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NON-ASYMPTOTIC RATES FOR MANIFOLD, TANGENT
SPACE AND CURVATURE ESTIMATION

By Eddie Aamari§,∗,†,‡ and Clément Levrard¶,∗,†

U.C. San Diego§ , Université Paris-Diderot¶

Abstract: Given a noisy sample from a submanifold M ⊂ RD, we
derive optimal rates for the estimation of tangent spaces TXM , the
second fundamental form IIMX , and the submanifoldM . After motiva-
ting their study, we introduce a quantitative class of Ck-submanifolds
in analogy with Hölder classes. The proposed estimators are based
on local polynomials and allow to deal simultaneously with the three
problems at stake. Minimax lower bounds are derived using a condi-
tional version of Assouad’s lemma when the base point X is random.

1. Introduction

A wide variety of data can be thought of as being generated on a shape of low
dimensionality compared to possibly high ambient dimension. This point of
view led to the development of the so-called topological data analysis, which
proved fruitful for instance when dealing with physical parameters subject
to constraints, biomolecule conformations, or natural images [35]. This field
intends to associate geometric quantities to data without regard of any spe-
cific coordinate system or parametrization. If the underlying structure is
sufficiently smooth, one can model a point cloud Xn = {X1, . . . , Xn} as
being sampled on a d-dimensional submanifold M ⊂ RD. In such a case,
geometric and topological intrinsic quantities include (but are not limited
to) homology groups [28], persistent homology [15], volume [5], differential
quantities [9] or the submanifold itself [20, 1, 26].

The present paper focuses on optimal rates for estimation of quantities up
to order two: (0) the submanifold itself, (1) tangent spaces, and (2) second
fundamental forms.

Among these three questions, a special attention has been paid to the
estimation of the submanifold. In particular, it is a central problem in ma-
nifold learning. Indeed, there exists a wide bunch of algorithms intended
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2 E. AAMARI AND C. LEVRARD

to reconstruct submanifolds from point clouds (Isomap [32], LLE [29], and
restricted Delaunay Complexes [6, 12] for instance), but few come with the-
oretical guarantees [20, 1, 26]. Up to our knowledge, minimax lower bounds
were used to prove optimality in only one case [20]. Some of these recon-
struction procedures are based on tangent space estimation [6, 1, 12]. Tan-
gent space estimation itself also yields interesting applications in manifold
clustering [19, 4]. Estimation of curvature-related quantities naturally arises
in shape reconstruction, since curvature can drive the size of a meshing. As
a consequence, most of the associated results deal with the case d = 2 and
D = 3, though some of them may be extended to higher dimensions [27, 23].
Several algorithms have been proposed in that case [30, 9, 27, 23], but with
no analysis of their performances from a statistical point of view.

To assess the quality of such a geometric estimator, the class of submani-
folds over which the procedure is evaluated has to be specified. Up to now,
the most commonly used model for submanifolds relied on the reach τM ,
a generalized convexity parameter. Assuming τM ≥ τmin > 0 involves both
local regularity — a bound on curvature — and global regularity — no arbi-
trarily pinched area —. This C2-like assumption has been extensively used in
the computational geometry and geometric inference fields [1, 28, 15, 5, 20].
One attempt of a specific investigation for higher orders of regularity k ≥ 3
has been proposed in [9].

Many works suggest that the regularity of the submanifold has an im-
portant impact on convergence rates. This is pretty clear for tangent space
estimation, where convergence rates of PCA-based estimators range from
(1/n)1/d in the C2 case [1] to (1/n)α with 1/d < α < 2/d in more regular
settings [31, 33]. In addition, it seems that PCA-based estimators are out-
performed by estimators taking into account higher orders of smoothness
[11, 9], for regularities at least C3. For instance fitting quadratic terms leads
to a convergence rate of order (1/n)2/d in [11]. These remarks naturally led
us to investigate the properties of local polynomial approximation for regular
submanifolds, where “regular” has to be properly defined. Local polynomial
fitting for geometric inference was studied in several frameworks such as [9].
In some sense, a part of our work extends these results, by investigating the
dependency of convergence rates on the sample size n, but also on the order
of regularity k and the ambient and intrinsic dimensions d and D.

