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In a previous paper, we derived the quantum states of a Dirac particle in a circular, intense
magnetic field in the limit of low momentum perpendicular to the field with the purpose of giving a
quantum description of the trajectory of an electron, or a positron, in a typical pulsar or magnetar
magnetosphere.

Here we continue this work by computing the radiation resulting from transitions between these
states. This leads to derive from first principles a quantum theory of the so-called curvature and
synchro-curvature radiations relevant for rotating neutron-star magnetospheres.

We find that, within the approximation of an infinitely confined wave-function around the mag-
netic field and in the continuous energy-level limit, classical curvature radiation can be recovered in
a fully consistent way. Further we introduce discrete transitions to account for the change of momen-
tum perpendicular to the field and derive expressions for what we call quantum synchro-curvature
radiation. Additionally, we express deconfinement and quantum recoil corrections.

I. INTRODUCTION

In a previous paper [1] (hereafter paper 1), we derived
the states of an electron in a curved strong magnetic field
within the approximation of a very low momentum per-
pendicular to the magnetic field. To ease calculations,
it is convenient to consider a ”circular” magnetic field,
that is the field lines are of constant curvature and so
form circles. In this paper, we compute the transition
rates between these states in the limit of high momentum
parallel to the magnetic field, in such a way that paral-
lel transition can be considered approximately continu-
ous. Our goal is to derive a quantum-electrodynamics
theory of curvature radiation and low synchro-curvature
radiation in the context of rotating-neutron-star magne-
tospheres. These magnetospheres are characterized by
intense magnetic field from 105 Teslas for recycled mil-
lisecond pulsars to 1011 Teslas for magnetars. The radius
of curvature of magnetic field lines is typically larger than
10 km, which is the typical radius of the star, within the
assumption of a dipolar magnetic field. Extremely large
electric-potential gaps along the open magnetic-field lines
( see e.g. [2] for a review) accelerate charged particles
to energies only limited by radiation reaction at Lorentz
factors as high as 105 − 108.

In this regime, an electron looses all of its momentum
perpendicular to the magnetic field after traveling a few
meters in the synchro-curvature regime (see hereafter and
[3]). When only parallel momentum remains, radiation
reaction is attributed to the so-called curvature radia-
tion along the magnetic field [4], which is the radiation
of a charged particle following exactly a locally circu-
lar trajectory. Synchrotron radiation can be seen as a
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particular case where the trajectory is the cyclotron tra-
jectory. However, curvature radiation usually refers to
the case of a magnetic-field-line trajectory, and therefore
is not strictly physical, in the sense that a particle not
rotating around the field does not undergo any force ca-
pable of keeping it along. Therefore, curvature radiation
is better seen as the mathematical zero-perpendicular-
momentum limit of the so-called synchro-curvature radi-
ation [5] that describes the classical theory of radiation
by a charged particle with low perpendicular momen-
tum in a locally circular magnetic field. Quantum cor-
rections where added by [6] and latter by [7] in the form
of an effective correction to classical expressions in anal-
ogy with equivalent photon theories developed for syn-
chrotron radiation which essentially amounts to the re-
placement ω → ω(1+~ω/E) in the transition probability
ω−1I(ω) accounting or quantum recoil, where I is the in-
tensity per pulsation ω and E is the energy of the particle.
A formalism based on effective electric fields was devel-
oped [7] to deal with further inhomogeneities of the mag-
netic field such as a perpendicular gradient of intensity.
A more compact but equivalent formalism for synchro-
curvature radiation was also developed [8]. Recently, a
description [9] with a self-consistent trajectory that takes
carefully into account the drift along the cylinder gener-
ated by the circular field showed that the drift effectively
changes the curvature radius for relatively large Lorentz
factors or low magnetic field intensities. As we pointed
out in paper 1, classical synchro-curvature radiation re-
sults in numerous cases in a very fast decay of the per-
pendicular momentum of the particle which can reach the
first Landau levels, if one assumes the well-known quan-
tum theory of an electron in a homogeneous-intensity
uniform-orientation magnetic field (see e.g. [10]). One
then has to take into account discrete transitions from
a Landau level to another [11], [12]. This is particularly
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interesting when the plasma is at rest in the frame of
the star such that the uniform-magnetic-field theory is
locally relevant. This is the case for example in X-ray
binaries where X-ray cyclotron lines have been observed
and where two levels are typically separated by 11.6B8

keV with B8 = B/(108Teslas) [13].

Therefore, classical synchro-curvature cannot hold for
very low perpendicular momenta since the synchrotron
part becomes discrete. This effect cannot be taken into
account with the usual quantum recoil corrections which
apply in the continuous limit. Besides it does not take
into account the fact that two quantum numbers are
changing, one for parallel and another for perpendicu-
lar momenta. Simultaneously, cyclotron transitions are
irrelevant for particles with high parallel momenta since
they do not take into account longitudinal transitions,
that is the curvature part of the radiation. In this paper,
we start from first principles using the quantum states
derived in paper 1. The resulting radiation results from
transitions in the continuous approximation for parallel
momentum variations and discrete for perpendicular mo-
mentum variations. Parallel transitions are treated in a
similar way as [10] did for the quantum theory of syn-
chrotron radiation (see also [14] and [15]). With this
formalism syncho-curvature-like and curvature-like com-
ponents appear in a very distinct fashion. As mentioned
in paper 1, we neglect every drift of the particle, which is
very appropriate except at extremes of the magnetic-field
and Lorentz-factor ranges mentioned above. We also find
additional corrections in (~ω/E)p(Bc/B)q where p, q are
positive integers, Bc = 4.4 · 109 Teslas the critical field
of Landau states and B the magnetic-field intensity. We
interpret these as deconfinement corrections, in the sense
that they give the difference between a point-like particle
and an extended wave-function around the magnetic-field
line. At leading order, we find the classical curvature ra-
diation.

This paper is organized as follow: in section II we in-
troduce the general formalism to compute quantum tran-
sitions, in section III we develop this formalism in the
particular case of curvature radiation which allows us to
introduce notations and concepts that we generalize in
section IV to the general case of synchro-curvature ra-
diation, in section V we integrate the previously found
expressions over solid angles to obtain power spectra and
in section VI we discuss these results around the example
of a millisecond pulsar.

II. RADIATION OF A CONFINED PARTICLES
IN QUANTUM ELECTRODYNAMICS

We compute the interaction of the electron with the
photon vacuum to the first order of perturbation theory.
The Hamiltonian of interaction is

Ĥint =

∫
ecΨfγ

µΨiÂµd3~x, (1)

where Ψi is the initial state of the electron, Ψf = Ψ∗fγ
0

the Dirac conjugate of the final state. Â is the vacuum
amplitude operator (see e.g. [16] equation 11.98), in the
Heinsenberg representation

Âµ =
√

~
2ε0V

∑
~k,e

1√
ωk

( a~k,zeµ(~k)eı(
~k·~x−ωkt)+

a†~k,ε
e∗µ(~k)e−ı(

~k·~x−ωkt)
) , (2)

where we consider photons of four-vector
(
~ωk/c, ~~k

)
with polarizations eµ(~k) =

(
e0(~k), ~e(~k)

)
in the trans-

verse (Coulomb) gauge such that: ~k · ~e = 0. ε0 '
8.854 · 10−12 F/m is the electric permittivity of vacuum
and V ≡ L3 the volume of quantification.

Since the number of electrons does not vary we need
not quantify the electron field Ψ.

The rate of transition from vacuum to a state with one
photon characterized by (~k, e) while the electron switches
from an initial state ”i” to a final state ”f” is given by

wfi =
∂

∂t

∥∥∥∥∥
∫ t

0

dτ eı
Ef+~ω−Ei

~ τ 〈1~k,e, f |
Ĥint

~
|0, i〉

∥∥∥∥∥
2

, (3)

which after standard manipulation ( e.g. [17], [10]) gives

wfi = ‖Mfi‖2 2π~δ (Ef + ~ω − Ei) , (4)

where Mfi = 〈1~k,ε, f |
Ĥint

~ |0, i〉 is the matrix element of

the transition, which in this case can be explicitly written
for each mode as

Mfi = e
jµeµ√

2ε0~ωkV
, (5)

where jµ are the components of the transition current

jµ = c

∫
Ψfγ

µΨie
−ı~k·~xd3x. (6)

In the continuum limit, we obtain the differential prob-
ability of radiating a photon in the solid angle do at a
pulsation in dω by multiplying by the density of such

states ω2do dω
c3(2π)3/V ,

dwfi = ‖Mfi‖2 2π~δ (Ef + ~ω − Ei)
ω2do dω

c3(2π)3/V
. (7)

To obtain the radiated intensity we need only multiply
by the photon energy ~ω the differential probability (7),
and sum over every possible final energy states applying∫ dEf

~Ω in the continuum limit and ultra-relativistic limit
defined below along with Ω. The intensity per pulsation
per solid angle corresponding to a transition between an
initial state i and a final state f reads

d2I~ef,i
dodω

=
~ω3V

Ω(2π)2c3
‖Mfi‖2 (Ef = Ei − ~ω). (8)
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FIG. 1. Representation of a circular magnetic field line
(green) of radius ρ, called ”main circle” in the text. The
blue shadow around the line represents the wave function
of a ground orthogonal level with a characteristic extent λ.
The relation between the toroidal coordinates (r, θ, φ) and
the cartesian coordinates (x, y, z) is also shown.

