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Abstract: Extending the ideas of [7], this paper aims at providing a ker-
nel based non-parametric estimation of a new class of time varying AR(1)
processes (Xt), with local stationarity and periodic features (with a known
period T ), inducing the definition Xt = at(t/nT )Xt−1 + ξt for t ∈ N and
with at+T ≡ at. Central limit theorems are established for kernel estima-
tors âs(u) reaching classical minimax rates and only requiring low order
moment conditions of the white noise (ξt)t up to the second order.
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1. Introduction

Since the seminal paper [5], the local-stationarity property provides new models
and approaches for introducing non-stationarity in times series. The recently
published handbook [7] gives a complete survey about new results obtained
since 20 years on this topics.
An interesting new kind of models is obtained from a natural extension of usual
ARMA processes, so called tvARMA(p, q)–processes defined in [8], as:

p∑
j=0

αj

( t
n

)
X

(n)
t−j =

q∑
k=0

βk

( t
n

)
ξt−k, 1 ≤ t ≤ n, (1.1)

where αj and βk are bounded functions. This is a special case of locally station-

ary linear process defined by X
(n)
t =

∑∞
j=0 γj

(
t
n

)
ξt−j . Such models has been

studied in many papers, especially concerning the parametric, semi-parametric
or non-parametric estimations of functions αj , βk or γj , or other functions de-
pending on these functions; see, for instance references [6], [8], [7], or [3], [11],
[15] or [2].

For simplicity, we restrict in this first work to time-varying AR(1)–processes

(X
(n)
t ) including a periodic component:

X
(n)
t = at

(
t

nT

)
X

(n)
t−1 + ξt, with at+T ≡ at, for any 1 ≤ t ≤ nT, n ∈ N,

(1.2)
where T ∈ N∗ is a fixed and known integer number, and (ξt) a white noise.
The choice of such extension of the tvAR(1) processes is relative to modelling
considerations: for instance, in the climatic framework, [4] considered models
of air temperatures where the function of interest writes as the product of a
periodic sequence by a locally varying function. This choice provide an interest-
ing extension of more classical periodic models of air temperature such as those
proposed in [12].
Other periodic representation for locally stationary processes can also be found
in for instance in the paper [16], but the seasonal component is treated as an
additive deterministic trend and is not included in the dynamic of the process,
which is the case for model (1.2).

We then study non-parametric estimators âs(u), for s = 1, . . . , T , u ∈ (0, 1)

from an observed trajectory (X
(n)
1 , . . . , X

(n)
nT ). We consider kernel-based estima-

tors which are naturally induced from covariance relationships satisfied by the
process (see Section 2). Central limit theorems are established for these esti-
mators under some regularity conditions on the functions as(·). The results are
only obtained second-order moments on the white noise (ξt). This is a main im-
provement with respect to usual limit theorems on locally-stationary processes
which are obtained with the assumption that any moments exist for (ξt). This
is due to the new ideas developed in our proof which combines a central limit
theorem for martingale increment arrays as well as an embedding in an Orlicz
space (see details in Section 4).
The obtained convergence rate is optimal with respect to the minimax rate up
to a logarithm terms. Simulations based on Monte-Carlo experiments exhibit
the accuracy of the estimators.
This paper is also a first step concerning new results for new class of non-
stationary processes. Indeed, we can extend the definition (1.2) to processes

(X
(n)
t ) such as:

X
(n)
t = Ft

(
t

n
, ξt, Zt;X

(n)
t−1, X

(n)
t−2, . . .

)
, 1 ≤ t ≤ n, (1.3)
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where (Zt) is a sequence of i.i.d. random vectors modelling for instance exoge-
nous inputs. This more tough case is deferred to forthcoming papers.
Time varying other models with an infinite memory may also be processed
as GARCH-type models (see for instance [9]). Quote also that [10] introduced
INGARCH-models, those models are GLM models; non-stationary versions of
which also may be considered. They will be considered in further works.

The structure of the paper is as follows. In Section 2, we define and study
asymptotic properties of non-parametric estimators for the process (1.2). Sec-
tion 3 provides some Monte-Carlo results while the proofs are reported in Section
4.

2. Asymptotic normality of a non-parametric estimator for periodic
tvAR(1) processes

2.1. Definition and first properties of the process

Here we denote by T ∈ N∗ a fixed and known period.

The paper is dedicated to the simplest caseX = (X
(n)
t )1≤t≤nT, n∈N, of a T−periodic

locally stationary AR(1)−process,

X
(n)
t = at

( t

nT

)
X

(n)
t−1 + ξt, with at+T ≡ at for any 1 ≤ t ≤ nT, n ∈ N,

(2.1)

where X
(n)
0 = X0 with E(X2

0 ) < ∞. Here (ξt)t∈N is a sequence of i.i.d.r.v. sat-
isfying E(ξt) = 0 and Var (ξt) = σ2 for any t ∈ N.
The functions (as(·))1≤s≤T , [0, 1] → R are supposed to satisfy some regular-
ity. Hence, we provide the forthcoming definition 2.1 usually made in a non-
parametric framework:

Definition 2.1. For ρ > 0, we denote dρe ∈ N the smallest integer number
such that dρe > ρ. A function f : x ∈ R 7→ f(x) ∈ R is said to belong to the
class Cρ(Vu) where Vu is a neighbourhood of u ∈ R, if f ∈ Cdρe−1(Vu) and if
f (dρe−1) is a (1 + ρ− dρe)-Holderian function (0 < 1 + ρ− dρe ≤ 1), i.e. there
exists C ≥ 0 such as∣∣f (dρe)(u1)− f (dρe)(u2)

∣∣ ≤ C |u1 − u2|ρ−dρe, for any u1, u2 ∈ Vu.

Remark that with this unusual definition, a Lipschitz function is in C1. As a
consequence we specify the assumptions on functions (at) using a fixed positive
real number ρ > 0:

Assumption (A(ρ)): The functions {at(·); t ∈ N} are such as:

1. (Periodicity) There exists T ∈ N∗ such that αt(v) = αt+T (v) for any
(t, v) ∈ N× [0, 1].

2. (Contractivity) There exists α = supt∈N,v∈[0,1] |at(v)| < 1.
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3. (Regularity) For any t ∈ N, assume that at ∈ Cρ.

Remark 2.1. Quote that T = 1 corresponds to a non-periodic case and (X
(n)
t )

is then a usual tvAR(1) process defined in (1.1).

First it is clear that the conditions on functions (as) insure the existence of a

causal linear process (X
(n)
t )1≤t≤nT for any n ∈ N satisfying (1.2). More precisely,

we obtain the following moment relationships:

Proposition 2.1. Let X = (X
(n)
t )1≤t≤n, n∈N∗ satisfy (2.1) under Assumption

(A(ρ)) with ρ > 0. Then,

1. For any n ∈ N∗ and 1 ≤ t ≤ n,
∣∣E(X(n)

t

)∣∣ ≤ αt ∣∣E(X0)
∣∣.

2. Let s ∈ {1, . . . , T}. There exists functions γ
(2)
s ∈ Cρ([0, 1]) such as if

t ∈ {1, . . . , nT} and t ≡ s [T ]:

E
(
(X

(n)
t )2

)
= γ(2)s (

t

nT
) +O

( 1

n

)
,

with

{
γ(2)s (v) = σ2 1+

∑T−1
i=0 βs,i(v)

1−βs,T (v) ,

βt,i(v) =
∏i−1
j=0 a

2
t−j(v) ≤ α2i < 1.

(2.2)

3. Assume E(ξ40) = µ4 < ∞ and E(ξ30) = 0 (this holds e.g. if ξ0 admits a
symmetric distribution).

For s ∈ {1, . . . , T}, there exists functions γ
(4)
s ∈ Cρ([0, 1]) such as for

t ∈ {1, . . . , nT} with t ≡ s [T ]

E
(
(X

(n)
t )4

)
= γ(4)s (

t

nT
) +O

( 1

n

)
,

with

{
γ
(4)
s (v) =

(
µ4 + 6σ2γ

(2)
s (v)

) 1+∑T−1
i=0 δs,i(v)

1−δs,T (v) ,

δt,i(v) =
∏i−1
j=0 a

4
t−j(v) ≤ α4i < 1.

