Robust Visual Place Recognition with Graph Kernels - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Robust Visual Place Recognition with Graph Kernels

Résumé

A novel method for visual place recognition is introduced and evaluated, demonstrating robustness to perceptual aliasing and observation noise. This is achieved by increasing discrimination through a more structured representation of visual observations. Estimation of observation likelihoods are based on graph kernel formulations, utilizing both the structural and visual information encoded in covisibility graphs. The proposed probabilistic model is able to circumvent the typically difficult and expensive posterior normalization procedure by exploiting the information available in visual observations. Furthermore, the place recognition complexity is independent of the size of the map. Results show improvements over the state-of-the-art on a diverse set of both public datasets and novel experiments , highlighting the benefit of the approach.
Fichier principal
Vignette du fichier
paper.pdf (6.19 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01522256 , version 1 (13-05-2017)

Identifiants

Citer

Elena Stumm, Christopher Mei, Simon Lacroix, Juan Nieto, Marco Hutter, et al.. Robust Visual Place Recognition with Graph Kernels. Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2016, Las Vegas, United States. pp.4535 - 4544, ⟨10.1109/CVPR.2016.491⟩. ⟨hal-01522256⟩
141 Consultations
160 Téléchargements

Altmetric

Partager

More