III. CLASSICAL CURVATURE RADIATION
FROM QUANTUM ELECTRODYNAMICS

In this paper we consider ultra-relativistic particles
traveling along a circular magnetic field, the states of
which were derived in paper 1 [1]. The proper energies
can be written

E =

√
m2c4 + 2m2c4

B

Bc
n+ ~2Ω2l‖

2 (9)

where B is the magnetic field, Bc = m2c2

e~ = 4.4 · 109

Teslas is the critical magnetic field for which the differ-
ence between two Landau levels is equal to the rest mass
energy of the electron, Ω = c/ρ is the pulsation of the
particle along the main circle (see figure 1). The numbers
n and l‖ are integers respectively quantifying the angu-
lar momentum around the magnetic field and around the
axis of the circular magnetic field (see figure 1).

In the theory of classical curvature radiation the rota-
tion of the particle around the trajectory is neglected.
Here we therefore take the lowest perpendicular state
that is n = 0. Moreover, reminding that in the ultra-
relativistic approximation most of the energy is in the
longitudinal term, we expand the energy (9) as

E = ~Ωl‖

(
1 +

1

2γ2
+©

(
1

γ4

))
(10)

where γ = E/(mc2) is the classical Lorentz factor. The
wave function corresponding to this perpendicular fun-

damental state (see paper 1) is given to ©
(
γ−2

)
by

Ψ0 =
eil‖θe−x

2/2

2π
√
ρλ2


i sin θ

2

− cos θ2
−i sin θ

2

cos θ2

 , (11)

where ρ is the radius of the classical trajectory that we
call here the main circle and

λ =

(
2~
eB

)1/2

(12)

is the magnetic length scale which characterizes the ex-
tent of the wave function perpendicular to the main cir-
cle. We use the toroidal coordinates related to the Carte-
sian system (x, y, z) by the homeomorphism

T : (r, θ, φ)→

 x = r cosφ
y = cos θ(ρ+ r sinφ)
z = sin θ(ρ+ r sinφ)

 , (13)

where θ represents the direct angle with respect to the
~y axis in the (~y, ~z) plane, φ represents the direct angle

with respect to ~x in the plane (~x, ~y′) of the local frame

(~x, ~y′, ~uθ) image of (~x, ~y, ~z) by a rotation of θ around ~x
and r represents the distance to the main circle. For
further references on the coordinate system, see paper 1
and figure 1. Here we use the reduced variable x = r/λ.
Moreover, the approximation used in paper 1 imposes
that all our expressions are given to leading order in

ε = λ/ρ� 1. (14)

We now have all the ingredients to compute the cur-
rent (6) for a transition between two perpendicular fun-
damentals of initial longitudinal number l‖i and final l‖f .

It reads

j00 =
1

2π2

(
0,

∫
sin θe−x

2

ei(li−lf )θ−iλ~k·~xd3~x, (15)∫
cos θe−x

2

ei(li−lf )θ−iλ~k·~xd3~x

)
, (16)

with a dimensionless d3~x = xdx dθ dφ +© (ε).
In the following we restrict ourselves to wave numbers

laying in the (~z, ~x) plane defined as

~k = k(sinκ, 0, cosκ) (17)

where κ is the direct angle from the z axis. Since ~x is
a symmetry axis, this is done without loss of generality.
This allows us to choose the polarization basis (we use
the same basis as in used in the textbook [18])

~e‖ = (0, 1, 0),

~e⊥ =
~k

k
∧ ~e‖ = (− cosκ, 0, sinκ). (18)
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From a classical point of view, the parallel polarization
~e‖ points towards the center of the trajectory of the elec-
tron, and the perpendicular polarization ~e⊥ completes

the direct triad
(
~k/k,~e‖, ~e⊥

)
.

From equation 10, one derives the relation between the
variation of the parallel quantum number ∆l‖ = l‖i− l‖f
and the variation of energy of the electron Ei−Ef = ~ω,
where ω is the pulsation of the emitted photon. Consid-
ering l‖ as a continuous parameter, the energy variation
can be Taylor expanded

~ω = ∆l
∂El,σ
∂l

∣∣∣∣
i

− ∆l2

2

∂2El,σ

∂l2

∣∣∣∣
i

(19)

which is inverted into

∆l =
ω

Ω

(
1 +

1

2γ2

)
+©

(
~ω
E

)
. (20)

We give additional ~ω/E terms, which are quantum re-
coil corrections, in the next sections.

The imaginary exponential in the current (15) can be
rewritten, using (20) and expanding the scalar product
thanks to (13) and (17), as

e
iωΩ

(
1+ 1

2γ2

)
θ−iρk cosκ sin θ

e−ixλk(cosφ sinκ+sinφ cosκ sin θ).
(21)

The second factor above exists only in the quantum me-
chanical theory. One can easily be convinced of that
by noticing the presence of the magnetic length λ (12)
which contains the Planck constant λ ∝ ~1/2. To obtain
the classical theory one therefore puts λ = ~ = 0. We
neglect this factor (put it to 1) in the first part of the
following discussion and then reintroduce it.

As in the usual treatment of classical synchrotron or
curvature radiation (see e.g. [18]) we consider the ap-
proximation of high frequency photons in which

ω � Ω. (22)

It follows that one can develop the phase in the first
factor above to third order in θ since the exponential will
oscillates heavily even for θ � 1 as found in the literature
on the classical radiation. One also expects a very high
relativistic beaming implying that κ ∼ 1/γ, and we can
therefore expand cosκ = 1 − 1

2κ
2 + ©

(
κ4
)
. We also

notice that ρk = ω/Ω. It follows that (21) now reads

e
i ω2Ω

((
κ2+ 1

γ2

)
θ+ θ3

3

)
. (23)

We check the consistency of our approximations by look-
ing at the qualitative behavior of (23) above when inte-
grated over θ as in (15):

• When in the integral θ > θ̄ =
(
κ2 + 1

γ2

)1/2

the θ3

term in the phase becomes dominant.

• If ω
Ω θ̄

3 > 1 then the exponential oscillates heavily

for θ � θ̄ and kills the remaining part of the inte-
gral. This sets a critical pulsation ω ∼ θ̄−3Ω above
which the integral starts to decay.

• The smallest critical pulsation corresponds to κ =
0. More generally, if κ � 1/γ the transitions will
remain possible on a much smaller part of the spec-
trum,and we recover the relativistic beaming con-
dition that transitions are most likely for κ ∼ 1/γ.
Further we use the definition given by, e.g, [19] or
[18] to define the critical pulsation of the dominant
contribution as

ωcrit =
3

2
Ωγ3. (24)

• As a result, the dominant contribution to the inte-
gral comes from the part where θ ∼ 1/γ. This justi-
fies the earlier expansion of trigonometric functions
in θ.

Let’s reintroduce the second factor in (21). If one as-
sumes the previous result that θ ∼ κ ∼ 1/γ and x ∼ 1
then the amplitude of the phase is about

λk

γ
=

~ω
E

(
2Bc
B

)1/2

. (25)

Therefore there is a range of magnetic fields and electron
energies (remember that ω ∼ ωcrit) for which this ampli-
tude is small. For example, for a ”typical” pulsar with
B = 108 Teslas, γ = 107 and a dipolar magnetic field
with curvature next to the pole of ρ = 104 m (see e.g.
[2]) one has

λωcrit/c

γ
' 0.05γ2

7ρ
−1
4 B

−1/2
8 . (26)

For now, we can legitimately consider these corrections to
be negligible. This amounts to consider that the particle
is infinitely confined, λ = 0, as in the classical theory.
We bring back the deconfinement corrections in the next
sections.

