Lagrangian Relations and Linear Point Billiards - Archive ouverte HAL
Article Dans Une Revue Nonlinearity Année : 2017

Lagrangian Relations and Linear Point Billiards

Résumé

Motivated by the high-energy limit of the N-body problem we construct non-deterministic billiard process. The billiard table is the complement of a finite collection of linear subspaces within a Euclidean vector space. A trajectory is a constant speed polygonal curve with vertices on the subspaces and change of direction upon hitting a subspace governed by `conservation of momentum' (mirror reflection). The itinerary of a trajectory is the list of subspaces it hits, in order. Two basic questions are: (A) Are itineraries finite? (B) What is the structure of the space of all trajectories having a fixed itinerary? In a beautiful series of papers Burago-Ferleger-Kononenko [BFK] answered (A) affirmatively by using non-smooth metric geometry ideas and the notion of a Hadamard space. We answer (B) by proving that this space of trajectories is diffeomorphic to a Lagrangian relation on the space of lines in the Euclidean space. Our methods combine those of BFK with the notion of a generating family for a Lagrangian relation.
Fichier principal
Vignette du fichier
1606.01420.pdf (624.15 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-01523822 , version 1 (13-04-2024)

Identifiants

Citer

Jacques Fejoz, Richard Montgomery, Andreas Knauf. Lagrangian Relations and Linear Point Billiards. Nonlinearity, 2017, 30 (4), ⟨10.1088/1361-6544/aa5b26⟩. ⟨hal-01523822⟩
296 Consultations
41 Téléchargements

Altmetric

Partager

More