Quantum theory of curvature and synchro-curvature radiation in a strong and curved magnetic field, and applications to neutron star magnetospheres - Archive ouverte HAL
Article Dans Une Revue Physical Review D Année : 2017

Quantum theory of curvature and synchro-curvature radiation in a strong and curved magnetic field, and applications to neutron star magnetospheres

Théorie du rayonnement de courbure et synchro-courbure dans un champ magnétique intense et courbe, et application aux magnétosphères d'étoiles à neutrons

Résumé

In a previous paper, we derived the quantum states of a Dirac particle in a circular, intense magnetic field in the limit of low momentum perpendicular to the field with the purpose of giving a quantum description of the trajectory of an electron, or a positron, in a typical pulsar or magnetar magnetosphere. Here we continue this work by computing the radiation resulting from transitions between these states. This leads to derive from first principles a quantum theory of the so-called curvature and synchro-curvature radiations relevant for rotating neutron-star magnetospheres. We find that, within the approximation of an infinitely confined wave-function around the magnetic field and in the continuous energy-level limit, classical curvature radiation can be recovered in a fully consistent way. Further we introduce discrete transitions to account for the change of momentum perpendicular to the field and derive expressions for what we call quantum synchro-curvature radiation. Additionally, we express deconfinement and quantum recoil corrections.
Fichier principal
Vignette du fichier
Paper2-Radiation_in_curved_Bfield-v2-prd.pdf (514.32 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01519896 , version 1 (09-05-2017)

Licence

Identifiants

Citer

Guillaume Voisin, Silvano Bonazzola, Fabrice Mottez. Quantum theory of curvature and synchro-curvature radiation in a strong and curved magnetic field, and applications to neutron star magnetospheres. Physical Review D, 2017, ⟨10.1103/PhysRevD.95.105008⟩. ⟨hal-01519896⟩
292 Consultations
128 Téléchargements

Altmetric

Partager

More