We proceed to integrate the expressions in the current
(15). Integration over φ simply yields a factor 2π since
within our approximation of infinite confinement there is

no explicit dependence in φ. Integration over x of xe−x
2

yields a factor 1/2. To integrate over θ, we use the fact
that sin θ and cos θ are slowly varying compared to the
exponential for θ � 1/γ to develop them to first order in
θ. Moreover, we extent the boundaries to infinity since
the contributing part is centered on θ � 1. We get the
two following integrals

Icos =

∫ +∞

−∞
e
i ω2Ω

(
θ(κ2+ 1

γ̃ )+ θ3

3

)
dθ , (27)

Isin =

∫ +∞

−∞
θe
i ω2Ω

(
θ(κ2+ 1

γ̃ )+ θ3

3

)
dθ , (28)

(29)
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and

j00 =
1

2π
(0, Icos, Isin) . (30)

We recognize in (27) an Airy integral and its derivative
in (28). We use in this paper the definitions of special
functions of [20] where the Airy function is given by

Ai(x) =
1

2π

∫ ∞
−∞

dt e
i
(
xt+ t3

3

)
. (31)

After performing the change of variable

θ̃ → θ =
( ω

2Ω

)−1/3

θ̃ (32)

one identifies x = (ω/2Ω)2/3
(
κ2 + 1

γ̃2

)
and obtains

Icos = 2π(ω/2Ω)−1/3Ai(x), (33)

Isin = −2π(ω/2Ω)−2/3Ai′(x). (34)

(35)

For practical calculations, the Airy integrals can be
changed into modified Bessel functions Kν

K1/3(ξ) = π

√
3

|x|
Ai(x), (36)

K2/3(ξ) = −π
√

3

x
Ai′(x), (37)

with ξ = 2
3 |x|

3/2
and assuming x > 0 .

We now calculate the intensities. We need to compute
the matrix elements (5) for both parallel and perpendic-
ular polarizations. We seek a result to the lowest ultra-
relativistic order. For this, it is useful to see that owing
to the θ factor in (28) Isin ∼ 1

γ Icos. Further, the polariza-

tion vectors (18) are expanded to first order in κ ∼ 1/γ
such that the squared matrix elements for respectively
parallel and perpendicular polarizations are

M
‖
00

2
=

e2

2ε0~ωkV
I2
sin, (38)

M⊥00

2
=

e2

2ε0~ωkV
κ2I2

cos. (39)

Inserting the above matrix elements in the expression of
the intensity (8) and expressing Icos and Isin with modi-
fied Bessel functions one obtains

d2I
‖
00

dodω
=

1

2πΩ

e2ω2

12π3ε0c

(
κ2 +

1

γ2

)2

K2
2/3(ξ), (40)

d2I⊥00

dodω
=

1

2πΩ

e2ω2

12π3ε0c
κ2

(
κ2 +

1

γ2

)
K2

1/3(ξ), (41)

where ξ = ω
3Ω

∣∣∣κ2 + 1
γ2

∣∣∣3/2 . These expressions are iden-

tical to expressions found in the classical theory (see e.g.
[18].

IV. GENERAL CALCULATION OF
SYNCHRO-CURVATURE INCLUDING

QUANTUM CORRECTIONS

We now generalize the calculation of the previous sec-
tion to transitions between states of any initial perpen-
dicular quantum number n to a final number n′ including
quantum corrections up to second order in ~ω

E . The need
to go to second order is dictated by the occurence of de-
confinement corrections in Bc/B potentially increasing
the role of this order for relatively low magnetic fields, as
we see in (51).

The energy of an ultra-relativistic particle of perpen-
dicular quantum number n is generalized from (9) and
(10) as

E = ~Ωl‖

(
1 +

1

2γ2
+

1

γ2

B

Bc
n+©

(
1

γ4

))
. (42)

For n > 0, the perpendicular quantum number is de-
generate between the perpendicular angular momentum
l⊥ and the center-of-trajectory quantum number s since
n = l⊥ + s (see paper 1). Without loss of generality, we
can consider only centered trajectories with s = 0. To
energies (42) then correspond the proper states found in
paper 1 with n = l⊥ that we develop here to first ultra-
relativistic order in 1/γ,

Ψn(x, θ, φ) =
e
−x2

2 xn−1ei(n−1)φ

2π
√

Γ(1 + n)ρλ2



ζixeiφ sin θ
2 + i

γ

(
1
2ζxe

iφ sin θ
2 −

ζ−1
2 n
√

2
(
B
Bc

)1/2

cos θ2

)
−ζxeiφ cos θ2 −

1
γ

(
1
2ζxe

iφ cos θ2 + ζ−1
2 n
√

2
(
B
Bc

)1/2

sin θ
2

)
−iζxeiφ sin θ

2 + i
γ

(
1
2ζxe

iφ sin θ
2 + 1+ζ

2 n
√

2
(
B
Bc

)1/2

cos θ2

)
ζxeiφ cos θ2 −

1
γ

(
1
2ζxe

iφ cos θ2 −
1+ζ

2 n
√

2
(
B
Bc

)1/2

sin θ
2

)


. (43)

The parameter ζ = ±1 describes the spin orientation and is degenerate with respect to the energy.
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We now outline the computation from the transition
currents jnn′ to the intensities. We assume n > n′ with-
out loss of generality. Putting (43) in the current (6)
and projecting onto polarizations (18) one obtains the
following structure

jµnn′e
σ
µ = ζζ ′

∫
d3x

n+1−n′∑
p=n−1−n′

ape
ipφei(li−lf )θ−iλ~k·~x (44)

where σ denotes parallel or perpendicular polarization
and each ap coefficient is of the form

C(κ)xm1e−x
2

cosm2 θ sinm3 θ, (45)

where C is a coefficient depending only on κ and
m1,m2,m3 are positive integers.

In this section we take into account corrections to sec-
ond order in ~ω

E which leads to express the variation of
the quantum number l‖ as

∆l =
ω

Ω

{
1 +

1

2γ2

[(
1 + 2n

B

Bc

)(
1 +

~ω
E

)
(46)

−2
E

~ω
B

Bc
∆n

]}
+©

((
~ω
E

)3
)

where ∆n = n − n′ . We see that the rightmost ex-
ponential factor in (44) takes exactly the same form as
in (21) if we make the replacement 1

γ2 → 1
γ2

where we

define

1

γ2
=

1

γ2

[(
1 + 2n

B

Bc

)(
1 +

~ω
E

)
− 2

E

~ω
B

Bc
∆n

]
(47)

Let’s detail this effective Lorentz factor a little. The
left part corresponds to transitions where the particle re-
mains on the same perpendicular level n, with (1+~ω/E)
giving the high-energy quantum recoil correction. If
n = 0 and we neglect the high-energy correction we there-
fore recover 1/γ2 as in the previous section. The second
term results from the shift to a different perpendicular
level. This term is particularly important for low-energy
photons and high magnetic fields. Notice that it can even
lead to a negative γ2 meaning that energy is transferred
from the perpendicular excitation of the electron to its
longitudinal motion. We can follow the same reasoning
as in previous section (see (23) and thereafter) and ob-
tain similar scalings provided one makes the replacement
γ → γ̃ with

γ̃ =
√
|γ2|, (48)

then

κ ∼ θ ∼ 1/γ̃, (49)

and the critical pulsation

ω̃crit =
3

2
Ωγ̃3. (50)

We now proceed to integrate over φ. To obtain the rel-
evant high-energy accuracy to second order one separates
the imaginary exponential in (44) as in (21) and notices
that, similarly to (25), its argument is of order

x
λk

γ̃
∼
√
n
γ

γ̃

~ω
E

(
2Bc
B

)1/2

, (51)

where we used the fact that the averaged normalized ra-
dial distance of an electron is ∼

√
n as explained in paper

1. Assuming (51) is small compared to one, we expand
the second factor of (21) to second order in the argu-
ment −ixλk (cosφ sinκ+ sinφ cosκ sin θ). We are left to
integrate terms of the form

Apq =

∫ π

−π
dφ eipφ (a cosφ+ b sinφ)

q
(52)

where p and q are integers and q ≥ 0, a and b can have
any value independent of φ. One can show that

Apq = 0 if

 q < |p|
or
q − |p| odd

. (53)

For this reason, the only transitions yielding terms of

order lower or equal to
(~ω
E

)2
once current (6) is inserted

in the squared matrix element (5) are for n = n′ ,n′ =
n − 1 and n′ = n − 2. Moreover, one can see that the
next non-null term of the expansion of (23) is of order(~ω
E

)4
, pushing further the validity of our approximation.

In practice, we need

Apq =


π(a+ ib) p = −1 q = 1
π(a2 + b2) p = 0 q = 2
π(a− ib) p = 1 q = 1
π
2 (a+ ib)2 p = 2 q = 2

. (54)

We then integrate over x with only integrals of the type∫ ∞
0

dx e−x
2

x2p+1 =
p!

