt E(x t ) = ∇E(x t ), x t ≥ -|∇E(x t )| • |x t | ≥ - 1 2 |x t | 2 - 1 2 |∇E| 2 (x t ),
or equivalently,

d dt E(x t ) + 1 2 |x t | 2 + 1 2 |∇E| 2 (x t ) ≥ 0 ∀t, (8) 
with equality only if x is solution of [START_REF] Bauch | Group interest versus self-interest in smallpox vaccination policy[END_REF]. Therefore asking that

d dt E(x t ) + 1 2 |x t | 2 + 1 2 |∇E| 2 (x t ) ≤ 0 ∀t, (9) 
is an equivalent characterization of (5) (more preciselly called the EDI formulation). The integral form can also be used:

E(x b ) -E(x a ) + b a 1 2 |x t | 2 + 1 2 |∇E| 2 (x t ) dt ≤ 0 ∀ 0 ≤ a ≤ b. ( 10 
)
The advantage of formulation [START_REF] Buonomo | Global stability of an SIR epidemic model with information dependent vaccination[END_REF] is that it only uses quantities that can be defined in a metric space (see below for definition of |x t | and |∇E|). The corresponding computation for a bi-variate functional C is:

b a d dt C(x t , ν) ν=xt dt+ b a 1 2 |x t | 2 + 1 2 |∇ 1 C| 2 (x t , x t ) dt ≤ 0 ∀ 0 ≤ a ≤ b. (11) 
However this formulation poses specific problems (see also section 3.1) as in general the solution (x t ) t≥0 is only absolutely continuous (with respect to time) while the manipulation of the term d dt C(x t , ν) ν=xt requires additional assumptions. This is the object of the next section. Before that, let us recall the following definition:

Definition 1 A curve x : [0, T ] → (X , d) is called absolutely continuous if there exists f ∈ L 1 (0, T ) such that d(x t 1 , x t 2 ) ≤ t 2 t 1 f (t)dt, ∀t 1 < t 2 , t 1 , t 2 ∈ [0, T ]. ( 12 
)
For an absolutely continuous curve (x t ) t∈[0,T ] the metric derivative of x at r defined by

|x r | = lim h→0 d(x r+h , x r ) |h| , (13) 
exists a.e., belongs to L 1 (0, T ) and is the smallest L 1 function that verifies (12).

Definition of EDI / EVI equilibrium flows

Let us denote

D s (C) = {x ∈ X |C(x, x) < ∞}. (14) 
We suppose from now on that C satisfies the assumption:

(A 1 ) There exists C 1 < ∞ such that C(y, x) ≥ -C 1 , ∀x, y ∈ X .
For any α, β ∈ R, α ≤ β, we denote by S(α, β) the set of divisions of the interval [α, β]. Let x = (x t ) t∈[0,T ] ⊂ D s (C) be an absolutely continuous curve in X ; define for 0 ≤ a ≤ b ≤ T and a division ∆ = {a = t 0 < t 1 < ...t

N ∆ = b} ∈ S(a, b): Υ(∆; x, a, b) = k C(x k+1 , x k ) -C(x k , x k ). ( 15 
) Υ(x, a, b) = lim inf ∆∈S(a,b), |∆|→0 Υ(∆; x, a, b). ( 16 
)
To ease notations, when there is no ambiguity about the set S(•, •) we will omit it and write for instance Υ(x, a, b) = lim inf |∆|→0 Υ(∆; x, a, b) instead of [START_REF] De | New problems on minimizing movements[END_REF].

Remark 1 When X is e.g., Euclidian and under regularity assumptions on

C it is easy to check that Υ(x, a, b) = b a d dt C(x t , ν) ν=xt dt.
Definition 2 (EDI equilibrium flow) An absolutely continuous curve (x t ) t∈[0,T ] is called an EDI-equlibrium flow starting from x if lim t→0 x t = x and:

∀s ≥ 0, Υ(x, 0, s) + 1 2 s 0 |x r | 2 dr + 1 2 s 0 |∇ 1 C| 2 (x r , x r ) dr ≤ 0, (17) 
a.e. t > 0, ∀s ≥ t, Υ(x, t, s) + 1 2

s t |x r | 2 dr + 1 2 s t |∇ 1 C| 2 (x r , x r ) dr ≤ 0, (18) 
where, for any y ∈ D s (C) and any point (x, y) with C(x, y) < ∞, the slope |∇ 1 C| (x, y) of C(•, •) with respect to the first argument evaluated at (x, y) is:

|∇ 1 C| (x, y) = lim sup z→x (C(x, y) -C(z, y)) + d(x, z) = max lim sup z→x C(x, y) -C(z, y) d(x, z) , 0 .
Remark 2 For the particular case (4) the definition above coincides with the definition of a EDI gradient flow, see [START_REF] Ambrosio | Modelling and Optimisation of Flows on Networks: Cetraro, Italy[END_REF]. Moreover an equilibrium flow for C(x, y) is also an equilibrium flow for C(x, y) + G(y) for any function G.

Remark 3 A natural question is if there exist functions C that satisfy the above assumptions and that cannot be treated with developments in previous works [START_REF] Kopfer | Gradient flow for the Boltzmann entropy and Cheeger's energy on time-dependent metric measure spaces[END_REF][START_REF] Lucas | Gradient flows of time-dependent functionals in metric spaces and applications to pdes[END_REF]; the answer is positive, see for instance [START_REF] Kopfer | Gradient flow for the Boltzmann entropy and Cheeger's energy on time-dependent metric measure spaces[END_REF]Example 3 page 11]) for X = R, d(x, y) = |x-y|, C(x, y) = d(x, y) (and also d(x, y)+F(x)+ G(y) with F(x) smooth). One cannot use previous theories because setting E(t, u) = C(u, x t ) = |u -x t | the derivative with respect to t exists except when u = x t , or it is exactly there that it should be used (see [17, equation 2.3] and the curve x t = t). See also section 3.1 below.

As the previous works concerned a different setting we do not claim that this contribution is a generalization but rather an extension of these results for our situation.

When C has further convexity properties one can adapt the EVI formulation as in [START_REF] Kopfer | Gradient flow for the Boltzmann entropy and Cheeger's energy on time-dependent metric measure spaces[END_REF][START_REF] Kopfer | Heat Flows on Time-dependent Metric Measure Spaces and Super-Ricci Flows[END_REF]. We introduce the following assumption (corresponding to [1, Assumption 4.24 page 77]):

(A 2 ) Suppose C is a lower semicontinuous functional with respect to the first argument and there exists λ ∈ R such that for any x 0 , x 1 , z, v ∈ X there exists a curve γ connecting x 0 and x 1 such that for all s ∈ [0, 1]:

C(γ(s), z) ≤ (1 -s)C(x 0 , z) + sC(x 1 , z) -λ (1 -s)s 2 d 2 (x 0 , x 1 ). ( 19 
)
d 2 (γ(s), v) ≤ (1 -s)d 2 (x 0 , v) + sd 2 (x 1 , v) -(1 -s)sd 2 (x 0 , x 1 ). ( 20 
)
In general a function (of one or several variables) that satisfies ( 19)-( 20) with respect to one of its variables is called λ-convex in that variable.