(2.3)

Moreover, for any (t, t′) ∈ {1, . . . , nT}2,

Cov
(
(X

(n)
t )2, (X

(n)
t′ )2

)
=
(
γ
(4)
s′

( t′
nT

)
+O

( 1

n

)) t−t′∏
i=1

a2t′+i(
t′ + i

n
). (2.4)

We will now assume X0 = 0.
In addition of the previous proposition, another relation can be easily estab-
lished. Indeed, for t ∈ {0, 1, . . . , nT}, with s = t [T ], by multiplying (2.1) by Xt

and taking the expectation:

at

(
t

nT

)
= as

( t

nT

)
=

E
(
XtXt−1

)
E
(
X2
t−1
) . (2.5)

The relation (2.5) is the foundation of the definition of the following non-
parametric estimators of the functions as(·).
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2.2. Asymptotic normality of the estimator

Assume that the sample (X1, . . . , XnT ) is observed for some n ≥ 1; this condition
entails a reasonable loss of at most T data and allows a more comprehensive
study.
For each s ∈ {1, . . . , T}, we define In,s =

{
s, s+T, . . . , s+ (n− 1)T

}
, a set with

#In,s = n. Now for t ∈ In,s, (2.5) becomes:

as

( t

nT

)
=

E
(
XtXt−1

)
E
(
X2
t−1
) .

A convolution kernel K : R → R will be required in the sequel and it satisfies
one of both the following assumptions:

Assumption (K): Let K : R→ R+ be a Borel bounded function such that:

•
∫
R
K(t)dt = 1 and K(−x) = K(x) for any x ∈ R;

• there exists β > 0 such as lim|t|→+∞ eβ |t|K(t) = 0.

Assumption (K̃): Let K : R→ R+ be a Borel bounded function such that:

•
∫
R
K(t)dt = 1 and K(−x) = K(x) for any x ∈ R;

• there exists some B > 0 such as K(t) = 0, if |t| > B.

Typical examples of kernel functions are K(t) = (2π)−1/2e−t
2/2 and K(t) =

1
2 I1[−1,1](t) satisfying respectively Assumptions (K) and (K̃).

Assume that a sequence of positive bandwidths (bn)n∈N is chosen in such a
way that

lim
n→∞

bn = 0, lim
n→∞

nbn =∞.

Now, keeping in mind the expression (2.5), for s ∈ {1, . . . , T} and u ∈ (0, 1), we
set

â(n)s (u) =
N̂

(n)
s (u)

D̂
(n)
s (u)

, with

 N̂ (n)
s (u) = 1

nbn

∑
j∈In,s K

( j
nT −u
bn

)
XjXj−1,

D̂(n)
s (u) = 1

nbn

∑
j∈In,s K

( j
nT −u
bn

)
X2
j−1.

(2.6)

since extremities are omitted we avoid the corresponding edge effects. The case
u = 0 does not make any contribution while the case u = 1 corresponds with
simple periodic behaviours and such results should be found in [12].

Using essentially a martingale central limit theorem (the steps of the proofs
are precisely detailed in Section 4), we obtain:
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Theorem 2.1. Let 0 < ρ ≤ 2 and Assumption (A(ρ)), let K satisfy Assumption

(K) or (K̃). Then, for a sequence (bn)n∈N of positive real numbers such as

limn→∞ bn n
1

1+2(ρ∧1) = 0,

√
nbn
(
âs(u)− E

(
âs(u)

)) L−→
n→+∞

N

(
0 ,

σ2

γ
(2)
s (u)

∫
R
K2(x) dx

)
,

for any u ∈ (0, 1), s ∈ {1, . . . , T}, with γ(2)s (u) = σ2 1 +
∑T−1
i=0 βs,i(u)

1− βs,T (u)
. (2.7)

Note that for ρ ≤ 1 the classical optimal semi-parametric minimax rate is
reached.
This is not the case if ρ ∈ (1, 2]. In that case, another moment condition is
needed in order to improve the convergence rate of âs(u).

Theorem 2.2. Let 1 ≤ ρ ≤ 2 and Assumption (A(ρ)), let K satisfy Assumption

(K) or (K̃). Moreover, suppose that E|ξ0|β <∞ with β = 4− 2ρ

5ρ− 4
∈
[
2,

10

3

]
and ξ0 admits a symmetric distribution. Then (2.7) holds for a sequence (bn)n∈N
of positive real numbers such as bn n

1
2ρ+1 −→

n→+∞
0.

Moreover in case ρ = 2 and if bn = cn−
1
5 then the central limit still holds but

the limit is now non centred:

N

(
c

5
2

γ
(2)
s (u)

(1

2
a′′s (u)γ(2)s (u) + a′s(u)(γ(2)s )′(u)

)∫
R
z2K(z) dz ,

σ2

γ
(2)
s (u)

∫
R
K2(x) dx

)
.

Remark 2.2. Optimal window widths write as bn ∼ cn−
1

2ρ+1 thus the above
result holds with a suboptimal window width. Moreover the symmetry assumption
is discussed in Remark 4.2. Now for the case ρ = 2 in case the derivatives of
as are regular around the point u, then the optimal window width actually may
be used and the central limit theorem again holds with a non-centred Gaussian
limit.

Remark 2.3. Of course, if T = 1, Theorems 2.1 and 2.2 hold. These results
provide another minimax estimation of the function u ∈ [0, 1]→ a(u) requiring
sharper moment and regularity conditions than the ones proposed in Theorem
4.1 of [8].

3. Monte-Carlo experiments

In this section, numerous Monte-Carlo experiments have been made for studying
the accuracy of the new non-parametric estimator âs(·). Firstly, we considered 3

typical functions [0, 1]→ a
(ρ)
s (u) ∈ Cρ([0, 1]) and such as supu∈[0,1],s∈N |a

(ρ)
s (u)| ≤

α < 1:

• For ρ = 2, we chose a
(2)
s (u) = 0.9 cos

(
2π nuT

)
cos(3u). Figure 1 exhibits the

graph of the function a
(2)
1 and an example of its estimation (for n = 1000);
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0.0 0.2 0.4 0.6 0.8 1.0

−0
.5

0.
0

0.
5

u

a

Fig 1. Graph of the function a
(2)
1 and an example of its estimation (for n = 1000).

0.0 0.2 0.4 0.6 0.8 1.0

−0.8
−0.6

−0.4
−0.2

0.0
0.2

u

a

Fig 2. Graph of the chosen function a
(0.5)
1 .

• For ρ = 1.5, we chose a(1.5)s (u) = 0.9 cos
(
2π
nu

T

) ∫ u

0

Wt(ω)

supx∈[0,1] |Wx(ω)|
dt

where (Wt)t∈[0,1] is an observed trajectory of a Wiener Brownian motion;

• For ρ = 0.5, we chose a(0.5)s (u) = 0.9 cos
(
2π
nu

T

) Wu(ω)

supx∈[0,1] |Wx(ω)|
where

(Wt(ω))t∈[0,1] is an observed trajectory of a Wiener Brownian motion.

Figure 2 exhibits the graph of this chosen function a
(0.5)
1 .

We also chose two ”typical” kernels:

• A bounded supported kernel, the well-known Epanechnikov kernel,KE(x) =
3
4 (1 − x2) I1{|x|≤1}, which is known to minimize the asymptotic MISE in
the kernel density estimation frame;

• An unbounded supported kernel, the well-known Gaussian kernel defined
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by KG(x) = 1√
2π

exp
(
− x2

2

)
.

We considered the cases n = 100, 200, 500 and 1000, and we fixed T = 2. Finally
1000 independent replications of (X(n)) are generated with two different cases
of innovations (ξt):

• Firstly, the case where the probability distribution of ξ0 is a Gaussian
N (0, 4) distribution such as E|ξ0|4 <∞ and therefore Theorem 2.1 holds
for ρ = 0.5 and Theorem 2.2 holds for ρ = 1.5 and ρ = 2.

• Secondly, the case where the probability distribution of ξ0 is a Student t(3)
(with 3 degrees of freedom) distribution and such as E|ξ0|β < ∞ for any
β < 3 but E|ξ0|3 =∞. Then Theorem 2.1 holds for ρ = 0.5 but Theorem
2.2 does not hold for ρ = 1.5 and ρ = 2.