2
, (55)

where p is a positive integer.
We are now left with integrals over θ of the type

Bpq =

∫ π

−π
dθ e

i ω2Ω

((
κ2+ 1

γ2

)
θ+ θ3

3

)
cosp θ sinq θ (56)

where p, q are positive integers. As in the previous sec-
tion, the smallness of contributing values of θ ∼ 1/γ̃ al-
lows to extend boundaries to infinity. Moreover, to lead-
ing ultra-relativistic order one has

∀(p, q), Bpq =

∫ ∞
−∞

dθ e
i ω2Ω

((
κ2+ 1

γ2

)
θ+ θ3

3

)
θq. (57)

Using definition (31) one sees that Bpq is proportional to
the q-th derivative of the Airy function. Reminding that
the Airy function verifies the relation [20]

Ai′′(x) = xAi(x) (58)
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one is able to express every Bpq in terms of Ai and Ai′,
and from that in terms of Icos and Isin ((27),(28)). In
particular, we need the following expressions

Bp2 = −
(
κ2 +

1

γ2

)
Icos, (59)

Bp3 =
1

γ̃3

4ω̃crit

3ω
Icos −

(
κ2 +

1

γ2

)
Isin, (60)

(61)

where the replacement 1/γ2 → 1/γ2 is assumed in Icos

and Isin.

Squarring (44), inserting it into the matrix element (5)
and using formula (8) we obtain all the relevant intensi-

ties to order
(~ω
E

)2
. These intensities are proportional

to (ζζ ′)2 and therefore the spin average 1
2

∑
ζ,ζ′=±1 is

immediate, giving

d2I
‖
nn

dodω
=

1

2πΩ

e2ω2

16π3ε0c

[
I2
sin +

Bc
B

(
~ω
E

)2
γ2

γ2
(n+ 1)

(
I2
sin −

4

3

ω̃crit

ω

Icos

γ̃
Isin

)
+

(
~ω
E

)2

n2κ2I2
cos

]
, (62)

d2I⊥nn
dodω

=
1

2πΩ

e2ω2

16π3ε0c

[
κ2I2

cos +
Bc
B

(
~ω
E

)2
γ2

γ2
(n+ 1)κ2I2

cos +

(
~ω
E

)2

n2I2
sin

]
, (63)

d2I
‖
nn−1

dodω
=

1

2πΩ

e2ω2

16π3ε0c

[
B

Bc

n

2

I2
cos

γ2
+

~ω
E
n

(
1

γ2
+ κ2

)
I2
cos +

Bc
B

(
~ω
E

)2
n

2

(
γ2κ2I2

sin + γ2

(
1

γ2
+ κ2

)2

I2
cos

)
+

(
~ω
E

)2
n2

4

(
2

γ2
− κ2n− 1

n

)
I2
cos

]
, (64)

d2I⊥nn−1

dodω
=

1

2πΩ

e2ω2

16π3ε0c

[
B

Bc

n

2

I2
cos

γ2
− ~ω

E
nκ2I2

cos +
Bc
B

(
~ω
E

)2
n

2
γ2κ2

(
I2
sin + κ2I2

cos

)
+

(
~ω
E

)2
n2

4

(
2

γ2
+
n− 1

n
κ2

)
I2
cos

]
, (65)

d2I
‖
nn−2

dodω
=

1

2πΩ

e2ω2

16π3ε0c

[(
~ω
E

)2
n(n− 1)

4

(
I2
sin + κ2I2

cos

)]
, (66)

d2I⊥nn−2

dodω
=

1

2πΩ

e2ω2

16π3ε0c

[(
~ω
E

)2
n(n− 1)

4
I2
sin

]
. (67)

Our result is based on the following hierarchy of scales

1

γ
�
√
n
γ

γ̃

~ω
E

(
2Bc
B

)1/2

< 1 and
1

γ
� B

Bc
. (68)

This allows to consider that all the gamma parameters
have roughly the same order of magnitude compared to
other terms 1/γ̃2 ∼ 1/γ2 ∼ 1/γ2. All terms are of second
ultra-relativistic order since Isin ∼ Icos/γ̃ and κ2 ∼ 1/γ̃2.
One notices that this is not a strict expansion in powers
of ~ω

E and B
Bc

, since γ̃ also contains such terms. It would
even be impossible to perform a total, rapidly converg-
ing expansion of Isin, Icos with respect to B

Bc
since it is

not necessarily small. However, the present expansion is
relatively compact and directly reflects the confinement
corrections as explained in (25) and (51).

One recognizes the classical curvature intensities de-
rived in the previous section, (40) and (41), as the first
terms of (62) and (63) respectively.

V. POWER SPECTRUM

We proceed to integrate expressions (62)-(67) over the
solid angle do which can be explicited as

do = cosκdκ dχ (69)

where χ is an angle around the main circle. Integration
of χ is trivial and yields a factor of 2π. Integration over κ
requires more care. Applying the change of variable (32)
we express all the relevant integrals over κ of (62)-(67)
in terms of the integrals calculated in appendix A Ia(ξ),
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Ib(ξ), Ic(ξ), Id(ξ), Ie(ξ) and If (ξ)∫ ∞
−∞

I2
sindκ =

π√
3γ̃2

2Ω

ω
Ia(ξ), (70)∫ ∞

−∞
I2
cosdκ =

2π√
3

2Ω

ω
Ib(ξ), (71)∫ ∞

−∞
κ2I2

cosdκ =
π√
3γ̃2

2Ω

ω
Ic(ξ), (72)∫ ∞

−∞
IcosIsindκ =

π√
3γ̃

2Ω

ω
Id(ξ), (73)∫ ∞

−∞
κ2I2

sindκ =
π

4
√

3γ̃4

2Ω

ω
Ie(ξ), (74)∫ ∞

−∞
κ4I2

cosdκ =
π
√

3

4γ̃4

2Ω

ω
If (ξ). (75)

where we define

ξ =
ω

ω̃crit
. (76)

The values of the previous integrals are summarized
here by

Ia(ξ) =


∫∞
ξ
K5/3(x)dx +K2/3(ξ) γ2 > 0

π
√

3−
∫∞
ξ

dx F1/3(x, γ2)− γ2 < 0

3F2/3(ξ, γ2)

, (77)

Ib(ξ) =

{ ∫∞
ξ
K1/3(x)dx γ2 > 0

π
√

3−
∫∞
ξ

dx F1/3(x, γ2) γ2 < 0
, (78)

Ic(ξ) =


∫∞
ξ
K5/3(x)dx −K2/3(ξ) γ2 > 0

π
√

3−
∫∞
ξ

dx F1/3(x, γ2)− γ2 < 0

F2/3(ξ, γ2)

, (79)

Id(ξ) = −4π
√

3 3

√
4

3ξ

∫ ∞
−∞

dxAi(x2 + c)Ai′(x2 + c),(80)

Ie(ξ) =
10

3ξ
F1/3 (ξ, γ2) + (81){ ∫ +∞
ξ

dx F1/3(x, γ2)− F2/3(ξ, γ2) γ2 > 0

π
√

3−
∫ +∞
ξ

dx F1/3(x, γ2)− F2/3(ξ, γ2) γ2 < 0
,

If (ξ) =
2

3ξ
F1/3 (ξ, γ2) + (82){ ∫ +∞
ξ

dx F1/3(x, γ2)− F2/3(ξ, γ2) γ2 > 0

π
√

3−
∫ +∞
ξ

dx F1/3(x, γ2)− F2/3(ξ, γ2) γ2 < 0
.

Among these, only Id could not be turned into a more
convenient analytical form. Therefore we give here only
its raw expression. The F functions are defined as follow

F1/3(ξ, s) =

{
K1/3(ξ) , s > 0
π√
3

(
J1/3(ξ) + J−1/3(ξ)

)
, s < 0 ,

F2/3(ξ, s) =

{
K2/3(ξ) , s > 0
π√
3

(
J2/3(ξ)− J−2/3(ξ)

)
, s < 0 .