Definition 3 (EVI equilibrium flow) An absolutely continuous curve (x t ) t∈[0,T ] is called an EVI-equlibrium flow starting from x if lim t→0 x t = x and :

C(x t , x t ) + 1 2 d dt d 2 (x t , y) + λ 2 d 2 (x t , y) ≤ C(y, x t ), ∀y, a.e. t ≥ 0. ( 21 
)
Note that the definition is valid because if (x t ) t∈[0,T ] is absolutely continuous then t → d 2 (x t , y) is also absolutely continuous thus differentiable a.e. with respect to t.

Convergence of numerical schemes: general situation

Let us denote

M(x, τ ) = argmin y∈X d(y, x) 2 2τ + C(y, x). (22) 
With this definition the relaxed best reply (or fictitious play) (see e.g., [START_REF] Blanchet | Remarks on existence and uniqueness of cournot-nash equilibria in the non-potential case[END_REF][START_REF] Blanchet | From Nash to Cournot-Nash equilibria via the Monge-Kantorovich problem[END_REF]) numerical scheme in equation ( 2) can be written as x τ k+1 ∈ M(x τ k , τ ). We investigate in this section whether when τ → 0 the set {x τ k , k ≥ 1} converges to a solution of (1) as defined in ( 17)-( 18) or [START_REF] Diogo | Continuous time finite state mean field games[END_REF].

In order to work with meaningful objects, we introduce the following assumption which is the analogue of [1, Assumption 4.8 page 67]:

(A 3 ) There exists τ > 0 such that for any τ ≤ τ and x ∈ D s (C):

M(x, τ ) = ∅. (23) 
We will make use of the de Giorgi interpolation introduced in [START_REF] De | New problems on minimizing movements[END_REF] under the name of "minimizing movement" which was originally designed to give a unified formulation of many problems such as time-dependent PDE, steepest descent methods, heat equation. The method starts from a set of points obtained by parameter-indexed minimizations and constructs a continuous curve of minimizers ; the construction keeps many important properties of the original set of points such as compactness and equicontinuity and allows to find limit curves (see also [START_REF] Ambrosio | Modelling and Optimisation of Flows on Networks: Cetraro, Italy[END_REF] and [2, Definition 2.0.6 page 42]).

Assuming that assumption (A 3 ) is satisfied, we can define the interpolation à la de Giorgi which is a curve t ∈ [0, T ] → x τ t such that x τ 0 = x and

x τ t ∈ M(x τ kτ , t -kτ ), ∀t ∈]kτ, (k + 1)τ ], k ≥ 1. ( 24 
)
For such a map, we define the discrete speed Dsp τ : [0, +∞) → [0, +∞) by

Dsp τ t = d(x τ nτ , x τ (n+1)τ ) τ for t in (nτ, (n + 1)τ ),
and the discrete slope Dsl τ : [0, +∞) → [0, +∞) by

Dsl τ t = d(x τ nτ , x τ t ) t -nτ
for t in (nτ, (n + 1)τ ).

We will need some additional hypothesis:

(A 4 ) For any c ∈ R, r > 0 and x ∈ X the set {y ∈ X |C(y, y) ≤ c, d(y, x) ≤ r} is compact. (A 5 )
The slope |∇ 1 C| is lower semicontinuous.

(A 6 ) Lipschitz property with respect to the second argument: there exists L > 0 such that:

C(x, y) ≤ Ld(y, z) + C(x, z), ∀x, y, z ∈ X . ( 25 
)
(A 7 ) For any absolutely continuous curve (x t ) t∈[a,b] : Υ(x, a, b) ≤ lim inf |∆n|→0,yn→x,yn⊂D s (C),sup n b a | ẏn(t)|<∞ Υ(∆ n ; y n , a, b), (26) 
where the convergence of the curve y n to x is in the uniform (on compacts) norm.

(A 8 ) There exists C L < ∞ such that for any x, y, z ∈ D s (C):

|C(x, y) + C(y, z) -C(x, z) -C(y, y)| ≤ C L d(x, y)d(y, z). ( 27 
)

Remark 4

The assumption (A 8 ) implies (see Lemma 2 in the appendix):

Υ(x, a, b) = lim |∆|→0 Υ(∆; x, a, b) = lim |∆n|→0,yn→x,yn⊂D s (C),sup n b a | ẏn(t)|<∞ Υ(∆ n ; y n , a, b), (28) 
which implies (A 7 ).

In particular note that C(x, y) = d(x, y) satisfies (A 7 ) but does not satisfy (28) (thus neither (A 8 )) while C(x, y) = d 2 (x, y) satisfies (A 8 ) with C L = 2. On the other hand for X = R the mapping (x, y) → C(x, y) =

x 0 y 0 f (s, t)dsdt, with f a bounded function will also satisfy assumption (A 8 ).

Assumptions (A 1 ),(A 4 ), (A 5 ) are classical (see for instance [1, Assumption 4.13 page 69]) and (A 7 ) belongs to the same class; on the other hand, the assumption (A 6 ) is the analogue of [29, assumption A4 page 11] through the correspondence in equation [START_REF] Benoussan | Mean Field Games and Mean Field Type Control Theory[END_REF].

The properties of the curves obtained by the numerical scheme (2) are detailed in the following result.

Theorem 1 Let C satisfying assumptions (A 1 ), (A 3 ), (A 4 ), (A 5 ), (A 6 ) and (A 7 ). Take x 0 ∈ D s (C). Then the set of curves {(x τ t ) t∈[0,T ] ; τ ≤ τ } defined in [START_REF] Diogo | Regularity theory for mean-field game systems[END_REF] is relatively compact in the set of curves in X with local uniform convergence and any limit curve is an EDI equilibrium flow in the sense of Definition 2.