Finally, for each n, functions a
(ρ)
s , kernel K and probability distributions of

ξ0, we present the results computed from 1000 replications and the following
methodology:

1. For each replication j, we defined bn = n−λ with λ = 0.10, 0.11, . . . , 0.80,
(ui)1≤i≤99 = 0.01, 0.02, . . . , 0.99, s = 1, 2, · · · , T , and the estimators âs(ui)
are computed.

2. For each replication j and each λ = 0.10, 0.11, . . . , 0.80, an estimator of
the MISE is computed:

M̂ISEs(λ) =
1

99

99∑
i=1

(
âs(ui)− as(ui)

)2
.

3. For each replication j, we minimised an estimator of the global square
root of MISE:

λ̂j = Arg min
0.1≤λ≤0.8

T∑
s=1

√
M̂ISEs(λ)

4. Then we computed λ = 1
1000

∑1000
j=1 λ̂j over all the replications.

5. Finally, we computed the estimator of the minimal global square root of
MISE,

MISE1/2 =
1

1000

1000∑
j=1

T∑
s=1

√
M̂ISEs(λ̂j).

As a consequence, λ and MISE1/2 are two interesting estimators relative to
Theorems 2.1 and 2.2. The first one specifies the link between the choice of an
optimal bandwidth bn qnd the regularity ρ of the functions as(·). The second
one measures the optimal convergence rate of the estimators âs(·) to as(·). All
the results are printed in Tables 1 and 2.

Conclusions of the simulations: Firstly, and as it should be deduced from
Theorem 2.1 and 2.2, we observed the larger the regularity ρ, the smaller λ
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Table 1
Results of the Montecarlo experiments providing the accuracy of âs for the three chosen

functions the three chosen functions with ξ0 following a N (0, 4) distribution, 1000
independent replications are generated.

a(ρ) a
(2)
s a

(1.5)
s a

(0.5)
s

Kernel KE KG KE KG KE KG

n = 100 λ 0.243 0.407 0.283 0.450 0.235 0.392

MISE1/2 0.248 0.239 0.286 0.282 0.354 0.353

n = 200 λ 0.227 0.363 0.278 0.429 0.250 0.386

MISE1/2 0.185 0.175 0.219 0.219 0.308 0.303

n = 500 λ 0.234 0.320 0.276 0.399 0.287 0.406

MISE1/2 0.129 0.119 0.154 0.156 0.256 0.254

n = 1000 λ 0.240 0.321 0.270 0.384 0.328 0.438

MISE1/2 0.098 0.093 0.124 0.122 0.226 0.221

Table 2
Results of the Montecarlo experiments providing the accuracy of âs for the three chosen

functions with ξ0 following a t(3) distribution, 1000 independent replications are generated.

a(ρ) a
(2)
s a

(1.5)
s a

(0.5)
s

Kernel KE KG KE KG KE KG

n = 100 λ 0.226 0.394 0.267 0.430 0.220 0.360

MISE1/2 0.341 0.320 0.350 0.340 0.418 0.405

n = 200 λ 0.207 0.343 0.259 0.402 0.225 0.362

MISE1/2 0.261 0.258 0.281 0.287 0.353 0.346

n = 500 λ 0.194 0.304 0.252 0.373 0.239 0.360

MISE1/2 0.214 0.201 0.213 0.217 0.302 0.296

n = 1000 λ 0.193 0.321 0.246 0.356 0.258 0.368

MISE1/2 0.166 0.093 0.172 0.181 0.262 0.275

and therefore the larger the optimal bandwidth bn = n−λ, and the faster the
convergence rate of âs. Secondly, even if the choice of the optimal bandwidth
is significantly different following the choice of the kernel (clearly smaller with
the Epanechnikov kernel), the optimal convergence rate is almost the same for
both the kernel. Finally, according also with Theorem 2.2, the convergence rate
is clearly slower with a heavy tail distribution (t(3)) than with a Gaussian dis-
tribution, and this phenomenon increases when ρ increases.

4. Proofs

We first provide the proof of Proposition 2.1.

Proof of Proposition 2.1.

1. We have EX(n)
1 = a1

( 1

nT

)
E(X0) from relations (2.1). From Assumption
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(A(ρ)) and since
∣∣∣a1( 1

nT

)∣∣∣ ≤ α < 1, we deduce the right term of (2.2).

2. Below, for ease of reading, we will omit the exponent n. Set vt = E
(
X2
t

)
,

and v = sups vs ∈ [0,+∞]; also write αt = a2t
(
t
nT

)
. We have:

vt = αt vt−1 + σ2 ≤ α2vt−1 + σ2 ≤ α2 sup
s
vs + σ2,

thus

sup
s
vs ≤

σ2

1− α
+ v0 <∞. (4.1)

Moreover, with δt = vt − vt−T for any t > T , we have:

δt = αtδt−1 + (αt − αt−T )vt−T−1,∣∣δt∣∣ ≤ α
∣∣δt−1∣∣+

C

n
, with C > 0, (4.2)

from (4.1) and since
∣∣αt−αt−T ∣∣ =

∣∣a2t ( t
nT

)
−a2t−T

(
t−T
nT

))∣∣∣ from Assump-

tion (K), implying

(
αt − αt−T

)2 ≤ 1

n
× max

1≤s≤T

∥∥∥∂(a2s)

∂u

∥∥∥
∞
≤ 2α

n
× max

1≤s≤T

∥∥∥∂as
∂u

∥∥∥
∞
. (4.3)

As a consequence of (4.2), we also obtain:∣∣δt∣∣ ≤ C

1− α
· 1

n
. (4.4)

Now use again the definition (2.1) of the model, and by iterating (4.1), we
derive:

vt = σ2 + αt
(
σ2 + αt−1vt−2

)
= · · ·

= σ2
(

1 +

T−2∑
i=0

αt · · ·αt−i
)

+ αt · · ·αt−T+1 vt−T

= σ2
(

1 +

T−2∑
i=0

αt · · ·αt−i
)

+ αt · · ·αt−T+1 vt +O
( 1

n

)
from (4.4).
Hence,

vt = σ2 1 +
∑T−2
i=0 αt · · ·αt−i

1− αt · · ·αt−T+1
+O

( 1

n

)
. (4.5)

imsart-ejs ver. 2014/10/16 file: nonstationarity24052017.tex date: May 27, 2017



Bardet and Doukhan/Non-parametric estimation of periodic time varying AR(1) processes10

Now quoting that αt−j = a2t−j
( t− j
nT

)
we set α̃t−j = a2t−j

( t

nT

)
for 1 ≤

j < T then since ρ ≥ 1 and from (4.5) we derive

vt = σ2 1 +
∑T−2
i=0 α̃t · · · α̃t−i

1− α̃t · · · α̃t−T+1
+O

( 1

n

)
= γ(2)s (

t

nT
) +O

( 1

n

)
. (4.6)

The conclusion follows.

3. The proof mimics the case of E(X2
t ). With At = at

( t

nT

)
, qt = EA4

t , denote

µk = E(ξk0 ), for k = 1, 2, 3, 4, then µ1 = 0.

wt = E(X4
t ) = E(AtXt−1+ξt)

4 = qtwt−1+4EAtEXt−1µ3+6EA2
t vt−1σ

2+µ4

Since µ3 = 0, we have:

wt = qt wt−1 + 6σ2 vt + µ4 ≤ α4 wt−1 + r(t), (4.7)

with r(t) = 6σ2 vt + µ4 and this implies as previously supt wt < ∞. We
also obtain: We also obtain:∣∣wt − wt−T ∣∣ ≤ C

1− α
· 1

n
. (4.8)

Finally by iterating (4.7), we obtain:

wt = qt · · · qt−T+1 wt−T +
(
r(t) +

T−2∑
i=0

(
qt · · · qt−i

)
r(t− i− 1)

)
= qt · · · qt−T+1 wt +O

( 1

n

)
+
(
r(t) +

T−2∑
i=0

(
qt · · · qt−i

)
r(t− i− 1)

)
from (4.8). Hence, always following the previous case

wt =
r(t) +

∑T−2
i=0

(
qt · · · qt−i

)
r(t− i− 1)

1− qt · · · qt−T+1
+O

( 1

n

)
=

r(t) +
∑T−2
i=0

(
qt · · · qt−i

)
r(t− i− 1)

1− qt · · · qt−T+1
+O

( 1

n

)
,

and this implies (2.3).
Finally, for any t < t′ such that t, t′ ∈ {1, . . . , nT}, since (Xt) is a causal
process and by iteration,

Cov (X2
t , X

2
t′) = αt Cov (X2

t−1, X
2
t′) + 0 + Cov (ξ2t , X

2
t′)

= αt Cov (X2
t−1, X

2
t′)

=
(
γ
(4)
s′

( t′
nT

)
+O

( 1

n

)) t−t′∏
i=1

αt+i,

where s′ ≡ t′ [T ] and
∣∣∣ t−t′∏
i=1

αt′+i

∣∣∣ ≤ α2|t−t′|.
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This completes the proof.