(83)

Performing replacements (70)-(75) we obtain the spec-
tra per unit pulsation

dI
‖
nn

dω
=

1

2πΩ

e2Ωω

γ̃2
√

34πε0c

[
Ia(ξ) +

Bc
B

(
~ω
E

)2
γ2

γ2
(n+ 1)

(
Ia(ξ)− 4

3

ω̃crit

ω
Id(ξ)

)
+

(
~ω
E

)2

n2Ic(ξ)

]
, (84)

dI⊥nn
dω

=
1

2πΩ

e2Ωω

γ̃2
√

34πε0c

[
Ic(ξ) +

Bc
B

(
~ω
E

)2
γ2

γ2
(n+ 1)Ic(ξ) +

(
~ω
E

)2

n2Ia(ξ)

]
, (85)

dI
‖
nn−1

dω
=

1

2πΩ

e2Ωω

γ̃2
√

34πε0c

[
B

Bc
n
γ̃2

γ2
Ib(ξ) +

~ω
E
n

(
2
γ̃2

γ2
Ib(ξ) + Ic(ξ)

)
+ (86)

Bc
B

(
~ω
E

)2
n

2

(
γ2

4γ̃2
Ie(ξ) + 2

γ2

γ̃2
Ib(ξ) + 2

γ2

γ2
Ic(ξ) +

3

4

γ2

γ̃2
If (ξ)

)
+

(
~ω
E

)2
n2

4

(
4
γ̃2

γ2
Ib(ξ)−

n− 1

n
Ic(ξ)

)]
,

dI⊥nn−1

dω
=

1

2πΩ

e2Ωω

γ̃2
√

34πε0c

[
B

Bc
n
γ̃2

γ2
Ib(ξ)−

~ω
E
nIc(ξ) +

Bc
B

(
~ω
E

)2
n

8

γ2

γ̃2
(Ie(ξ) + 3If (ξ)) +

(
~ω
E

)2
n2

4

(
4
γ̃2

γ2
Ib(ξ) +

n− 1

n
Ic(ξ)

)]
, (87)

dI
‖
nn−2

dω
=

1

2πΩ

e2Ωω

γ̃2
√

34πε0c

[(
~ω
E

)2
n(n− 1)

4
(Ia(ξ) + Ic(ξ))

]
, (88)

dI⊥nn−2

dω
=

1

2πΩ

e2Ωω

γ̃2
√

34πε0c

[(
~ω
E

)2
n(n− 1)

4
Ia(ξ)

]
. (89)
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To have an estimate of the position of the peak of these
spectra, following the arguments of the two previous sec-
tions one can take the critical pulsation without quantum
correction for the n→ n transitions, that is

ωc = Ω
γ2

1 + 2nB/Bc
. (90)

However, the other transitions cannot be treated exactly
with the same arguments as in section III, (24) owing to
the fact that the factor γ2 becomes infinite at a pulsation

ω0 =
E

~
2∆nB/Bc

1 + 2nB/Bc
+©

(
~ω
E

)
. (91)

If we restrict our reasoning to positive γ2, or equivalently
ω > ω0, one can then show that the position of the peak
of the spectra given above can be estimated to be

ωp ∼ max(ωc, ω0). (92)

VI. DISCUSSION AND CONCLUSION

In section III we showed that classical curvature radia-
tion can be derived from first principles of quantum elec-
trodynamics in a self-consistent manner within the ultra-
relativistic approximation. Indeed, the usual derivation
of curvature radiation assumes the limit of an unphys-
ical trajectory, as mentioned in the introduction of the
present paper and in [3]. Curvature radiation then results
from transitions between states of different longitudinal
quantum numbers l‖ but both in the ground perpendic-
ular level. The assumed ultra-relativistic regime allows
us to consider l‖ as a continuous variable and obtain a
continuous spectrum. Perpendicular levels are the quan-
tum analogues of classical rotation around the magnetic
field. In the perpendicular ground level, or perpendic-
ular fundamental, we showed in paper 1 that although
orbital angular momentum around the field line is null,
the particle is maintained on the field line through spin-
magnetic-field interaction. Therefore, curvature radia-
tion understood as the radiation of a particle following a
magnetic-field line without ”turning” around it should be
seen as a purely quantum phenomenon. However, this is
not enough to obtain the classical result: one has to con-
sider that the particle wave-function is infinitely confined
on the magnetic-field line, which is equivalently achieved
by assuming ~→ 0, obviously the classical limit, or that
the magnetic field intensity B → ∞ in (25), and to ne-
glect the quantum recoil effect in (20) by assuming that
the emitted photon energy ~ω � E, where E is the en-
ergy of the radiating particle .

In section IV, we consider the general case of synchro-
curvature radiation in the regime of very low pitch an-
gle, so low that the perpendicular energy of the particle
must be quantified. This is, to our knowledge, the first
time such derivation is made. Therefore, the radiation
becomes the sum of continuous transitions of l‖ and dis-
crete transitions between perpendicular levels labeled by

the integer n. Moreover, we take into account deconfine-
ment and quantum recoil effects up to second order. We
show that in the ultra-relativistic regime, transitions in-
volving a change of perpendicular quantum number are
significant only for n → n − 1 and n → n − 2 with a
decreasing importance as the jump is larger. Transitions
n → n are the generalization of curvature radiation on
an arbitrary level n from which they differ by an effec-
tive Lorentz factor (48) and an amplified proportional
weight of deconfinement terms (because proportional to
n or n2). The two other transitions can be considered as
the synchrotron part of synchro-curvature radiation.

At leading order, n → n transitions have the same
polarization as the classical curvature radiation, n→ n−
1 transitions are not polarized at all, and n→ n− 2 has
a ratio between parallel and perpendicular polarization
of 1 + Ic(ξ)/Ia(ξ).

It is out of the scope of this paper to proceed to a
general exploration of the spectra generated by our final
formulae (84)-(89) depending on magnetic field B/Bc,
curvature radius ρ, Lorentz factor γ and perpendicular
level n. However we show in figure 2 a case with param-
eters compatible with a polar cap of recycled millisecond
pulsar [2], B = 106 Teslas, ρ = 4 ·104 meters, a moderate
Lorentz factor of 105, and a perpendicular level n = 100.
These parameters fall within our approxmations given in
(68) and paper 1 equation 19. On the upper panel of
figure 2 we plot the curvature component Inn (to make
notations lighter we remove here the d

dω ) in dashed blue,
Inn−1 in dotted red and Inn−2 in dotted down-triangle
yellow. In order to compare we also plotted classical
curvature radiation (CC) in dashed green and classical
synchro-curvature radiation (CSC) in dot-dashed green.
The pitch angle α is related to n by

α =

√
2nB/Bc
γ

, (93)

and here α ' 2 · 10−6. This value is quite easily
reached in simulations of motion of an electron with
classical-synchro-curvature-radiation losses in pulsar-like
magnetic fields in [8] or [9].

If one neglects radiation losses, or more physically that
the particle remains for a while at levels around n ∼
100, then one can compare the sum of the intensities
of the three above mentioned transitions Itot = Inn +
Inn−1 + Inn−2 (figure 2, upper panel) with the intensity
of the classical curvature radiation (figure 2, lower panel)
and with the intensity of the classical synchro-curvature
radiation (figure 2, lower panel) .

Until the peak of CC radiation, Inn and CC are very
close with a difference of a few percents and up to 10
percents, after which the difference mostly due to decon-
finement terms (that grows with photon energy) reaches
more than 100% at high energies. One would obtain a
similar deviation in the fundamental curvature regime,
n = 0, but with a slightly higher Lorentz factor.

Transitions to lower perpendicular levels become im-
portant at high energies, taking over the vanishing Inn
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FIG. 2. Upper panel: Intensities radiated by an electron following a magnetic field of radius of curvature 4 ·104m, intensity 106

Teslas, at a Lorentz factor γ = 105, on a perpendicular level n = 100. For comparison, classical curvature (CC) and classical
synchro-curvature (CSC, formula of [8]) radiation are plotted in dashed green and dot-dashed green respectively. The thicker
lines are showing plots of formulas (84)-(89) summed over photon polarizations, respectively the curvature component Inn in
dashed blue, the first downward component Inn−1 in dotted red and the second downward component in dotted yellow with
trident markers in yellow. The sum of this three components Itotis plotted in plain red. Abscissa are scaled by the pulsation
ωc (90) and the thick ticks on lower axes show the position of the peak pulsation ωp (91) of the downward components. The
lower panel shows the relative differences between the curvature component Inn and CC in dashed green (not represented on
the full range because these components are getting numerically too small at high pulsations), the sum of all components Itot
and CC in dotted blue, Itot and CSC in dot-dashed red. One sees that, in this case, the three peaks due to the curvature, first
downward component and second downward component are distinct in the total spectrum, which corresponds well to CC at
low pulsations and bridges the gap to CSC at high pulsations. However, it should be noted that the difference between the
total spectrum and CSC is roughly around 100% of CSC everywhere.

component in Itot they get quite close to the high-energy
part of the CSC spectrum. Slight wiggles on the ascend-
ing parts of spectra Inn−1 and Inn−2 make the line a little
bit thicker on this graph around ω0 (thick black tick) and
are due to the fact that γ2 < 0 (see (47)) at low photon
pulsations and therefore these spectra are expressed by
oscillatory Bessel functions in virtue of (77)-(82) below
their peak pulsations (see discussion around (92)). In
particular, it is responsible in the present case for the
very sharp peak and cut-off of Inn−1. Spectrum Inn−2

takes over just above ω0 and is responsible for the last
maximum.