Proof We follow, when possible, the proof of [1, Theorem 4.14 page 69]; first we proceed as in [1, Theorem 4.9 page 67] and note that for fixed x ∈ X , τ ≤ τ and x τ ∈ M(x, τ ), the map τ

→ d(xτ ,x) 2 2τ + C(x τ , x), is locally Lipschitz and d dτ d(x τ , x) 2 2τ + C(x τ , x) = - d 2 (x, x τ ) 2τ 2 . ( 29 
)
The proof of this identity follow precisely the reference and the details are left to the reader. The minimal property of x τ (k+1)τ implies that for any k: C(x τ (k+1)τ , x τ kτ ) -C(x τ kτ , x τ kτ ) ≤ 0; combined with [START_REF] Huang | Nash equilibria for large-population linear stochastic systems of weakly coupled agents[END_REF] this shows that C(x τ (k+1)τ , x τ (k+1)τ ) < ∞. On the other hand, as in [1, Lemma 4.10 page 67] we obtain (again we skip the details) that τ → d(x, x τ ) is non decreasing and

|∇ 1 C| (x τ , x) ≤ d(x, x τ ) 2τ . (30) 
Integrating ( 29) we obtain the following identity:

m-1 k=n C(x τ (k+1)τ , x τ kτ ) -C(x τ kτ , x τ kτ ) + 1 2 mτ nτ (Dsp τ r ) 2 dr + 1 2 mτ nτ (Dsl τ r ) 2 dr = 0, (31) 
or equivalently, denoting ∆ τ the division of [0, T ] containing the points kτ

(1 ≤ k ≤ T /τ ): Υ(∆ τ , x τ , nτ, mτ ) + 1 2 mτ nτ (Dsp τ r ) 2 dr + 1 2 mτ nτ (Dsl τ r ) 2 dr = 0. ( 32 
)
In particular for any k ∈ N * :

k =0 d(x τ τ , x τ +1τ ) 2 ≤ (k+1)τ 0 |Dsp τ r | dr 2 ≤ (k + 1)τ (k+1)τ 0 |Dsp τ r | 2 dr ≤ -2(k + 1)τ Υ(∆ τ ; x τ , 0, (k + 1)τ ) ≤ -2(k + 1)τ C(x, x) -C(x τ (k+1)τ , x τ (k+1)τ ) + L k =0 d(x τ τ , x τ +1τ ) . (33) 
This shows that in particular k =0 d(x τ τ , x τ +1τ ) is bounded by a constant depending on T , L, C(x, x) and C 1 but independent on τ . On the other hand for t ∈]kτ, (k + 1)τ ], t ≤ T :

d 2 (x τ t , x) ≤ d(x τ t , x τ kτ ) + k-1 =0 d(x τ τ , x τ +1τ ) 2 ≤ k =0 d(x τ τ , x τ +1τ ) 2 ,
where we used that τ → d(x τ t , x τ kτ ) is non decreasing. Thus the set of curves {(x τ t ) t∈[0,T ] ; τ ≤ τ } is uniformly bounded with respect to τ . As a by-product Υ(∆ τ ; x τ , nτ, mτ ) is bounded uniformly with respect to τ , and n, m ≤ T /τ .

A similar estimation starting from:

d 2 (x τ nτ , x τ nτ ) ≤ mτ nτ |Dsp τ r | dr 2 ≤ (nτ -mτ ) mτ nτ |Dsp τ r | 2 dr, (34) 
allows to see that the set of curves is also equicontinuous. By Arzela-Ascoli one obtains the relative compactness. Let now τ n ↓ 0 and (x t ) t∈[0,T ] a limit curve of {(x τn t ) t∈[0,T ] ; n ≥ 1}. From (34) one obtains that (x t ) t∈[0,T ] is absolutely continuous and for t ≤ s ≤ T :

s t | ẋr | 2 dr ≤ lim inf n→∞ s t |Dsp τn r | 2 dr. ( 35 
)
On the other hand, from the lower semicontinuity of |∇ 1 C| and (30) we obtain

|∇ 1 C| (x t , x t ) ≤ lim inf n→∞ |∇ 1 C| (x τn t , x τn knτn ) ≤ lim inf n→∞ Dsl τn t . ( 36 
)
where

k n is such that t ∈]k n τ n , (k n + 1)τ n ].
Using (A 7 ) and similar arguments as in the end of the proof of [1, Theorem 4.14 page 69] (details are left to the reader) one can pass to the limit in [START_REF] Laguzet | Individual vaccination as Nash equilibrium in a SIR model with application to the 2009-2010 influenza A (H1N1) epidemic in France[END_REF] and obtain relations ( 17)- [START_REF] Fine | Individual versus public priorities in the determination of optimal vaccination policies[END_REF].

Remark 5

The previous works (see e.g. [START_REF] Ambrosio | Modelling and Optimisation of Flows on Networks: Cetraro, Italy[END_REF]) take advantage of a simplification occurring in the treatment of the term m-1 k=n C(x τ (k+1)τ , x τ kτ )-C(x τ kτ , x τ kτ ) in (31) because, when (4) is valid, this term reduces to E(x τ m ) -E(x τ n ); the same is true to some extent for time-dependent approaches in [START_REF] Lucas | Gradient flows of time-dependent functionals in metric spaces and applications to pdes[END_REF] (recall equation [START_REF] Benoussan | Mean Field Games and Mean Field Type Control Theory[END_REF]) which exploit the fully-implicit scheme [START_REF] Blanchet | Remarks on existence and uniqueness of cournot-nash equilibria in the non-potential case[END_REF], not available in our setting. For us, the absence of such a simplification does not allow to obtain the uniform boundedness of x τ directly and requires care when passing to the limit τ → 0. These points are addressed by a specific treatment of the index Υ, some upper bounds on x τ from the assumption (A 6 ) and, latter in theorem 2, by making use of the hypothesis (A 2 ) and (A 8 ), see both proofs for details.

Convergence of numerical schemes: convex case

For the convex case more precise information can be obtained and is gathered in the following theorem.

Theorem 2 Let C satisfying assumptions (A 1 ), (A 2 ), (A 4 ) and (A 6 ).

1. For every x ∈ D s (C), the set M(x, τ ) contains exactly one element for any τ ≤ 1/λ -. Moreover, for x 0 ∈ D s (C) the set of curves {(x τ t ) t∈[0,T ] ; τ ≤ τ } defined in (24) is relatively compact and any limit curve (x t ) t∈[0,T ] is an EVI equilibrium flow in the sense of Definition 3.

2. Suppose in addition that for any x ∈ D s (C) and u, v ∈ D s (C) in a neighborhood of x:

|C(u, v) + C(v, u) -C(u, u) -C(v, v)| = O(d(u, v) 2 ). ( 37 
)
Then the (EVI) equilibrium flow is unique.