Now we establish a technical lemma, which we were not able to find in the
past literature (even if variants of this result may be found) and that will be
extremely useful in the sequel. For a bounded continuous function c defined
on [0, 1], and a kernel function H (see details below), then a Riemann sums
approximation yields (as for [17]’s estimator, see [18] for further developments):

lim
n→∞

1

nbn

∑
j∈In,s

H

(
j
nT − u
bn

)
c
( j

nT

)
= c(u),

where u ∈ (0, 1), In,s =
{
s, s + T, . . . , s + (n − 1)T} with s ∈ {1, . . . , T} and

T ∈ N∗.
More precisely we would like to provide expansions of

∆n =
1

nbn

∑
j∈In,s

H

(
j
nT − u
bn

)
c
( j

nT

)
− c(u). (4.9)

Lemma 4.1. Let u ∈ (0, 1), ρ > 0, c ∈ Cρ(Vu) a bounded function and H sat-
isfying Assumption (K)(ρ). Then, there exists C > 0 depending only on ‖H‖∞,
‖c‖∞, Lip (H) and Lip (c), such that, for n large enough and bn > 0,

∣∣∆n

∣∣ ≤ C ( An
nbn

+ bρn

)
,with

{
An = 1, under (K̃)(ρ),
An = log(n), under (K)(ρ).

(4.10)

Finally, if ρ ∈ N∗ we have:

∆n = bρn ·
c(ρ)(u)

ρ!

∫
R
zρH(z) dz

(
1 + o(1)

)
+O

( An
nbn

)
. (4.11)

Proof of Lemma 4.1.

• First assume that the function c ≡ 1 is a constant. Set vi = i(nT )−1

for j ∈ Z and for v ∈ R, define hn(v) = 1
bn
H
(
b−1n (v − u)

)
. Then hn is a

Lipschitz function with Liphn = 1
b2n

LipH. For 1 ≤ s ≤ T , we consider

the sets

Kn,s =
{
j ∈ N, |vs+jT − u| ≤ Anbn

}
=

[
(u−Anbn)n− s

T
, u+Anbn)n− s

T

]⋂
N,
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and Ln,s = In,s \Kn,s. Then, for n large enough,

∆n =
1

n

∑
i∈In,s

hn(vi)−
∫
R
hn(v) dv

=
1

n

∑
i∈Kn,s

hn(vi)−
∫
R
hn(v) dv +

1

n

∑
i∈Ln,s

hn(vi)

=

[(u+Anbn)n− s
T ]∑

j=[(u−Anbn)n− s
T ]+1

∫ vs+(j+1)T

vs+jT

(
hn(vs+jT )− hn(v)

)
dv

+
1

n

∑
i∈Ln,s

hn(vi)−
∫ ∞
(u+Anbn)+

1
n

hn(v) dv −
∫ (u−Anbn)+1/n

−∞
hn(v) dv.

Thus

∣∣∆n

∣∣ ≤ Lip (hn)

[(u+Anbn)n− s
T ]∑

j=[(u−Anbn)n− s
T ]+1

∫ vs+(j+1)T

vs+jT

(v − vs+jT )dv

+2

∫ ∞
(u+Anbn)

∣∣hn(v)
∣∣ dv + 2

∫ (u−Anbn)

−∞

∣∣hn(v)
∣∣ dv

≤ Lip (H)

b2n

2Anbnn

2n2
+ 2

∫ ∞
An

∣∣H(w)
∣∣ dw + 2

∫ −An
−∞

∣∣H(w)
∣∣ dw

≤ Lip (H)
An
nbn

+ C exp(−β An),

with C > 0 and using the assumptions on H. Then, if An ≥ β−1 log n
then exp(−β An) ≤ 1/n and we deduce (4.10).

• We now turn to the case of a non-constant function c. First, if ρ > 0, for
(u, v) ∈ (0, 1)2 the Taylor-Lagrange formula implies:

c(v)− c(u) = (v − u)c′(u) + · · ·+ (v − u)`

`!
c(`)
(
u+ λ(v − u)

)
,

with ` = dρe and λ ∈ (0, 1). Since c ∈ Cρ([0, T ]),∣∣c(`)(u+ λ(v − u)
)
− c(`)(u)

∣∣ ≤ Cρ ∣∣λ(v − u)
∣∣ρ−` ≤ Cρ ∣∣v − u∣∣ρ−`.

Therefore,

c(v)− c(u) = (v − u)c′(u) + · · ·+ (v − u)`

`!
c(`)(u) +R(u, v), (4.12)

with |R(u, v)| ≤ Cρ |u − v|ρ. Then for any u ∈ (0, 1), using Assumption
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(K)(ρ) and especially the relation
∫
zpH(z)dz = 0 for p = 1, . . . , `,∣∣∣ ∫

R
hn(v) c(v) dv − c(u)

∫
R
hn(v) dv

∣∣∣ =
∣∣∣ ∫ ∞
−∞

H(z)
(
c(u+ bnz)− c(u)

)
dz
∣∣∣

=
∣∣∣ ∫ ∞
−∞

H(z)R(u, u+ bnz)dz
∣∣∣ (4.13)

≤ Cρ b
ρ
n C

∫ ∞
−∞

e−β|z||z|ρdz

≤ C ′ bρn (4.14)

with C ′ > 0. Here we denote kn(v) = hn(v)c(v) for v ∈ [0, 1].
Now, if ρ ∈ (0, 1), we have

|kn(v1)− kn(v2)| ≤ ‖c‖∞ Lip (hn) |v1 − v2|+
‖H‖∞
bn

Cρ |v1 − v2|ρ,

and therefore using the previous results:

∣∣∆n

∣∣ ≤ [(u+Anbn)n− s
T ]∑

j=[(u−Anbn)n− s
T ]+1

∫ vs+(j+1)T

vs+jT

C
(

Lip (hn) |v − vs+jT |

+
1

bn
|v − vs+jT |ρ

)
dv + C ‖c‖∞ exp(−βAn)

+
∣∣∣ ∫

R
hn(v) c(v) dv − c(u)

∫
R
hn(v) dv

∣∣∣
≤ C

( An
nbn

+
An
nρ

+ exp(−βAn) + bρn

)
.

from (4.14) and this implies (4.10) since nbn → ∞ and therefore n−ρ is
negligible with respect from bρn.
Now, if ρ ≥ 1 and since H and c are bounded continuous Lipschitz func-
tions, we obtain the inequality

Lip (kn) ≤ ‖c‖∞Lip (hn) +
1

bn
‖H‖∞Lip (c) <∞.

Then, using the same computations than previously (replace hn by hn×c),

|∆n| ≤
[(u+Anbn)n− s

T ]∑
j=[(u−Anbn)n− s

T ]+1

∫ vs+(j+1)T

vs+jT

∣∣kn(vs+jT )− kn(v)
∣∣ dv

+ C ‖c‖∞ exp(−βAn) +
∣∣∣ ∫

R
hn(v) c(v) dv − c(u)

∫
R
hn(v) dv

∣∣∣
≤ C

An
nbn

(
‖c‖∞Lip (H) + bn Lip (c)‖H‖∞

)
+ C‖c‖∞e−βAn + C ′bρn,

from (4.14) and this completes the first item since bn is supposed to con-
verge to 0. The proof is now easily completed.
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• Finally, in the case ρ ∈ N∗, we can use the previous case an a Taylor-

Lagrange expansion of the function c, implying R(u, v) =
c(ρ)(θ)

ρ!

