Non-Asymptotic Rates for Manifold, Tangent Space, and Curvature Estimation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

Non-Asymptotic Rates for Manifold, Tangent Space, and Curvature Estimation

Résumé

Given an $n$-sample drawn on a submanifold $M \subset \mathbb{R}^D$, we derive optimal rates for the estimation of tangent spaces $T_X M$, the second fundamental form $II_X^M$, and the submanifold $M$. After motivating their study, we introduce a quantitative class of $\mathcal{C}^k$-submanifolds in analogy with Hölder classes. The proposed estimators are based on local polynomials and allow to deal simultaneously with the three problems at stake. Minimax lower bounds are derived using a conditional version of Assouad's lemma when the base point $X$ is random.
Fichier principal
Vignette du fichier
optimal_geometric_inference_HAL.pdf (1.29 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01516032 , version 1 (02-05-2017)
hal-01516032 , version 2 (24-01-2018)
hal-01516032 , version 3 (02-02-2018)

Identifiants

Citer

Eddie Aamari, Clément Levrard. Non-Asymptotic Rates for Manifold, Tangent Space, and Curvature Estimation. 2017. ⟨hal-01516032v2⟩
643 Consultations
385 Téléchargements

Altmetric

Partager

More