3. If the stronger assumption (A 8 ) (instead of (37) ) is satisfied, then for any two EVI equilibrium flows (x t ) t∈[0,T ] and (y t ) t∈[0,T ] starting from x ∈ D s (C) and ȳ ∈ D s (C) respectively:

d(x t , y t ) ≤ e -(λ-C L )t d(x, ȳ), a.e., t ≥ 0. ( 38 
)
4. Under assumption (A 8 ) if λ > C L then the mean field game with cost functional C(•, •) has an unique Nash-MFG equilibrium x C and any equilibrium flow (x t ) t≥0 starting from some x(0) = x ∈ D s (C) converges exponentially fast to x C .

Proof

Proof of item 1: Following the proof of [1, Theorem 4.25 page 77] it is possible to prove the existence and uniqueness of the minimizers in M(x, τ ) using the same arguments i.e. taking a minimizing sequence (x n ) n≥1 and using assumption (A 2 ) for s = 1/2,

x 0 = x n , x 1 = x m , y = x, v = x.
Moreover, the following estimation (replacing [1, equation (69) page 78] ) is obtained using arguments in the same proof as soon as x τ ∈ M(x, τ ) :

d 2 (x τ , y) -d 2 (x, y) 2τ + λ 2 d 2 (x τ , y) ≤ C(y, x) -C(x τ , x), ∀y ∈ X . ( 39 
)
Summing up such estimations it follows that for t = nτ < mτ = s:

d 2 (x τ t , y) -d 2 (x τ s , y) 2(s -t) + λτ 2(s -t) m-1 =n d 2 (x τ ( +1)τ , y) ≤ τ s -t m-1 =n C(y, x τ τ ) -C(x τ ( +1)τ , x τ τ ) , ∀y ∈ X . (40) 
We can prove as in theorem 1 that the curves {x τ t } τ ≤1/λ -form a relatively compact set. Taking τ n ↓ 0 one obtains for 0 ≤ t < s ≤ T :

d 2 (x t , y) -d 2 (x s , y) 2(s -t) + λ 2(s -t) s t d 2 (x r , y)dr ≤ 1 s -t s t [C(y, x r ) -C(x r , x r )] dr , ∀y ∈ X , (41) 
which is the integral form of the definition 3 of a EVI equilibrium flow. In the passage from [START_REF] Porretta | On the planning problem for the mean field games system[END_REF] to [START_REF] Porretta | Weak solutions to Fokker-Planck equations and mean field games[END_REF] the terms m-1 =n d 2 (x τ ( +1)τ , y) and m-1 =n C(y, x τ τ ) are, thanks to the Lipschitz property of C(y, •) and d 2 (•, y), arbitrarily close to Riemann sums of the corresponding integrals. On the other hand for the term m-1 =n C(x τ ( +1)τ , x τ τ ) the inequality is obtained from the Fatou lemma applied to 42) via ( 37) is smaller than C M d 2 (x t , y t ). Then, a computation similar to [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF] shows that:

f n (r) = m-1 =n 1 [ τn,( +1)τn[ (r)C(x τn ( 
d(x t , y t ) ≤ e -(λ-C M )t d(x, x) = 0, ∀t ∈ [0, T M ]. ( 44 
)
This shows that the solution is locally unique on [0, T M ] and then globally unique by a standard maximal interval argument (for instance using Zorn's lemma).

Proof of item 4: the proof is a consequence of item 3 as soon as one proves that the curve y t = x C is an EVI equilibrium flow. To prove this, note that the definition (3) of a Nash-MFG equilibrium implies M(x C , τ ) = {x C } for all τ > 0. Then x τ t = x C for any τ, t ≥ 0 thus the (only) limit curve is y t = x C and by item 1 it is an EVI equilibrium flow.

Remark 6

The uniqueness of the mean field games equilibrium is often a byproduct of the monotonicity of the payoff function, as in [START_REF] Lasry | Jeux à champ moyen. II: Horizon fini et contrôle optimal[END_REF][START_REF] Lasry | Jeux à champ moyen. I: Le cas stationnaire[END_REF][START_REF] Cardaliaguet | Notes on Mean Field Games[END_REF] or in [21, Section 2.8 page 109]; however the monotonicity of the payoff is not a generic property for general MFG. On the other hand recall that MFG with multiple equilibria exist, see the example in section 3.3 below. The item 4 gives a novel route to prove the uniqueness of mean field games equilibriums, which is worth exploring because very few such procedures exist in the literature. The requirements here are • a weak form of convexity: note that assumption (A 2 ) only uses convexity in the first argument, which is a consequence of the linearity of C with respect to the strategy of the player;

• a regularity assumption (hypothesis (A 8 ));

• and the important upper bound λ > C L .

Among the three, it is the latter property that seems to be the most restrictive in applications.

Applications

For the notations used in this section see the appendix A. Set X = R and C(x, y) = x 2 2 + θ|x -y| for some fixed θ > 0. After elementary computations we obtain from the definition (3) that the set of Nash equilibriums is the entire interval [-θ, θ]. In particular there is no uniqueness; we check thus the assumptions of the theorem 1:

• (A 1 ) is valid with C 1 = 0; • (A 3
) is valid because we minimize a continuous coercive real function;

• (A 4 ) is valid trivially on R;

• (A 5 ) results from the computation |∇ 1 C| (x, y) = (x -θ • 1 x≤y + θ • 1 x>y ) + • (A 6 ) is valid with L = θ; • (A 7 ) results from the formula Υ(x, a, b) = x 2 b -x 2 a 2
+ length(x, a, b) (with length(x, a, b) being the length of the curve (x t ) t≥0 between t = a and t = b ); note that (A 8 ) does not hold in this case.

We can apply the theorem 1 to conclude that at least an equilibrium flow exists. In fact, a more careful inspection reveals that the flow is:

-when |x 0 | ≤ θ: the flow is the constant curve x t = x 0 ; -when x 0 > θ: x t = θ + e -t (x 0 -θ); -when x 0 < θ: x t = -θ + e -t (x 0 + θ).

The dynamics is thus smooth; however the term b a d dt C(x t , ν) ν=xt dt cannot be given any meaning because of the non-differentiability with respect to t of |x t -x s | in s = t.

Remark 7

In this case the assumption (A 2 ) is also valid thus one can apply the first point of the theorem 2 to conclude to the existence of a EVI -equilibrium flow. However one can propose examples of C being the sum of a smooth, coercive but non-convex function of x (as (x 2 -1) 2 ) and the term θ|x -y| that can still check the hypothesis of theorem 1 but not those of the theorem 2. Here we took the first term to be quadratic in order to have explicit analytic solutions.