As a result, the total intensity Itot is very close to CC
radiation at low photon energies and becomes compar-

atively closer to CSC radiation at the highest energies.
Although we see on the lower panel that the CSC spec-
trum is quasi-always ∼ 100% or more more intense than
Itot, this agrees with the general tendency in the classi-
cal theory of synchro-curvature radiation to show broader
spectra at high energies compared to curvature radiation
while tending to the curvature spectrum at lower ener-
gies, see e.g. [9]. We also notice that this transition of
behavior between quasi-curvature and synchro-curvature
is much sharper in the quantum theory in the case of
figure 2. The sharpness of this transition depends on
the difference between ωc and ω0: if ω0 � ωc as is the
case on figure 2 the downward components have more
”time” to grow before they cut off, on the contrary if
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ω0 < ωc or ω0 ∼ ωc the transition is much smoother or
even insignificant and the spectrum resembles closely the
classical curvature spectrum CC.

More generally, it comes out of equations (84)-(89) that
the n− 1 and n− 2 components are increasing with the
intensity of the magnetic field and with the perpendicu-
lar level n. The Lorentz factor has a significant impact
on the relative importance of the deconfinement terms
since their relative importance to the main term grows
like (~ωcrit/E)p ∼ γ2p where p = 1, 2. In the case of
terms going like ∝ Bc/B, this can even lead them to be-
come dominant at low magnetic field and high Lorentz
factors. However, in this case one falls under the limita-
tion of (68) and our approximation starts to fail, needing
computation of higher order terms.

It is to be noticed that perpendicular upward tran-
sitions, from n − 1 and n − 2 to n are also possible.
As mentioned, the only difference between upward and
downward transitions is in the effective Lorentz factor
(51). The probability of upward transition is generally
lower than the downward transitions because the effective
Lorentz factor is lower. However, for very high Lorentz
factors this difference becomes smaller. Because of the
necessity of high Lorentz factors, the range of parameters
where significant upwards rates can be computed safely is
quite narrow ( see (51) and approximation 19 in paper 1).
In the case of figure 2, the upward spectra are not repre-
sented because they are numerically 0. However, we can
speculate on other configurations. First we can speculate
beyond our approximations: our scheme remains conver-
gent even outside the validity region, the results keep the
same qualitative behavior as shown above, and approx-
imation 19 of paper 1 is regularly overcome in classical
calculations (see paper 1). For example, an electron with
Lorentz factor of 6.3 · 106 (reasonable in a pulsar mag-
netosphere gap) on the perpendicular level n = 100 with
a magnetic field of 106 Teslas and a radius of curvature
of 104 m yields in this formalism a ratio of 0.6 between
the first upward and first downward components. This
last example suggests that the decay to the perpendicu-
lar fundamental may be slow and not monotonous if the
Lorentz factor of the particle is high enough, and that a
computation of the total radiated spectrum may need to
take into account the random perpendicular jumps along
the trajectory. This would especially be important due
to the smallness of neutron-star magnetospheres.

The particular case where we deal with a jump between
the perpendicular fundamental and the first excited level
can be also seen as the lowest spin flip transition possible,
in the sense that the perpendicular fundamental is the
only state having a non-degenerate spin state and the
only way to flip the spin is therefore to go to the first level
(see paper 1). This is what we called spin-flip curvature
radiation in a preliminary work [21].

Appendix A: Integration of squared Airy integrals

Here we compute different expressions that differ
slightly. We therefore detail the first case and then pro-
ceed faster for the others.

We use the functions F1/3 and F2/3 defined in (A3).
We here give an alternative definition that will be useful
in the developments of this appendix

F1/3(ξ) =
√

3
∫ +∞

0
dx cos

(
3
2ξ
(
sx+ x3

3

))
,

F2/3(ξ) =
√

3
∫ +∞

0
dx x sin

(
3
2ξ
(
sx+ x3

3

))
,

(A1)

with s ∈ [−1, 0, 1]. We recall their definition from (83)

F1/3(ξ, s) =


K1/3(ξ) , s > 0

1

32/3Γ( 2
3 )

, s = 0

π√
3

(
J1/3(ξ) + J−1/3(ξ)

)
, s < 0

,

F2/3(ξ, s) =


K2/3(ξ) , s > 0
− 1

31/3Γ( 1
3 )

, s = 0

π√
3

(
J2/3(ξ)− J−2/3(ξ)

)
, s < 0

.

(A2)
They are related to the Airy function and its derivative
by

F1/3(ξ, s) = π

√
3

|x|
Ai(x), (A3)

F2/3(ξ, s) = −π
√

3

x
Ai′(x), (A4)

where x = sign(s)
(

3
2ξ
)2/3

.
We also frequently use the following integrals∫ ∞
−∞

dτ τn exp
[
iaτ2

]
=

Γ
(
n+1

2

)
|a|

n+1
2

ei(
π
4−

arg(a)
2 )(n+1), (A5)

where a is a complex with argument 0 < arg(a) < π
and n a positive integer. For practical purposes we give
particular value of the Γ function [20]

Γ

(
1

2

)
=
√
π,Γ (1) = 1,Γ

(
3

2

)
=

√
π

2
,Γ

(
5

2

)
=

3
√
π

4
.

(A6)

1. First case

We want to compute the following expression, where c
is a constant

Ia =

√
3

π |c|

∫ ∞
−∞

dx

∣∣∣∣∫ ∞
−∞

dτ τ exp

[
ı

(
(c+ x2)τ +

τ3

3

)]∣∣∣∣2 .
(A7)

The present derivation is directly inspired by that of
[5], however correcting for a mistake that we point out
below.
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Since

Ai(y) =
1

2π

∫ ∞
−∞

dτ exp

[
ı

(
yτ +

τ3

3

)]
, (A8)

one remarks that

Ia =

√
3

π |c|

∫ ∞
−∞

dx
∣∣2πA′i(c+ x2)

∣∣2 , (A9)

where A′i is the derivative of the Airy function as de-
fined in [20].

We will seek to evaluate I through its integral formu-
lation A7. Developing the squared Airy integral we get

Ia =
√

3
π|c|

∫∞
−∞ dx

∫∞
−∞ dτ1

∫∞
−∞ dτ2 τ1τ2

exp
[
ı(τ1 − τ2)

(
(c+ x2) + 1

3

(
τ2
1 + τ1τ2 + τ2

2

))]
(A10)

In order to ”separate” as much as possible the integrals
we introduce the following variables:

(τ1, τ2)→
(
τ+ =

1

2
(τ1 + τ2) , τ− =

1

2
(τ1 − τ2)

)
(A11)

The Jacobian of this transformation is:

∣∣∣∣ ∂(τ1, τ2)

∂(τ+, τ−)

∣∣∣∣ =

∣∣∣∣1 1
1 −1

∣∣∣∣ = 2 (A12)

And we notice that:

τ1τ2 = τ2
+ − τ2

− (A13)

τ2
1 + τ1τ2 + τ2

2 = 3τ2
+ + τ2

− (A14)

Such that we get the form:

Ia =
√

3
π|c|

∫∞
−∞ dx

{
2
∫∞
−∞ dτ+

∫∞
−∞ dτ−

exp
[
2ıτ−

(
(c+ x2) +

τ2
−
3

)] (
τ2
+ − τ2

−
)

exp
[
2ıτ−τ

2
+

]} (A15)

Here one splits the computation in two integrals

C =
∫∞
−∞ dx

∫∞
−∞ dτ+

∫∞
−∞ dτ−

exp
[
2ıτ−τ

2
+

]
exp

[
2ıτ−

(
(c+ x2) +

τ2
−
3

)]
τ2
−

D =
∫∞
−∞ dx

∫∞
−∞ dτ+ τ2

+

∫∞
−∞ dτ−

exp
[
2ıτ−τ

2
+

]
exp

[
2ıτ−

(
(c+ x2) +

τ2
−
3

)]
(A16)

Such that:

Ia = 2

√
3

π |c|
(D − C) (A17)

Here it would be nice to integrate over τ+ first since
these integrals are of Gaussian type. However, the inte-
grals cannot be swapped in D without becoming diver-
gent, as done in [5]. We will circumvent this problem by

introducing a positive real parameter ε ,

D = limε→0+∫∞
−∞ dx

∫∞
−∞ dτ+ τ2

+

∫∞
−∞ dτ− exp

[
2ı(τ− + ıε)τ2

+

]
exp

[
2ı(τ− + ıε)

(
(c+ x2) + (τ−+ıε)2

3

)]
(A18)

which is allowed by the theorem of dominated conver-
gence using for example the following hat function

g(τ+, τ−) =

τ2
+

(
max

(
0, cos

[
τ−

(
(c+ x2) + τ2

+ +
τ2
−
3

)])
+

ımax
(

0, sin
[
τ−

(
(c+ x2) + τ2

+ +
τ2
−
3

)]))
|τ−| τ2

+

(
max

(
0, cos

[
τ−

(
(c+ x2) + τ2

+ +
τ2
−
3

)])
+

ımax
(

0, sin
[
τ−

(
(c+ x2) + τ2

+ +
τ2
−
3

)]))
.