∣∣u− v∣∣ρ
with θ = λu+ (1− λ)v and λ ∈ [0, 1].

Then, using (4.13) and with µu(z) ∈ [0, 1], and ζn =

∫
R
hn(v) c(v) dv −

c(u)

∫
R
hn(v) dv

ζn =
bρn
ρ!

∫ ∞
−∞

H(z)zρc(ρ)
(
u+ µu(z)bnz

)
dz

=
bρn
ρ!
c(ρ)(u)

∫ ∞
−∞

H(z)zρ dz
(
1 + o(1)

)
from Lebesgue theorem on dominated convergence.

Lemma 4.2. Let H satisfy Assumption (K)(1) and let (X
(n)
t ) be a solution of

(2.1). Then for any u ∈ (0, 1), s ∈ {1, . . . , T},

1

nbn

n∑
j=1

H
( s+(j−1)T

nT − u
bn

)(
X

(n)
s+(j−1)T−1

)2 P−→
n→+∞

σ2 1 +
∑T−1
i=0 βs,i(u)

1− βs,T (u)
.

Proof of Lemma 4.2. We use here a limit theorem for L1-mixingales established
in [1].
Indeed, for u ∈ (0, 1), s ∈ {1, . . . , T}, let

Zn,t =
1

bn
H
( s+(t−1)T

nT − u
bn

)((
X

(n)
s+(t−1)T−1

)2 − E
(
X

(n)
s+(t−1)T−1

)2)
. (4.15)

Then, set

c0(t) = 1, and ck(t) =

k∏
i=1

at+1−i

( t+ 1− i
nT

)
, for k ≥ 1,

we have:

X
(n)
t =

∞∑
k=0

ck(t) ξt−k. (4.16)
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Therefore,

E
[
Zn,t|F (s)

n,t−m
]

=
1

bn
H
( s+(j−1)T

nT − u
bn

)
×
{
E
[( ∞∑

k=0

ck(s+ (t− 1)T − 1) ξs+(t−1)T−1−k

)2
| F (s)

n,t−m

]
− σ2

∞∑
k=0

c2k(s+ (t− 1)T − 1)
}

=
1

bn
H
( s+(j−1)T

nT − u
bn

){( ∞∑
k=mT−1

ck(s+ (t− 1)T − 1) ξs+(t−1)T−1−k

)2
− σ2

∞∑
k=mT−1

c2k(s+ (t− 1)T − 1)
}
.

But for any t ∈ N, we have |ck(t)| ≤ αk from Assumption (A(ρ)).
Therefore,

∥∥∥E[Zn,t | F (s)
n,t−m

]∥∥∥
1
≤ 1

bn
H
( s+(j−1)T

nT − u
bn

)
×
{
E
[( ∞∑

k=mT−1

ck(s+ (t− 1)T − 1) ξs+(t−1)T−1−k

)2]
+ σ2

∞∑
k=mT−1

α2k
}

≤ 2σ2

bn
H
( s+(j−1)T

nT − u
bn

)
× α2mT−2

1− α2
.

Thus, using the notations of definition 2 in [1], it is easy to derive that (Zn,t)
is a triangular array such that φm = α2mT−2 → 0 (as m→∞) since 0 ≤ α < 1
and:

1

n

n∑
t=1

|cnt| −→
n→+∞

2σ2

(1− α2)
<∞, with cnt =

2σ2

(1− α2)bn
H
( s+(j−1)T

nT − u
bn

)
.

As a consequence,

1

n

n∑
t=1

Zn,t
P−→

n→+∞
0,

implies

1

nbn

n∑
j=1

H
( s+(j−1)T

nT − u
bn

)((
X

(n)
s+(j−1)T−1

)2 − E
((
X

(n)
s+(j−1)T−1

)2)) P−→
n→+∞

0.

Now, we collect the above relations. Lemma 4.1 and Proposition 2.1 with the
ρ−regularity of the function c(v), together conclude the proof.
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Lemma 4.3. Under the conditions of Theorem 2.1, with (Yn,i)1≤i≤n, n∈N defined
in (4.26), for any ε > 0,

n∑
j=1

E
(
Y 2
n,j I1{|Yn,j |≥ε}| F

(s)
n,j−1

) P−→
n→+∞

0. (4.17)

Proof of Lemma 4.3. Since Eξ20 = 1 < ∞ this is easy to exhibit an increasing
sequence (ck)k with

c0 = 1, c1 = 2 and ck+1 ≥ c2k, where E
(
ξ20 I1{|ξ0|≥ck}

)
≤ 1

k3
, for all k ∈ N∗.

Define g(·) as the piecewise affine function such that g(ck) = k for k ∈ N and
g(0) = 0. Then the function ψ defined by ψ(x) = x2g(x) for x ≥ 0 satisfies
ψ(0) = 0 and it is a continuous and non-decreasing function (for almost all
x > 0, ψ′(x) = x2g′(x) + 2xg(x) > 0) and convex function (indeed, for almost
all x > 0, ψ′′(x) = 4xg′(x) + 2g(x) > 0). Hence, we have:

∞∑
k=1

E
(
ξ20g(|ξ0|) I1{ck≤|ξ0|<ck+1}

)
≤
∞∑
k=0

E
(
ξ20g(|ξ0|) I1{k≤g(|ξ0|)<k+1}

)
≤
∞∑
k=1

(k + 1)E
(
ξ20 I1{ck≤|ξ0|}

)
≤
∞∑
k=1

k + 1

k3
<∞.

Therefore,

Eψ(|ξ0|) ≤ E
(
ξ20g(|ξ0|) I1{0≤|ξ0|<2}

)
+

∞∑
k=0

E
(
ξ20g(|ξ0|) I1

{ck≤|ξ0|
)
<ck+1}

<∞.(4.18)

The construction of (ck)k and the relation ck+1 ≥ c2k together imply:

ψ(xy) ≤ ψ(x)ψ(y). (4.19)

Indeed, this relationship is equivalent to

g(xy) ≤ g(x)g(y), for any 0 ≤ x ≤ y. (4.20)

But if 0 ≤ x ≤ 1 and y ≥ x, then xy ≤ y: therefore g(xy) ≤ g(y) ≤ g(x)g(y)
since g is an increasing function and g(x) ≥ 1 for any x ≥ 0. Moreover, if
1 < x ≤ y, there exists 0 ≤ k and λ ∈ [0, 1] such as y = λck + (1− λ)ck+1. But
h : [0,∞)→ R+ defined by x 7→ h(x) = g(x2) is a convex function since h′′ ≥ 0
a.e. As a consequence,

g(y2) = h(λck + (1− λ)ck+1) ≤ λg(c2k) + (1− λ)g(c2k+1)

≤ λg(ck+1) + (1− λ)g(ck+2) ≤ λ(k + 1) + (1− λ)(k + 2) = k + 2− λ,

from the construction of (ck). Since g(y) = λg(ck) + (1− λ)g(ck+1) = k+ 1− λ
because g is a piecewise function, we finally obtain g(y2) ≤ g(y)+1. We conclude
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with g(xy) ≤ g(y2) for any 1 ≤ x ≤ y and g(x) ≥ 2 (since c1 = 2).
Hence the function ψ is a Orlicz function and ‖ξ0‖ψ <∞ with

‖V ‖ψ = inf
{
z > 0; Eψ

( |V |
z

)
≤ 1
}
, for any random variable V. (4.21)

Now theorem 1.1 in [14] implies:

‖V ‖ψ ≤ inf
z>0

1

z

(
1 + E

[
ψ(z|V |)

])
≤ 2 ‖V ‖ψ. (4.22)

Therefore ‖V ‖ψ ≤ 1 + Eψ(|V |), and 1
zEψ(z|V |) ≤ 2‖V ‖ψ for any z > 0 since

from convexity

Eψ(|V |) ≤ z − 1

z
· Eψ(0) +

1

z
· Eψ(z|V |) ≤ 2‖V ‖ψ

and ψ(0) = 0.

Now choose ‖X0‖ψ <∞.