Multiple agent types games with potential and interaction terms

We follow here the framework in [START_REF] Blanchet | Remarks on existence and uniqueness of cournot-nash equilibria in the non-potential case[END_REF] and in particular show how their Corrolary 5.2 (corresponding to their example in equation (5.9) Section 5) can be treated with tools provided in this work. In this situation, the players are assigned to one of several types x ∈ X; once an agent is given a type x it cannot change it. As a consequence, the probability measure on the set X is fixed, let us denote it by µ ∈ P(X). Each agent can take actions y in a set Y . Both X and Y are supposed compact and moreover Y is a convex, closed subset of an Euclidian space. A strategy is a joint probability measure γ ∈ P(X × Y ) with π 1 # γ = µ. We assign:

X = γ ∈ P(X × Y )|π 1 # γ = µ . ( 45 
)
The cost of the action y for the individual of type x ∈ X when everybody else is doing γ is C(x, y, γ). Denote C(γ 1 , γ 2 ) = X×Y C(x, y, γ 2 )γ 1 (dx, dy). The Nash equilibrium (termed Cournot-Nash in [START_REF] Blanchet | Remarks on existence and uniqueness of cournot-nash equilibria in the non-potential case[END_REF]) is defined as in equation ( 3). Note that by the disintegration theorem [2, Theorem 5.3.1 page 121] for any γ ∈ X there exist a a unique (µ-a.e. ) set (γ x ) x∈X ⊂ P(Y ) such that for any Borel function f :

X×Y f (x, y)γ(dx, dy) = X Y f (x, y)γ x (dy) µ(dx). ( 46 
)
When there is no ambiguity, we will use the notation (γ x ) x∈X ⊂ P(Y ) to designate the disintegration of the measure γ along the elements x ∈ X.

The measure γ x can be interpreted as the strategy of the agents of type x.

Remark 8 In [START_REF] Blanchet | Remarks on existence and uniqueness of cournot-nash equilibria in the non-potential case[END_REF] a specific situation is considered when the cost does not depend on the type of other agents choosing a given action in Y but only on how many they are i.e., on the measure π 2 # γ. In this case C(x, y, γ) = C(x, y, π 2 # γ). For p ≥ 1 take ν ∈ P p (Y ) (arbitrary but fixed) and define

X p = γ ∈ X X W p (γ x , ν) p µ(dx) < ∞ . ( 47 
)
Note that the definition of X p does not depend on ν. When we do not mention the p index we mean p = 2, i.e, X = X 2 . We introduce on X p the distance:

∀ γ 0 , γ 1 ∈ X p : d X ,p (γ 0 , γ 1 ) = X W p (γ 0,x , γ 1,x ) p µ(dx) 1/p . ( 48 
)
Note that from (70) using the Holder inequality we obtain a similar relation for d X ,p (γ 0 , γ 1 ):

∀1 ≤ p 1 ≤ p 2 , γ 0 , γ 1 ∈ X p 1 : d X ,p 1 (γ 0 , γ 1 ) ≤ d X ,p 2 (γ 0 , γ 1 ). ( 49 
)
With these provisions we can state the following result (compare with [7, Corrolary 5.2 page 425]):

Proposition 1 Suppose Y is the closure of some open set in R d . Let V 0 be a smooth function satisfying the hypothesis of Lemma 1 (in the appendix) and φ : R d × R d → R a function with continuous second derivatives everywhere. Then, if > 0 is small enough, the game with payoff

C(x, y, γ) = |x -y| 2 2 + V 0 (y) + X×Y φ(y, y 2 )γ(dx, dy 2 ), (50) 
admits a unique Nash-MFG equilibrium and any EVI-equilibrium flow (as in theorem 2) converges exponentially fast to it.

Proof We derive first a duality formula for the distance d X ,1 ; for any g :

X × Y → R, γ 0 , γ 1 ∈ X 1 , we obtain from (71): X×Y g(x, y)(γ 0 (dx, dy) -γ 1 (dx, dy)) = X Y g(x, y) [γ 0,x (dy) -γ 1,x (dy)] µ(dx) ≤ X g(x, •) Lip • W 1 (γ 0,x , γ 1,x )µ(dx) ≤ sup x∈X g(x, •) Lip • d X ,1 (γ 0 , γ 1 ). ( 51 
)
We use theorem 2 on (X , d X ,2 ) and check all assumptions.

• First, since V 0 and φ are smooth and X, Y are compact one obtains assumption (A 1 ).

• The assumption (A 2 ) is also verified because the function C(x, y, γ) is 1 + λ V -C 2 -convex (C 2 being a constant that only depends on φ and Y ). In this case the geodesics between γ 0 and γ 1 are the curves γ t such that t → γ t,x is the generalized geodesic (with some fixed base ν, ν ∈ P(Y ), ν being absolutely continuous with respect to the Lebesgue measure dx) having end points γ 0,x and γ 1,x . Here (γ t,x ) x∈X is the disintegration of γ t for any t ∈ [0, 1].

• Assumption (A 4 ) is obvious since X is compact.

• Remain only assumptions (A 6 ) and (A 8 ). We only prove (A 8 ), the other being easier to obtain (and uses essentially the same arguments). The idea is to prove the upper bound for the distance d X ,1 invoking (51) then use the ordering in (49). Let γ 0 , γ 1 , γ 2 ∈ X . Then

|C(γ 0 , γ 1 ) + C(γ 1 , γ 2 ) -C(γ 0 , γ 2 ) -C(γ 1 , γ 1 )| = X×Y X×Y φ(y 1 , y 2 ) [γ 1 (dx, dy 2 ) -γ 2 (dx, dy 2 )] [γ 0 (dx, dy 1 ) -γ 1 (dx, dy 1 )] ≤ X×Y φ(•, y 2 ) [γ 1 (dx, dy 2 ) -γ 2 (dx, dy 2 )] Lip d X ,1 (γ 0 , γ 1 ), (52) 
where (51) has been used. It remains to see that the Lipschitz norm of

X×Y φ(•, y 2 ) [γ 1 (dx, dy 2 ) -γ 2 (dx, dy 2 )] can be upper bounded by d X ,1 (γ 1 , γ 2 ).
But for any y, ỹ ∈ Y with y = ỹ:

X×Y φ(y, y 2 ) [γ 1 (dx, dy 2 ) -γ 2 (dx, dy 2 )] - X×Y φ(ỹ, y 2 ) [γ 1 (dx, dy 2 ) -γ 2 (dx, dy 2 )] = X×Y [φ(y, y 2 ) -φ(ỹ, y 2 )] [γ 1 (dx, dy 2 ) -γ 2 (dx, dy 2 )] ≤ |y -ỹ| • d X ,1 (γ 1 , γ 2 ) sup y,ỹ∈Y φ(y, •) -φ(ỹ, •) |y -ỹ| Lip . (53) 
Since φ is twice differentiable, assumption (A 8 ) follows with C L = C 3 where C 3 is a constant depending only on φ and the space Y .