(A19)
Then we can first integrate over τ+ using (A5),

C =
∫∞
−∞ dx

∫∞
−∞ dτ−

√
π

2|τ−|e
ıπ4 sτ−

exp
[
2ıτ−

(
(c+ x2) +

τ2
−
3

)]
τ2
−,

D = limε→0+

∫∞
−∞ dx

∫∞
−∞ dτ−

√
π

2|τ−+ıε|e
ıπ4 sτ−+i∆ε

exp
[
2ı(τ− + ıε)

(
(c+ x2) + (τ−+ıε)2

3

)]
ı

4(τ−+ıε)

,

(A20)
where ∆ε = − 1

2 (arg(x+ ıε)− arg(x)).
Summing over x,

C =
∫∞
−∞ dτ−

ıπ
2 τ− exp

[
2ıτ−

(
c+

τ2
−
3

)]
D = limε→0+

∫∞
−∞ dτ−

−π
8(τ−+ıε)2

exp
[
2ı(τ− + ıε)

(
c+ (τ−+ıε)2

3

)] (A21)

Performing the following change of variable in C

τ− → y =
2
3
√

4
τ−, (A22)

we recognize that C is proportional to the derivative of
the Airy integral with respect to c′ = 3

√
4c. Expressing it

with a modified Bessel function according to A4

C =

{
−π c√

3
K2/3 (ξ) c > 0

π2 c
3

(
J2/3(ξ)− J−2/3(ξ)

)
c < 0

(A23)

where ξ = 4
3c

3/2 .
For D, we perform the following change of variable

τ− → y =
1√
|c|

(τ− + ıε) (A24)

Which means integrating in the complex plane on the

line defined by y = iε√
|c|

. Taking again ξ = 4
3 |c|

3/2
and

sc = sign(c) we write
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D =
−π

8c1/2
lim
ε→0+

∫
y= iε√

|c|

dy
1

y2
exp

[
3

2
ξı

(
scy +

y3

3

)]
.

(A25)
After integration by parts

D =
−ıπc

4
lim
ε→0+

∫
y= iε√

|c|

dy

(
sc
y

+ y

)
exp

[
3

2
ξı

(
y +

y3

3

)]
.

(A26)
Here we can swap again the integral and the limit ex-

cept for the cosine part of the 1/y term. Indeed, if we go
back to the τ− =

√
cy − ıε variable we see that

pε(τ−) =
cos
[

3
2 ξ
(
y+ y3

3

)]
y

=
cos

[
2

(
c(τ−+ıε)+

(τ−+ıε)3

3

)]
(τ−+ıε)

. (A27)

We see that because of the pole in τ− = 0 it is impos-
sible to find a hat function g such that

∀ε > 0,∀τ− ∈ R, g(τ−) > |pε(τ−)| , (A28)

and therefore the swapping is forbidden.

However, we may compute limε→0

∫ +∞
−∞ dτ− pε(τ−) di-

rectly. Let’s first write

∀ε, L > 0,
∫ +∞
−∞ dτ− pε(τ−) =∫ +L

−L dτ− pε(τ−) +

∫
R\[−L,L]

dτ− pε(τ−)︸ ︷︷ ︸
(a)

. (A29)

The first term on the right-hand side can be written

∫ +L

−L dτ− pε(τ−) =
∫ +L

−L dτ−
cos(2c(τ−+iε))

τ−+iε

+ ◦
(
(L+ ıε)5

)
.

, (A30)

where the notation ◦(x) is to be understood as ◦(x) =
xf(x) where f is analytical and tends to 0 as x tends to
0.

The first term on the right-hand side can be expressed
as

∫ +L

−L dτ−
cos(2c(τ−+iε))

τ−+iε =
∫ +∞
−∞ dτ−

cos(2c(τ−+iε))
τ−+iε −∫

R\[−L,L]

dτ−
cos (2c (τ− + iε))

τ− + iε︸ ︷︷ ︸
(b)

. .

(A31)
The first term on the right-hand side can be developed

as∫ +∞
−∞ dτ−

cos(2c(τ−+iε))
τ−+iε = cos (2ciε)

∫ +∞
−∞ dτ−

cos(2cτ−)
τ−+iε −

sin (2ciε)

∫ +∞

−∞
dτ−

sin (2cτ−)

τ− + iε︸ ︷︷ ︸
(c)

.

(A32)

The integral in (b) is a well-known integral [22] given
by ∫ +∞

−∞
dτ−

cos (2cτ−)

τ− + iε
= −ıπe−2cε. (A33)

Now we can take the limit ε → 0. One can obviously
swap integral and limit in (a), (b) and (c). (a) and (b)
cancels because the integrand is odd while (c) cancels
because of the sine prefactor. It follows that

lim
ε→0

∫ +∞

−∞
dτ− pε(τ−) = −ıπ + ◦(L5). (A34)

Since the left-hand side does not depend on L it follows
that ◦(L5) is a constant proportional to L5, namely 0.

For the other terms in D, we swap limit and integral.
When c > 0 we use the following relations demonstrated
by [19] ( [19] uses the definitions of [23] for the Bessel
functions while we use those, slightly different, of [20].
However one can show that the relations A35 and A36
are not affected by the change of convention.)

∫ +∞
0

dx
sin
(

3
2 ξ
(
x+ x3

3

))
x = π

2 −
1√
3

∫ +∞
ξ

dx K1/3(x),

(A35)
and ∫ +∞

0
dx
(

1
x + 2x

)
sin
(

3
2ξ
(
x+ x3

3

))
=

π
2 + 1√

3

∫ +∞
ξ

dx K5/3(x),
(A36)

to obtain

D =
πc

2

(
− 1√

3

∫ ∞
ξ

K1/3(x)dx +
1√
3
K2/3(ξ)

)
(A37)

=
πc

2

(
1√
3

∫ ∞
ξ

K5/3(x)dx − 1√
3
K2/3(ξ)

)
.(A38)

Here, [5] find a result exactly three times larger. We
successfully compared our results with direct numerical
integrations.

Finally when c > 0

Ia =

∫ ∞
ξ

K5/3(x)dx +K2/3(ξ). (A39)

The case c < 0 needs to demonstrate the equivalent
of (A35) and (A36) when c < 0. The demonstration is
similar to that of [19]. Let’s first notice that

d
dξ

∫ +∞
−∞ dx

sin
(

3
2 ξ
(
−x+ x3

3

))
x =∫ +∞

−∞ dx 3
2

(
−x+ x3

3

)
cos
(

3
2ξ
(
−x+ x3

3

))
.

(A40)

In the right-hand side, one recognizes an exact primitive
minus a cosine term. The exact primitive cancels for
reason of parity and we are left with
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d
dξ

∫ +∞
−∞ dx

sin
(

3
2 ξ
(
−x+ x3

3

))
x =

−
∫ +∞
−∞ dx cos

(
3
2ξ
(
−x+ x3

3

))
,

(A41)

where the right-hand side identifies with the function
F1/3(ξ) in (A1). Noticing that

lim
L→∞

∫ +∞

−∞
dx

sin
(

3
2L
(
−x+ x3

3

))
x

= −π, (A42)

we obtain,

∫ +∞
0

dx
sin
(

3
2 ξ
(
−x+ x3

3

))
x =

−π2 + π
3

∫ +∞
ξ

dx
(
J1/3(x) + J−1/3(x)

)
.