Then, from the definition of (X
(n)
t ) and the triangular inequality

‖X(n)
t ‖ψ ≤ α‖X

(n)
t−1‖ψ + ‖ξt‖ψ ≤ αt‖X0‖ψ +

t−1∑
j=0

αj‖ξt−j‖ψ for any t ∈ N∗,

with 0 ≤ α < 1. Since ‖ξs‖ψ = ‖ξ0‖ψ for any s ∈ N, we finally obtain

sup
t∈N

{
‖X(n)

t ‖ψ
}
≤ 1

1− α
‖ξ0‖ψ + ‖X0‖ψ <∞.

Thus (4.19) implies with the independence of ξt and X
(n)
t−1 that:

Eψ(|ξtX(n)
t−1|) ≤ Eψ(|ξt|) · Eψ(|X(n)

t−1|).

Now relation (4.22) with z = 1 entails

sup
t∈N∗

{
‖ξtX(n)

t−1‖ψ
}
<∞.

Thus with t = s+ (j − 1)T we have from (4.22),

‖Yn,j‖ψ ≤
1√
nbn

∣∣∣K( t
nT − u
bn

)∣∣∣‖ξt‖ψ‖X(n)
t−1‖ψ <∞.
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Again using (4.19) and with Kt = K
(

t
nT −u
bn

)
,

E
(
Y 2
j I1{|Yj |≥ε}

)
=

1

nbn
E
(
(KtξtX

(n)
t−1)2 I1{

g(|KtξtX(n)
t−1|)≥g(ε

√
nbn)

})
≤ 1

nbn
E
(

(KtξtX
(n)
t−1)2 ·

g(|KtξtX
(n)
t−1|)

g(ε
√
nbn)

I1{
g(|KtξtX(n)

t−1|)≥g(ε
√
nbn)

})
≤ 1

ψ(ε
√
nbn)

E
(
ψ(KtξtX

(n)
t−1)

)
≤ 2ψ(|Kt|)

ψ(ε
√
nbn)

sup
t∈N∗
‖ξtX(n)

t−1‖ψ.

As a consequence, for any ε > 0,

E
( n∑
j=1

E
(
Y 2
n,j I1{|Yn,j |>ε}|F

(s)
n,j−1

))

≤
supt∈N∗ ‖ξtX

(n)
t−1‖ψ

g(
√
nbn)

× 1

nbn

n∑
j=1

ψ
(∣∣∣K( s+(j−1)T

nT − u
bn

)∣∣∣)

≤ 2×
supt∈N∗ ‖ξtX

(n)
t−1‖ψ

g(
√
nbn)

∫
R
ψ(|K(x)|) dx

if n is large enough, from Lemma 4.1. As a consequence, since g(
√
nbn) −→

n→+∞
∞,

then for any ε > 0, E
(∑n

j=1 E
(
Y 2
n,j I1{|Yn,j |>ε}|F

(s)
n,j−1

))
−→

n→+∞
0 and since

Y 2
n,j I1{|Yn,j |>ε} is a non-negative triangular array, the proof of Lemma 4.3 is

complete.

Proof of Theorem 2.1. Using (2.1), write

N̂ (n)
s (u) =

1

nbn

∑
j∈In,s

K
( j
nT − u
bn

)
X

(n)
j−1

(
as

( j

nT

)
X

(n)
j−1 + ξj

)
we decompose it as: N̂

(n)
s (u) = Ñ

(n)
s (u) +M

(n)
s (u), with

M (n)
s (u) =

1

nbn

∑
j∈In,s

K
( j
nT − u
bn

)
ξjX

(n)
j−1,

Ñ (n)
s (u) =

1

nbn

∑
j∈In,s

K
( j
nT − u
bn

)
as
( j
nT

)
(X

(n)
j−1)2

Therefore we obtain:√
nbn
(
âs(u)− as(u)

)
=

√
nbn

M
(n)
s (u)

D̂
(n)
s (u)

+
Jn

D̂
(n)
s (u)

, (4.23)
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with

D̂(n)
s (u) =

1

nbn

∑
j∈In,s

K
( j
nT − u
bn

)
X2
j−1, (4.24)

Jn =
1√
nbn

∑
j∈In,s

K
( j
nT − u
bn

)
(X

(n)
j−1)2

(
as
( j
nT

)
− as(u)

)
. (4.25)

We are going to derive the consistency of the estimator âs(u) of as(u), in two
parts.

1/ We first prove that
√
nbnM

(n)
s (u)

/
D̂

(n)
s (u)

L−→
n→+∞

N
(
0, C

)
for some con-

venient constant C > 0.
Let s ∈ {1, . . . , T} and u ∈ (0, 1). Denote for n ∈ N∗ and j ∈ {1, . . . , n},

Yn,j =
1√
nbn

K
( s+(j−1)T

nT − u
bn

)
ξs+(j−1)TX

(n)
s+(j−1)T−1. (4.26)

This is clear that (Yn,j)≤j≤n, n∈N∗ is a triangular array of martingale in-

crements with respect to the σ-algebra F (s)
n,t = σ

(
(ξi)i≤s+(t−1)T

)
. Indeed

(X
(n)
t )t≥0 is a process, causal with respect to (ξt)t≥0. This implies that ξt

is independent of (X
(n)
i )i≤t−1 and that E(ξ0) = 0. We are going to use a

central limit theorem for triangular arrays of martingale increments, see
for example [13].
Denote

σ2
n,j = E

(
Y 2
n,j | F

(s)
n,j−1

)
=

1

nbn
K2
( s+(j−1)T

nT − u
bn

)(
X

(n)
s+(j−1)T−1

)2
,

since E(ξ20) = 0. Using Lemma 4.2, we obtain:

n∑
j=1

σ2
n,j

P−→
n→+∞

σ2 ·
1 +

∑T−1
i=0 βs,i(u)

1− βs,T (u)
·
∫
R
K2(x)dx, (4.27)

D̂
(n)
s (u) is defined from (4.24) and satisifies

D̂(n)
s (u)

P−→
n→+∞

σ2 1 +
∑T−1
i=0 βs,i(u)

1− βs,T (u)
≡ γ(2)s (u). (4.28)

Moreover, from Lemma 4.3, then for any ε > 0,

n∑
j=1

E
(
Y 2
n,j I1{|Yn,j |≥ε}| F

(s)
n,j−1

) P−→
n→+∞

0.

As a consequence, the conditions of the central limit theorem for triangular
arrays of martingale increments, in [13]), are satisfied and this implies that
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j=1 Yn,j√∑n
j=1 σ

2
n,j

L−→
n→+∞

N
(
0, 1
)
.

Therefore from Slutsky lemma entails:

√
nbn

M
(n)
s (u)

D̂
(n)
s (u)

=

∑n
j=1 Yn,j√∑n
j=1 σ

2
n,j

×

√∑n
j=1 σ

2
n,j

1
nbn

∑n
j=1K

( s+(j−1)T
nT −u
bn

)(
X

(n)
s+(j−1)T−1

)2
L−→

n→+∞
N

(
0, σ2 1− βs,T (u)

1 +
∑T−1
i=0 βs,i(u)

∫
R
K2(x) dx

)
. (4.29)

2/ The second term Jn/D̂
(n)
s (u) in the expansion of

√
nbn
(
âs(u)− as(u)

)
de-

pends on the non-martingale term Jn, see (4.25), and the consistent term

D̂
(n)
s (u), see (4.24) and (4.28). The asymptotic behavior of this second

term can be first obtained following two steps.

a. A first step consists in establishing an expansion of EJn. Using Propo-

sition 2.1 and with γ
(2)
s ∈ Cρ([0, 1]) defined in (2.2), we have

EJn =
√
nbn

1

nbn

∑
j∈In,s

K
( j
nT − u
bn

)
×
(
γ(2)s (

t

nT
) +O

( 1

n

))(
as
( j
nT

)
− as(u)

)
.

Using twice Lemma 4.1, with firstly c(x) = γ
(2)
s (x)(as(x) − as(u)),

and secondly c(x) = (as(x)− as(u)), we deduce:∣∣EJn∣∣ ≤ C
√
nbn

( An
nbn

+ bρn

)(
1 +O

( 1

n

))
. (4.30)

As a consequence, if bn = o
(
n−1/(1+2ρ)

)
, then EJn −→

n→+∞
0.