Congestion Mean Field Games

We consider next a congestion mean field game. Consider a population that has to choose a place on a real line (an adaptation of the "beach example" in P.L. Lions' lectures at Collège de France). The strategy of any individual is a probability law ξ on R. The individuals prefer to be at the origin and the cost increases with the distance from the origin; this is modeled by a term R F 0 (x)ξ(dx) with, for instance, F 0 (x) = c 0 x 2 /2, c 0 > 0. The individuals dislike congestion which means that there is a penalty to choose a location where the local density of others is large. If the mean field density of others is m(dx) the term that models congestion is R R ρ σ (y -x)m(dx)ξ(dy) where ρ σ is a given kernel, for instance

ρ σ (x) = 1 σ √ 2π exp -x 2
2σ 2 , for some σ ≥ 0 (σ models the range of interaction). Thus the cost functional is:

C(ξ, m) = R F 0 (y)ξ(dy) + R R ρ σ (y -x)m(dx)ξ(dy). (54) 
This can be put into the framework of the previous section taking X to be a singleton (all individuals are alike) but here Y is potentially the whole real line (thus in particular not compact). However, since the individual minimizes his / her cost, any Nash-MFG equilibrium strategy ξ, if it exists, must satisfy

supp(ξ) ⊂ argmin y∈R F 0 (y) + R ρ σ (y -x)ξ(dx) . (55) 
In particular any y in the support of ξ will satisfy c 0 y

2 /2 ≤ 1/(σ √ 2π), thus the support of ξ is included in Y = -2 c 0 σ √ 2π , 2 c 0 σ √ 2π .
Corrolary 1 Define X = (P 2 (Y ), W 2 ) and consider the congestion MFG defined in (54) for ξ, m ∈ X . For c 0 large enough, and any x ∈ X there exists a unique EVI equilibrium flow (1) starting in x. Moreover the congestion MFG (54) admits a unique equilibrium and the EVI-equilibrium flow starting from x converges exponentially fast to it.

Proof We apply the Proposition 1 on X taking into account that any equilibrium is an element of X .

Remark 9 When σ → 0 the equilibrium is the semicircle law [START_REF] Bai | Convergence to the semicircle law[END_REF]: ξ(x) = 2 πr 2 0 (r 2 0 -x 2 ) + dx for some constant r 0 > 0. Note however that the approach above does not guarantee convexity for any choice of c 0 and in particular when σ → 0 no value of c 0 is large enough. On the contrary, a metric similar to that in section 3.4 is 0-convex for any c 0 and allows to use theorem 2.

Remark 10 Other choices of functions F 0 can also be treated with the above methodology (keeping the coercivity at infinity and λ-convexity). On the other hand, the congestion term R R ρ σ (y -x)m(dx)ξ(dy) may also be modified but it should remain compatible with the assumptions (A 6 ) and (A 8 ).

Non-smooth interaction Mean Field Games with multiple equilibria

Consider now the cost

C(ξ, η) = R F 0 (x)ξ(dx) + R R |x -y|ξ(dx)η(dy). (56) 
This is a MFG model similar to that in sections 3.1 and 3.2.1 where individuals prefer to be at the origin but here they also prefer to be close together.

With the same technique as in (55) we can prove that it is enough to

restrict to the domain [-R, R] with R = 2M 1 (ξ) c 0 , where M 1 (ξ) = R |x|ξ(dx). But then M 1 (ξ) = R |x|ξ(dx) = R -R |x|ξ(dx) ≤ R = 2M 1 (ξ) c 0 , (57) 
thus R ≤ 2/c 0 .

Corrolary 2 Consider Ω = [-2/c 0 , 2/c 0 ], (X , d) = (P 2 (Ω), W 2 ) and the cost functional:

C(ξ, η) = Ω F 0 (x)ξ(dx) + Ω Ω |x -y|ξ(dx)η(dy). ( 58 
)
Then for any x 0 ∈ X the set of curves {(x τ t ) t∈[0,T ] ; τ ≤ τ } defined in (24) is relatively compact and any limit curve (x t ) t∈[0,T ] is an EVI equilibrium flow in the sense of the Definition 3.

Proof We start checking the assumptions of the theorem 2:

• (A 1 ) is verified with C 1 = 0; • (A 2
) is verified with λ = c 0 taking as interpolating curves the generalized geodesics with some arbitrary, fixed, base; note that there is no restriction on c 0 except strict positivity, in particular it does need to be large; • (A 6 ) is verified for L = 1, using arguments similar to those in the proof of Proposition 1 (i.e., bounding first by the W 1 distance); • (A 4 ) is also satisfied.

Note that (A 8 ) is not valid here. Based on section 3.1 we do not expect to have uniqueness of the Nash-MFG equilibria. Indeed one can check that any δ x * with |x * | ≤ 1/c 0 is a Nash-MFG equilibrium:

∀ξ ∈ X : C(ξ, δ x * ) = Ω (F 0 (x) + |x -x * |)ξ(dx) ≥ Ω F 0 (x * )ξ(dx) = F 0 (x * ) = Ω (F 0 (x) + |x -x * |)δ x * (dx) = C(δ x * , δ x * ).
(59)

Vaccination Mean Field Games

An important class of MFG examples that go beyond potential or interaction terms are vaccination mean field games (see [START_REF] Fine | Individual versus public priorities in the determination of optimal vaccination policies[END_REF][START_REF] Bauch | Vaccination and the theory of games[END_REF][START_REF] Bauch | Group interest versus self-interest in smallpox vaccination policy[END_REF][START_REF] Laguzet | Individual vaccination as Nash equilibrium in a SIR model with application to the 2009-2010 influenza A (H1N1) epidemic in France[END_REF] and more generally [START_REF] Buonomo | Global stability of an SIR epidemic model with information dependent vaccination[END_REF][START_REF] Funk | Modelling the influence of human behaviour on the spread of infectious diseases: a review[END_REF][START_REF] Wang | Statistical physics of vaccination[END_REF] for vaccination coverage dynamics). In this framework the individual can choose his / her vaccination strategy which is a probability law set on Ω = [0, T ] ∪ {∞} (the point at infinity meaning no vaccination). Thus X is the space of probability measures on Ω; we can also see it as a subset of Ḣ-1 (Ω) (the dual of the space of zero-mean H 1 (Ω)-Sobolev functions) with metric:

d 2 (m 1 , m 2 ) = ω∈{0,T,∞} [m 1 ({ω}) -m 2 ({ω})] 2 + sup ∇φ L 2 ([0,T ];R) ≤1, T 0 φ=0 T 0 φ(m 1 -m 2 ) 2 . ( 60 
)
This metric can also be given another expression (see [ 

d 2 (m 1 , m 2 ) =   ω∈{0,T,∞} [m 1 ({ω}) -m 2 ({ω})] 2   + ∇u m 1 ,m 2 2 L 2 ([0,T ];R) . (61) 
The cost can be expressed, for some functional F : (X , d) → C(Ω; R), as

