GENERALIZED KDV EQUATION SUBJECT TO A STOCHASTIC PERTURBATION - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

GENERALIZED KDV EQUATION SUBJECT TO A STOCHASTIC PERTURBATION

Résumé

We prove global well-posedness of the subcritical generalized Korteweg-de Vries equation (the mKdV and the gKdV with quartic power of nonlinearity) subject to an additive random perturbation. More precisely, we prove that if the driving noise is a cylindrical Wiener process on L 2 (R) and the covariance operator is Hilbert-Schmidt in an appropriate Sobolev space, then the solutions with H 1 (R) data are globally wellposed in H 1 (R). This extends results obtained by A. de Bouard and A. Debussche for the stochastic KdV equation. Dedication: In the memory of Igor Chueshov.
Fichier principal
Vignette du fichier
Stochastic_gKdV_AMSR.pdf (231.59 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01519175 , version 1 (06-05-2017)
hal-01519175 , version 2 (20-11-2017)

Identifiants

  • HAL Id : hal-01519175 , version 1

Citer

Annie Millet, Svetlana Roudenko. GENERALIZED KDV EQUATION SUBJECT TO A STOCHASTIC PERTURBATION. 2017. ⟨hal-01519175v1⟩
329 Consultations
205 Téléchargements

Partager

More