(A43)

Using this and (A1) we obtain D and Ia in the case
c < 0,

D = π2

2 |c|
(

1− 1
3

∫∞
ξ

dx
(
J1/3(x) + J−1/3(x)

)
−

1
3

(
J2/3(ξ)− J−2/3(ξ)

))
,

(A44)
and, using functions F (A3),

Ia = π
√

3−
∫ ∞
ξ

dx F1/3(x)− 3F2/3ξ). (A45)

2. Second case

We compute

Ib =

√
3

2π

∫ ∞
−∞

dx

∣∣∣∣∫ ∞
−∞

dτ exp

[
ı

(
(c+ x2)τ +

τ3

3

)]∣∣∣∣2 .
(A46)

Performing the change of variables A11 we get:

Ib =
√

3
2π

∫∞
−∞ dx

{
2
∫∞
−∞ dτ+

∫∞
−∞ dτ−

exp
[
2ıτ−

(
(c+ x2) +

τ2
−
3

)]
exp

[
2ıτ−τ

2
+

]}
.

(A47)
Integrating over τ+ we obtain

Ib = 2
√

3
2π

∫∞
−∞ dx

∫∞
−∞ dτ−

√
π

2|τ−|e
ıπ4 sτ−

exp
[
2ıτ−

(
(c+ x2) +

τ2
−
3

)]
.

(A48)

Here we need to be careful to deal with the singularity
of the cosine term. Consequently, before swapping the
integrals and integrating over x one must perform the
change of variables (A24), then take the limit of the co-
sine term using (A34) and compute the sine term using
(A35) if c > 0 or (A43) if c < 0. One eventually obtains

Ib =

{ ∫∞
ξ
K1/3(x)dx , c > 0

π
√

3−
∫∞
ξ

dx F1/3(x) , c < 0
(A49)

3. Third case Ic

We compute

Ic =

√
3

π |c|

∫ ∞
−∞

dxx2

∣∣∣∣∫ ∞
−∞

dτ exp

[
ı

(
(c+ x2)τ +

τ3

3

)]∣∣∣∣2 .
(A50)

Here it is enough to see that the x2 factor yields exactly
the same result as the τ+ factor in D. Therefore

Ic = 2D ={ ∫∞
ξ
K5/3(x)dx −K2/3(ξ) c > 0

π
√

3−
∫∞
ξ

dx F1/3(x)− F2/3(ξ) c < 0.
. (A51)

Remark that we put here only the expression using K5/3

, but one could also express it as a function of K1/3 as in
equation A37.

4. Fourth case Id

We want to compute

Id =

√
3

π
√
|c|

∫ ∞
−∞

dx

(∫ ∞
−∞

dτ exp

[
ı

(
(c+ x2)τ +

τ3

3

)]
∫ ∞
−∞

dτ τ exp

[
ı

(
(c+ x2)τ +

τ3

3

)])
. (A52)

However we could not find a way to obtain a complete
analytical expression for this integral. One has to com-
pute it numerically using the following equivalent formula

Id = −4π

√
3

|c|

∫ ∞
−∞

dxAi(x2 + c)Ai′(x2 + c). (A53)

5. Fifth case Ie

We compute

Ie =
4
√

3

πc2

∫ ∞
−∞

dxx2

∣∣∣∣∫ ∞
−∞

dτ τ exp

[
ı

(
(c+ x2)τ +

τ3

3

)]∣∣∣∣2 .
(A54)

Performing the change of variable (A11) we get that

Ie = 2
4
√

3

πc2
(D − C) (A55)
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with

C =

∫ ∞
−∞

dx x2

∫ ∞
−∞

dτ+

∫ ∞
−∞

dτ− τ
2
− (A56)

exp
[
2ıτ−τ

2
+

]
exp

[
2ıτ−

(
(c+ x2) +

τ2
−
3

)]
,

D =

∫ ∞
−∞

dx x2

∫ ∞
−∞

dτ+ τ2
+

∫ ∞
−∞

dτ− (A57)

exp
[
2ıτ−τ

2
+

]
exp

[
2ıτ−

(
(c+ x2) +

τ2
−
3

)]
.

Integrating C is quite straightforward by using two
times (A5), once for τ+, once for x . One is left with
an Airy integral and

C =
−π2

4 3
√

2
Ai
(

22/3c
)
. (A58)

For D, as for Ia in section A 1 integrals cannot be
exchanged without obtaining a divergent integrand. To
avoid this we apply the same recipe, that is we introduce
a positive real parameter ε such that

D = lim
ε→0

∫ ∞
−∞

dx x2

∫ ∞
−∞

dτ+ τ2
+

∫ ∞
−∞

dτ− (A59)

e2ı(τ−+iε)τ2
+e

2ı(τ−+iε)

(
(c+x2)+

(τ−+iε)2

3

)
.

It is possible to invert the the integrals and we perform
integration over τ+ and x using (A5). Performing the
change of variable (A24), we get

D = lim
ε→0

−iπ
32 |c|

∫
y= iε√

|c|

dy
e
i 3

2 ξ
(
ysc+

y3

3

)
y3

(A60)

where as before sc = sign(c) and ξ = 4
3 |c|

3/2
. Performing

an integration by part we have

D = lim
ε→0

π
√
|c|

32

∫
y= iε√

|c|

dy

(
sc
y2

+ 1

)
e
i 3

2 ξ
(
ysc+

y3

3

)
.

(A61)
The second term corresponds to F1/3(ξ, sc) by definition
(A3). The first term is, up to a factor, the same integral
as in (A25).

With D and C we use formula (A55) and expressing
C with a F1/3 function using (A3), we obtain

D =
π |c|1/2

16
√

3

[
F1/3 (ξ) + 2 |c|3/2

{ ∫ +∞
ξ

dx F1/3(x)− F2/3(ξ) c > 0

π
√

3−
∫ +∞
ξ

dx F1/3(x)− F2/3(ξ) c < 0

]
, (A62)

Ie =
5

2 |c|3/2
F1/3 (ξ) +

{ ∫ +∞
ξ

dx F1/3(x)− F2/3(ξ) c > 0

π
√

3−
∫ +∞
ξ

dx F1/3(x)− F2/3(ξ) c < 0
. (A63)

6. Sixth case If

We compute

If =
4

π
√

3c2

∫ ∞
−∞

dx x4 (A64)∣∣∣∣∫ ∞
−∞

dτ exp

[
ı

(
(c+ x2)τ +

τ3

3

)]∣∣∣∣2 .
Performing the change of variable (A11) we get that

If = 2
4

π
√

3c2

∫ ∞
−∞

dx x4

∫ ∞
−∞

dτ+

∫ ∞
−∞

dτ− (A65)

exp
[
2ıτ−τ

2
+

]
exp

[
2ıτ−

(
(c+ x2) +

τ2
−
3

)]
.

Is is not possible to to exchange integration over x with
integration over τ−. We work around this by inserting a

positive real parameter ε

If =
8

π
√

3c2
lim
ε→0

∫ ∞
−∞

dx x4

∫ ∞
−∞

dτ+

∫ ∞
−∞

dτ−(A66)

e[2ı(τ−+iε)τ2
+]e

[
2ı(τ−+iε)

(
(c+x2)+

(τ−+iε)2

3

)]
,

and perform integrations over τ+ and x using (A5). We
then perform the change of variable (A24) to obtain

If =
24

π
√

3c2
lim
ε→0

−iπ
32 |c|

∫ ∞
−∞

dy
e

[
3
2 ξı
(
ysc+

y3

3

)]
y3

,

where sc = sign(c).
Here we recognize in the limit integral (A60), which

value is given in (A62). Therefore the final result is

If =
1

2 |c|3/2
F1/3 (ξ) + (A67){ ∫ +∞

ξ
dx F1/3(x)− F2/3(ξ) c > 0

π
√

3−
∫ +∞
ξ

dx F1/3(x)− F2/3(ξ) c < 0
.



16

[1] G. Voisin, S. Bonazzola, and F. Mottez, Physical Review
D (2017).

[2] J. Arons, in Neutron Stars and Pulsars, Astrophysics
and Space Science Library No. 357, edited by W. Becker
(Springer Berlin Heidelberg, 2009) pp. 373–420.

[3] G. Voisin, S. Bonazzola, and F. Mottez, in SF2A-2016:
Proceedings of the Annual meeting of the French Society
of Astronomy and Astrophysics (2016).

[4] M. A. Ruderman and P. G. Sutherland, The Astrophys-
ical Journal 196, 51 (1975).

[5] K. S. Cheng and J. L. Zhang, The Astrophysical Journal
463, 271 (1996).

[6] J. L. Zhang and Y. F. Yuan, The Astrophysical Journal
493, 826 (1998).

[7] T. Harko and K. S. Cheng, Monthly Notices of the Royal
Astronomical Society 335, 99 (2002).
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