C(ξ, m) = Ω F (m)(x)ξ(dx). ( 62 
)
The functional F is highly non-linear and depends on the solution of a system of measure-driven ODEs, see [32, equations (1) and ( 4)] for details. More precisely, for some constants β, γ > 0, 0 < r V < r I < ∞, S 0 , I 0 ≥ 0, S 0 + I 0 < 1, consider the system (see also [9, Theorem 10.2.3 page 246] for the well-posedness):

       dS m (t) = -βS m (t)I m (t)dt -dm(t), S m (0 -) = S 0 , dI m (t) = βS m (t) -γ I m (t)dt, I m (0 -) = I 0 , dϕ m (t) = βI m (t)(1 -ϕ m (t))dt, ϕ m (0 -) = 0, ( 63 
)
where m is prolonged by 0 on ]T, ∞[. Note that S m (t), S m (t) and ϕ m (t) take values in [0, 1]. The cost is:

C(ξ, m) = -ξ({∞})r I ϕ m (∞) + T 0 r V + (r I -r V )ϕ m (t) ξ(dt), (64) 
and thus

F (m)(t) = r V + (r I -r V )ϕ m (t) for t < ∞, F (m)(∞) = -r I ϕ m (∞). (65) 

A Notations

We recall below some notations and results used in the paper.

For any set Ω we denote by P(Ω) the ensemble of probability laws on Ω. For a general application f defined on Ω with values in a measure space, f # ν is the push-forward (image) measure of ν ∈ P(Ω) through f characterized by f # ν(A) = ν(f -1 (A)) for any measurable set A in the image. When Ω is a metric space, for p ≥ 1 and some x 0 ∈ Ω:

P p (Ω) = ν ∈ P(Ω) Ω d(x, x 0 ) p ν(dx) < ∞ , (68) 
i.e., P p (Ω) is the set of probability laws on Ω with finite p-th moment. Note that the definition does not depend on the choice of x 0 .

When Ω is a tensor product Ω = Ω 1 × Ω 2 × ... × Ω M , and γ ∈ P(Ω) we denote π 1 # γ ∈ P(Ω 1 ) the first marginal, π 2 # γ ∈ P(Ω 2 ) the second marginal, π 1,2 # γ ∈ P(Ω 1 × Ω 2 ) the marginal with respect to the first two coordinates, etc.

The set P p (Ω) can be given the structure of a metric space with the p-Wasserstein metric [43, Section 5] denoted W p with

W p (ν 1 , ν 2 ) = inf Ω×Ω d(x, y) p γ(x, y) γ ∈ P(Ω × Ω), π 1 # γ = ν 1 , π 2 # γ = ν 2 1/p . ( 69 
) The set of γ that realize the "inf" in (69) is denoted Γ o (ν 1 , ν 2 ).

Proving that W p is a distance can be performed with usual techniques [43, Lemmas 5.4 and 5.5 page 182]; also standard is to note that these distances are ordered i.e.

W p 1 (γ 0 , γ 1 ) ≤ W p 2 (γ 0 , γ 1 ), ∀ 1 ≤ p 1 ≤ p 2 , ∀γ 0 , γ 1 ∈ P p 1 (Ω). (70) 
Recall that the norm f Lip of a function f is its smallest Lipschitz constant (and +∞ if no such constant exists). Then (see [45, Remark 6.5 page 95]):

W 1 (γ 0 , γ 1 ) = sup Ω f (γ 0 -γ 1 ) f Lip ≤ 1 . (71) 
In order to exploit convexity, we need to define the notion of (generalized) geodesics (see [2, Definition 9.2.2. page 207]): let ν 0 , ν 1 , ν ∈ P p (Ω) and ξ ∈ P(Ω × Ω × Ω) such that π 1,2 # ξ ∈ Γ 0 (ν, ν 0 ), π 1,3 # ξ ∈ Γ 0 (ν, ν 1 ). The generalized geodesic between ν 0 and ν 1 with base ν is the curve (ν ξ (t)) t∈[0,1] ⊂ P p (Ω) with ν ξ (t) = [(y 1 , y 2 , y 3 ) → ((1 -t)y 2 + ty 3 )] # ξ.

In particular ν ξ (0) = ν 0 , ν ξ (1) = ν 1 . When ν = ν 0 the generalized geodesic is a (ordinary) geodesic in the space P p (Ω); in this case we do not mention the base any more. This definition allows to state the following result (for the proof see [2, Lemma 9.2.1 page 206, Proposition 9.3.2 page 210]): Lemma 1 Take p = 2, λ V ≥ 0 and V : Ω → R be a λ V -convex function in the sense that for any y 1 , y 2 ∈ Ω, t ∈ [0, 1]:

V ((1 -t)y 1 + ty 2 ) ≤ (1 -t)V (y 1 ) + tV (y 2 ) - λ V 2 d 2 (y 1 , y 2 ). ( 73 
)
Then the functional V : P p (Ω) → R:

V(γ) = Ω V (y)γ(dy), (74) 
is λ V -convex on (P p (Ω), W p ) in the sense of the assumption (A 2 ) on the generalized geodesics with base ν for any ν ∈ P p (Ω).

A.1 Relationship between assumptions (A 8 ) and (A 7 )

We prove below the identity (28) in Remark 4. Step 2 Let now y n be as in the assumption (A 7 ) and ω(•) a joint continuity modulus for the curves {x} ∪ {y k , k ≥ 1} as functions over [a, b] i.e., for any z ∈ {x} ∪ {y k , k ≥ 1}:

d(z t 1 , z t 2 ) ≤ ω(|t 2 -t 1 |), ∀t 1 , t 2 ∈ [a, b]. (76) 
Let further M L be a common bound for the length of all curves z ∈ {x} ∪ {y k , k ≥ 1}, which implies (80)

Passing to the limit when n → ∞ allows to write |Υ(∆; x, a, b) -J| ≤ C L M L ω(|∆|); passing again to the limit when |∆| → 0 and taking into account the first, already proven, identity in [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF], we obtain Υ(x, a, b) = J, hence the conclusion.

3. 1

 1 The treatment of the term b a d dt C(x t , ν) ν=x t dt We consider first an example that shows how our proposed methodology avoids problems with the term b a d dt C(x t , ν) ν=xt dt which does not always has a well-defined meaning, even when the dynamics is C ∞ with respect to time.