In the case ρ ∈ {1, 2}, we also obtain from (4.11) and with ds(v) =

(as(v)− as(u))γ
(2)
s (v) ∈ Cρ([0, 1]),

EJn =
√
nbn

(
O
( An
nbn

)
+ bρn

d
(ρ)
s (u)

ρ!

∫
R
zρK(z) dz

(
1 + o(1)

))
=

d
(ρ)
s (u)

ρ!

∫
R
zρK(z) dz

√
nb2ρ+1
n + o(

√
nb2ρ+1
n ) +O

( An√
nbn

)
=

{
o(
√
nb3n) +O

(
An√
nbn

)
, if ρ = 1,

Bs(u)
√
nb5n + o(

√
nb5n) +O

(
An√
nbn

)
, if ρ = 2.

(4.31)

with Bs(u) =
d′′s (u)

2

∫
R
z2K(z) dz.
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b. Now we are going to prove a first consistency result for Jn/D̂
(n)
s (u)

using the Markov Inequality. Indeed,

E|Jn| ≤
1√
nbn

∑
j∈In,s

∣∣∣K( j
nT − u
bn

)∣∣∣∣∣as( j
nT

)
− as(u)

∣∣Var (X
(n)
j−1)

≤ C√
nbn

∑
j∈In,s

∣∣∣K( j
nT − u
bn

)∣∣∣∣∣as( j
nT

)
− as(u)

∣∣.
Now using Lemma 4.1 with c(v) = |as(v)−as(u)| which also belongs
in Cρ([0, 1]) (this is clear if ρ < 1 and, for ρ = 1 the Lipschitz property
of z 7→ |z| allows to conclude), and c(u) = 0, we derive:

E|Jn| ≤
√
nbn

( An
nbn

+ bρ∧1n

)
. (4.32)

Therefore, if bn = o
(
n−

1
1+2(ρ∧1

)
, then EJn −→

n→+∞
0 and E|Jn| −→

n→+∞
0,

implying from Markov Inequality, Jn
P−→

n→+∞
0. Finally, since (4.28) estab-

lishes the consistency of D̂
(n)
s (u), from Slutsky lemma, we deduce

Jn

D̂
(n)
s (u)

P−→
n→+∞

0. (4.33)

As a consequence, the proof of the Theorem results by using the decom-
position (4.23), the consistency results (4.29) and (4.33).

Proof of Theorem 2.2. We restrict this proof to the case ρ ∈ (1, 2].

a. Case E
(
ξ40
)
<∞.

Denote again Kt = K
( t
nT − u
bn

)
, for t ∈ Z. First remark that the symme-

try assumption on ξ0’s distribution implies E
(
ξ0
)

= E
(
ξ30
)

= 0.

Var (Jn) =
1

nbn

∑
t∈In,s

∑
t′∈In,s

KtKt′ Cov (X2
t , X

2
t′)

×
(
as
( t

nT

)
− as(u)

)(
as
( t

nT

)
− as(u)

)
=

1

nbn

∑
(t,t′)∈Ln,s,α

KtKt′ Cov (X2
t , X

2
t′)

×
(
as
( t

nT

)
− as(u)

)(
as
( t′
nT

)
− as(u)

)
+

1

nbn

∑
(t,t′)∈I2n,s\Ln,s,α

KtKt′Cov (X2
t , X

2
t′)

×
(
as
( t

nT

)
− as(u)

)(
as
( t′
nT

)
− as(u)

)
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with Ln,s,α =
{

(t, t′) ∈ I2n,s, |t− t′| ≤
logn
logα

}
.

Firstly, consider the first left side term of the last inequality. If t ∈ In,s then

Proposition 2.1 entails Var (X2
t ) = γ

(2)
s (t/(nT )) +O(1/n) for an adequate

function γ
(2)
s ∈ Cρ([0, 1]). Hence we also have Var (X2

t ) = γ
(2)
s (t/(nT )) +

O(log(n)/n). Here the fact that (z 7→ z2) is a function in Cρ, implies that

the function defined from b(v) =
(
as(v)− as(u)

)2
is in Cρ([0, 1]) too, and

again b(u) = 0 and

∫
xH2(x)dx = 0. Therefore, we use Lemma 4.1 to

derive:

∑
t,t′∈Ln,s,α

KtKt′Cov (X2
t , X

2
t′)
(
as
( t

nT

)
− as(u)

)(
as
( t′
nT

)
− as(u)

)

=
∑

t,t′∈Ln,s,α

KtKt′

|t−t′|∏
i=1

a2s+i
( t

nT

)(
γ(4)s

( t+ i

nT

)
+O

( 1

n

))
×
(
as
( t

nT

)
− as(u)

)(
as
( t′
nT

)
− as(u)

)
=

logn
logα∑
j=0

∑
t∈In,s

Kt

(
Kt +O

( log n

nb2n

)) j∏
i=1

a2s+i
( t

nT

)(
γ(4)s

( t

nT

)
+O

( log n

n

))
×
(
as
( t

nT

)
− as(u)

)(
as
( t′
nT

)
− as(u)

)
≤

logn
logα∑
j=0

α2j
( ∑
t∈In,s

K2
t

j∏
i=1

γ(4)s

( t

nT

)
×
(
as
( t

nT

)
− as(u)

)2
+O

( log n

nb2n

)))

≤ 2

∞∑
j=0

α2j
∑
t∈In,s

K2
t

j∏
i=1

γ(4)s

( t

nT

)
×
(
as
( t

nT

)
− as(u)

)2
≤ 2nbn

∞∑
j=0

α2j 1

nbn

∑
t∈In,s

K2
( t
nT − u
bn

)
gj
( t

nT

)
,

with gj(x) =
(
as(x) − as(u)

)2 j∏
i=1

(
γ(4)s (x), since for n large enough the

above expression satisfies
∣∣O( lognnb2n

)∣∣ ≤ 1. Using Lemma 4.1, with functions

H = K2 and c = gj with gj ∈ Cρ([0, 1]) (quote that maxi≤j
(
‖gi‖ ∨
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Lip (gi)
)

= O(j)), we finally obtain:∣∣∣ 1

nbn

∑
t,t′∈Ln,s,α

KtKt′Cov (X2
t , X

2
t′)
(
as
( t

nT

)
− as(u)

)
(as
( t′
nT

)
− as(u)

)∣∣∣
≤ C

( An
nbn

+ bρn

)
. (4.34)

Secondly, from Proposition 2.1, for t, t′ ∈ I2n,s \ Ln,s,α, we have

|Cov (X2
t , X

2
t′)| ≤ C α2 |t−t′| ≤ C

n2
.

Thus,∣∣∣ 1

nbn

∑
t,t′∈I2n,s\Ln,s,α

KtKt′Cov (X2
t , X

2
t′)
(
as
( t

nT

)
−as(u)

)(
as
( t′
nT

)
−as(u)

)∣∣∣
≤ nbn

n2

( 1

nbn

∑
t∈In,s

Kt

(
as
( t

nT

)
− as(u)

))2
≤ C bn

n

( An
nbn

+ bρn

)
, (4.35)

from Lemma 4.1. Then, (4.34) and (4.35) provide

Var
(
Jn
)
≤ C

( An
nbn

+ bρn

)
(4.36)

implying Var
(
Jn
)
−→

n→+∞
0 for any (bn) such as

max(bn, An(n bn)−1) −→
n→+∞

0.

b. Case E
(
|ξ0|β

)
<∞, for some β ∈ [2, 4].

From its expression given in (4.25), Jn is a quadratic form of (Xt) and
therefore, as Xt is a linear process with innovations (ξt), Jn is also a
quadratic form of (ξt). As a consequence, the fourth order moment can be
injected such as there exists a sequence zn ↓ 0 (as n ↑ ∞) satisfying:

Var (Jn) ≤ zn
(
E(ξ40) ∨ 1

)
= zn

(
µ4 ∨ 1

)
, and zn = O

( An
nbn

+ bρn
)
. (4.37)

Now, assume only that E(ξ20) <∞. The innovations (ξt) can be truncated
at level M , and write

ξt,M = ξt I1|ξt|≤M for any t ∈ N.

