Non-parametric estimation of time varying AR(1)–processes with local stationarity and periodicity - Archive ouverte HAL
Article Dans Une Revue Electronic Journal of Statistics Année : 2018

Non-parametric estimation of time varying AR(1)–processes with local stationarity and periodicity

Résumé

Extending the ideas of [7], this paper aims at providing a kernel based non-parametric estimation of a new class of time varying AR(1) processes (Xt), with local stationarity and periodic features (with a known period T), inducing the definition Xt = at(t/nT)X t−1 + ξt for t ∈ N and with a t+T ≡ at. Central limit theorems are established for kernel estima-tors as(u) reaching classical minimax rates and only requiring low order moment conditions of the white noise (ξt)t up to the second order.
Fichier principal
Vignette du fichier
nonstationarity24052017.pdf (508.25 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01527749 , version 1 (27-05-2017)
hal-01527749 , version 2 (20-07-2018)
hal-01527749 , version 3 (10-11-2018)

Licence

Identifiants

Citer

Jean-Marc Bardet, Paul Doukhan. Non-parametric estimation of time varying AR(1)–processes with local stationarity and periodicity. Electronic Journal of Statistics , 2018. ⟨hal-01527749v1⟩
162 Consultations
386 Téléchargements

Altmetric

Partager

More