43 ,

 43 Section 5.5.2 page 210]: denote by u m 1 ,m 2 the solution on ]0, T [ of the Laplace problem -∆u m 1 ,m 2 = m 1 -m 2 with homogeneous Neumann boundary conditions ∂u ∂n = 0 in 0 and T ; note that u m 1 ,m 2 depends linearly of m 1 -m 2 . Then:

Lemma 2

 2 Suppose that C satisfies assumptions (A 1 ), (A 6 ) and (A 8 ) and α → C(α, α) is continuous over D s (C). Then (28) holds true.Proof .Step 1 First we prove that (α, β) → C(α, β) is continuous overD s (C) × D s (C). Let α n → α and β n → β be two converging sequences. Then |C(α n , β n ) -C(α, β)| ≤ |C(α n , β n ) -C(α n , β)| + |C(α n , β) -C(α, β)| ≤ Ld(β n , β) + |C(α, α n ) + C(α n , β) -C(α, β) -C(α n , α n )| + |C(α n , α n ) -C(α, α n )| ≤ Ld(β n , β) + C L d(α n , β)d(α n , α) +|C(α n , α n ) -C(α, α)| + |C(α, α) -C(α, α n )| ≤ (L + C L d(α n , β)) Ld(α n , α) + Ld(β n , β) + |C(α n , α n ) -C(α, α)|,(75)which, under present hypothesis, tends to zero when α n → α and β n → β. In particular the continuity of C implies that, with the notations in (A 8 ), for any fixed ∆ ∈ S(a, b): lim n→∞ Υ(∆; y n , a, b) = Υ(∆; x, a, b).

- 1 k=0

 1 d(z t k+1 , z t k ) ≤ M L , ∀{t 0 , ..., t } ∈ S(a, b). We invoke the following reformulation of (A 8 ): for any curve z ∈ {x} ∪ {y k , k ≥ 1} and {s 0 , ..., s k-1 , s k , s k+1 , ..., s } ∈ S(a, b):|Υ({s 0 , ..., s k-1 , s k , s k+1 , ..., s }; z, a, b) -Υ({s 0 , ..., s k-1 , s k+1 , ..., s }; z, a, b)| ≤ C L d(z s k-1 , z s k )d(z s k , z s k+1 ). (77)Repeated application of the inequality (77) for ∆ 1 , ∆ 2 ∈ S(a, b) allows to obtain for any z ∈ {x} ∪ {y k , k ≥ 1}:|Υ(∆ 1 ; z, a, b) -Υ(∆ 1 ∪ ∆ 2 ; z, a, b)| ≤ C L M L ω(|∆ 1 |),(78)and thus|Υ(∆ 1 ; z, a, b) -Υ(∆ 2 ; z, a, b)| ≤ C L M L (ω(|∆ 1 |) + ω(|∆ 2 |)) . (79)For z = x this means that for |∆| → 0 the set {Υ(∆; x, a, b), ∆} has a unique limit which has to be Υ(x, a, b) (recall the definition (16)). Consider now a subsequence of {n ≥ 1} (which, without loss of generality we can consider to be {n ≥ 1} itself) such that Υ(∆ n ; y n , a, b) is converging to some value J. Then, for fixed ∆ ∈ S(a, b): |Υ(∆; y n , a, b) -Υ(∆ n ; y n , a, b)| ≤ C L M L (ω(|∆|) + ω(|∆ n |)) .

  +1)τn , x τn τn ) (recall that we have a lower bound on C from assumption (A 1 )) and the lower semi-continuity of C. Proof of item 3 To prove contraction[START_REF] Mielke | Nonsmooth analysis of doubly nonlinear evolution equations[END_REF] we use the EVI inequality for x t and y t and write:Adding up the two identities and invoking[START_REF] Hubert | Nash-MFG equilibrium in a SIR model with time dependent newborn vaccination[END_REF] for x = z = x t , y = y t we obtain (heuristically for the moment): Proof of item 2: the proof is similar to that of item 3: let (x t ) t∈[0,T ] and (y t ) t∈[0,T ] be two EVI equilibrium flows starting from the same point x ∈ D s (C) and C M > 0 a constant (large enough). Since the flows are continuous in time, for some small time T

	1 2 1 2 and (38) follows. In practice, the manipulations above can be made precise d ds d 2 (x s , y t ) s=t + λ 2 d 2 (x t , y t ) ≤ C(y t , x t ) -C(x t , x t ) a.e. t ≥ 0. d ds 2 d dt d 2 (x t , y t ) + λd 2 (x t , y t ) ≤ C L d 2 (x t , y t ) a.e. t ≥ 0, (43) by a doubling of variables argument (see [1, page 80], [31], [9, pages 179, d 2 (y 1 183]).

s , x t ) s=t + λ 2 d 2 (y t , x t ) ≤ C(x t , y t ) -C(y t , y t ) a.e. t ≥ 0. (42) M > 0 we have d(x t , y t ) small enough such that the O(d(x t , y t ) 2 ) appearing in (
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Corrolary 3 Consider X as above and MFG with cost functional (64). Then for any x 0 ∈ X the set of curves {(x τ t ) t∈[0,T ] ; τ ≤ τ } defined in (24) converges when τ → 0 to a limit curve (x t ) t∈[0,T ] which is the unique EVI equilibrium flow in the sense of Definition 3 starting from x 0 .

Proof We check the hypothesis of items 1 and 2 in the theorem 2:

• F is bounded from below which implies hypothesis (A 1 ).

• we move next to the assumption (A 2 ). Note that there is no apparent convexity in the function x → F (m)(x). But, the cost C is linear in the first variable with respect to affine combinations of measures. Therefore we choose as curves in the assumption (A 2 ) the segments γ(t) = (1 -t)γ(0) + tγ [START_REF] Ambrosio | Modelling and Optimisation of Flows on Networks: Cetraro, Italy[END_REF]. With this choice the distance (61) satisfies the equation [START_REF] Funk | Modelling the influence of human behaviour on the spread of infectious diseases: a review[END_REF] ( in fact we have equality) while C will satisfy [START_REF] Fudenberg | The theory of learning in games[END_REF] with λ = 0 thus assumption (A 2 ) is valid.

• Assumption (A 4 ) is immediate, the space being compact.

• Assumptions (A 6 ) follows immediately after noting that d dt F (m)(t) is bounded independently on m and t because d dt ϕ m (t) is. • Assumption (A 8 ) requires longer computations and is left as an exercise for the reader.

Remark 11 Within the vaccination MFG framework one can encounter also different, more exotic, metric spaces, see for instance [START_REF] Hubert | Nash-MFG equilibrium in a SIR model with time dependent newborn vaccination[END_REF] where:

, and the cost functional

for some functional F : X → C(R; R). In all cases, the numerical simulations show that the algorithm (2) converges to a MFG equilibrium.