Note that the symmetry assumption entails E(ξj,M ) = 0. Define also De-
fine also

X
(n)
t,M = at

( t

nT

)
X

(n)
t−1,M + ξt,M , 1 ≤ t ≤ nT, n ∈ N

and Jn,M =
1√
nbn

∑
j∈In,s

K
( j
nT − u
bn

)
(X

(n)
j−1)2

(
as
( j
nT

)
− as(u)

)
.
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A consequence of (4.37) is:

Var (Jn,M ) ≤ zn E(ξ40,M ) ≤ znM2h(M), (4.38)

with h(M) = E
(
|ξ0|2 I1{|ξ0|>M}

)
which satisfies limM→∞ h(M) = 0.

Moreover,

∣∣Jn − Jn,M ∣∣ =
1√
nbn

∑
j∈In,s

K
( j
nT − u
bn

)
×
∣∣(X(n)

j−1)2 − (X
(n)
j−1,M )2

∣∣∣∣as( j
nT

)
− as(u)

∣∣. (4.39)

But

X
(n)
j−1,M −X

(n)
j−1 = aj−1

(j − 1

nT

)(
X

(n)
j−2,M −X

(n)
j−2
)

+
(
ξj−1,M − ξj−1

)
,∣∣X(n)

j−1,M −X
(n)
j−1
∣∣ ≤ α

∣∣X(n)
j−2,M −X

(n)
j−2
∣∣+ |ξj−1| I1{|ξj−1|>M}. (4.40)

We first remark from Proposition 2.1 that E(X
(n)
j−1)2 + E(X

(n)
j−1,M )2 ≤ c

for some constant c > 0. Hence, Cauchy-Schwartz Inequality shows that,
for each j:

E
(∣∣(X(n)

j−1)2 − (X
(n)
j−1,M )2

∣∣) ≤√cδj−1,M , (4.41)

with δj−1,M = E
(
|X(n)

j−1 −X
(n)
j−1,M |2

)
.

We are going to bound δj−1,M . A first simple bound is clearly δj−1,M ≤ 2 c
and we use it together with (4.40), and Cauchy-Schwartz inequality in
order to derive

δj−1,M ≤ α2δj−2,M + 2αE
(
|X(n)

j−2,M −X
(n)
j−2||ξj−1| I1{|ξj−1|>M}|

)
+E
(
|ξj−1|2 I1{|ξj−1|>M}

)
≤ α2δj−2,M + 2α

√
2c
√
E|ξj−1|2 I1{|ξj−1|>M} + E|ξj−1|2 I1{|ξj−1|>M}

≤ α2δj−2,M +H(M) (with H(M) = 2α
√

2c
√
h(M) + h(M))

≤ α4δj−3,M + (1 + α2)H(M)

≤ · · ·
≤ α2(j−1)δ0,M + (1 + · · ·+ α2(j−2))H(M)

≤ 2

1− α2
H(M)

since δ0,M ≤ h(M) ≤ H(M). Now, from (4.41), we obtain for M large
enough:

E
∣∣(X(n)

j−1)2 − (X
(n)
j−1,M )2

∣∣ ≤√ 2c

1− α2

√
H(M) ≤ C h1/4(M) (4.42)
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with C > 0 and always with h(M) = E
(
|ξ0|2 I1{|ξ0|>M}

)
. Now a careful use

of (4.32) and (4.39) entails:

E|Jn − Jn,M | ≤ C
√
nbn

( An
nbn

+ bn

)
h1/4(M) (4.43)

since x→ |a(x)−a(u)| is a C1 function (in the above defined sense). Finally,
using Cauchy-Schwartz inequality in (4.38), we obtain for M large enough,

E|Jn| ≤ E|Jn − Jn,M |+
√

Var (Jn,M )

≤ C
(√

nbn

( An
nbn

+ bn

)
h1/4(M) +

( An
nbn

+ bρn
)1/2

M h1/2(M)
)

≤ C
(√

nb3n h
1/4(M) + bρ/2n M h1/2(M)

)
(4.44)

assuming An/nbn = o(b
ρ/2
n ) i.e. (n/An)−2/(2+ρ) = o(bn) (and note that

−2/(2 + ρ) ≤ 1/(1 + 2ρ)).
Now, if E

(
|ξ0|β

)
< ∞ with β ∈ (2, 4], then using Holder and Markov

Inequalities, there exists Cβ > 0 such as

h(M) = E
(
|ξ0|2 I1{|ξ0|>M}

)
≤ CβM2−β .

Since here bn = o
(
n−1/(1+2ρ)

)
, does not yields the minimax rates, we

deduce that
√
nb3n h

1/4(M) −→
n→+∞

0 when M1+2ρ ≥ n(4ρ−4)/(β−2)

b
ρ/2
n M h1/2(M) −→

n→+∞
0 when M1+2ρ ≤ nρ/(4−β)

.

Thus, from inequality (4.44), we deduce that the optimal choice is obtained
when

4ρ− 4

β − 2
=

ρ

4− β
, which entails β = 4− 2 · ρ

5ρ− 4
.

d. Case ρ = 2.
The expression of the non-central limit for the case of optimal window
widths and the expansion of the bias (4.31) now the asymptotics expression
for (4.33) yields the proposed noncentred Gaussian limit, see Remark 4.1.
The same truncation step as above is also needed.

The proof is now complete.

Remark 4.1. Using the previous bound (4.30) of EJn and Bienaymé-Tchebychev

inequality, we deduce that if bn = o
(
n−1/(1+2ρ)

)
then Jn

P−→
n→+∞

0.

Moreover, if ρ = 2 and bn = c n−1/5, using the expansion (4.31) of EJn and

again Bienaymé-Tchebychev inequality, then Jn
P−→

n→+∞
Bs(u) c5/2.

Therefore with the consistency result (4.28), for any u ∈ (0, 1) and s ∈ {1, . . . , T},

Jn

D̂
(n)
s (u)

P−→
n→+∞

Bs(u)
c

5
2

σ2

1 +
∑T−1
i=0 βs,i(u)

1− βs,T (u)
.
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Remark 4.2. For the general case with maybe ξ0 non symmetric and Eξ0 = 0,

the item 3. of Proposition 2.1 needs some improvements. Denote w
(k)
t = E(Xk

t )

for k = 1, 3, then w
(4)
t = wt and w

(2)
t = vt, then (4.7) turns to be written

wt = qtwt−1 + 4EAtEXt−1µ3 + 6σ2vt + µ4 ≤ α4wt−1 + r(t), (4.45)

as previously supt wt <∞.

We need to derive suitable equivalents of w
(k)
t if k = 1. Firstly

w
(1)
t = EAtw(1)

t−1 = · · · = EAt · · ·EA1 · EX0,

and in fact this term is negligible and the proof of Proposition 2.1 and Lemma
3. remains unchanged.
In this case the proof of the above point 2/ c. needs a simple improvement and

ξj,M = ξj ∧M ∨ (−M)− E (ξj ∧M ∨ (−M)) .

In this truncated setting, inequality (4.40) writes:

|X(n)
j−1,M −X

(n)
j−1| ≤ α|X

(n)
j−2,M −X

(n)
j−2|

+ |ξj−1| I1{|ξj−1|>M} + E(|ξj−1| I1{|ξj−1|>M})

so that the end of the proof is unchanged by only setting C = 2cEξ20/(1− α).

Remark 4.3. Secondly, in case we even omit the condition Eξ0 = 0 one needs to

also express an asymptotic expansion for w
(3)
t = EA3

tw
(3)
t−1 +3EAtw(1)

t−1σ
2 +µ3 ∼

EA3
tw

(3)
t−1 + µ3; an analogue expansion to Proposition 2.1 and Lemma 3. may

thus be derived. Namely w
(3)
t = γ(3)s (

t

nT
) +O

( 1

n

)
,, with

γ(3)s (v) = µ3 ·
1 +

∑T−1
i=0 ζs,i(v)

1− ζs,T (v)
,

ζt,i(v) =

i−1∏
j=0

a3t−j(v) ≤ α3i < 1, for 1 ≤ i ≤ T, v ∈ (0, 1).

Then the expression of the equivalent of wt is also adequately transformed up to
the above relations.
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