1.1. Overview of the Main Results

In this paper, we build a collection of models for Ck-submanifolds (k ≥
3) that naturally generalize the commonly used one for k = 2 (Section
2). Roughly speaking, these models are defined by their local differential
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regularity k in the usual sense, and by their minimum reach τmin > 0 that
may be thought of as a global regularity parameter (see Section 2.2). On
these models, we study the non-asymptotic rates of estimation for tangent
space, curvature, and manifold estimation (Section 3). Roughly speaking,
if M is a Ckτmin submanifold and if Y1, . . . , Yn is an n-sample drawn on M
uniformly enough, then we can derive the following minimax bounds:

(Theorems 2 and 3) inf
T̂

sup
M∈Ck

τM≥τmin

E max
1≤j≤n

∠
(
TYjM, T̂j

)
�
(

1

n

) k−1
d

,

where TyM denotes the tangent space of M at y;

(Theorems 4 and 5) inf
ÎI

sup
M∈Ck

τM≥τmin

E max
1≤j≤n

∥∥IIMYj − ÎIj∥∥ � ( 1

n

) k−2
d

,

where IIMy denotes the second fundamental form of M at y;

(Theorems 6 and 7) inf
M̂

sup
M∈Ck

τM≥τmin

E dH
(
M,M̂

)
�
(

1

n

) k
d

,

where dH denotes the Hausdorff distance.
These results shed light on the influence of k, d, and n on these estimation

problems, showing for instance that the ambient dimension D plays no role.
The estimators proposed for the upper bounds all rely on the analysis of
local polynomials, and allow to deal with the three estimation problems in
a unified way (Section 5.1). Some of the lower bounds are derived using a
new version of Assouad’s Lemma (Section 5.2.2).

We also emphasize the influence of the reach τM of the manifold M in
Theorem 1. Indeed, we show that whatever the local regularity k of M , if
we only require τM ≥ 0, then for any fixed point y ∈M ,

inf
T̂

sup
M∈Ck
τM≥0

E∠
(
TyM, T̂

)
≥ 1/2, inf

ÎI
sup
M∈Ck
τM≥0

E
∥∥IIMy − ÎI∥∥ ≥ c > 0,

assessing that the global regularity parameter τmin > 0 is crucial for esti-
mation purpose.

It is worth mentioning that our bounds also allow for perpendicular noise
of amplitude σ > 0. When σ . (1/n)α/d for 1 ≤ α, then our estimators be-
have as if the corrupted sample X1, . . . , Xn were exactly drawn on a manifold
with regularity α. Hence our estimators turn out to be optimal whenever
α ≥ k. If α < k, the lower bounds suggest that better rates could be obtained
with different estimators, by pre-processing data as in [21] for instance.
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For the sake of completeness, geometric background and proofs of techni-
cal lemmas are given in the Appendix.

2. Ck Models for Submanifolds

2.1. Notation

Throughout the paper, we consider d-dimensional compact submanifolds
M ⊂ RD without boundary. The submanifolds will always be assumed to
be at least C2. For all p ∈ M , TpM stands for the tangent space of M at
p [13, Chapter 0]. We let IIMp : TpM × TpM → TpM

⊥ denote the second

fundamental form of M at p [13, p. 125]. IIMp characterizes the curvature

of M at p. The standard inner product in RD is denoted by 〈·, ·〉 and the
Euclidean distance by ‖·‖. Given a linear subspace T ⊂ RD, write T⊥ for
its orthogonal space. We write B(p, r) for the closed Euclidean ball of radius
r > 0 centered at p ∈ RD, and for short BT (p, r) = B(p, r)∩T . For a smooth
function Φ : RD → RD and i ≥ 1, we let dixΦ denote the ith order differential

of Φ at x ∈ RD. For a linear map A defined on T ⊂ RD, ‖A‖op = supv∈T
‖Av‖
‖v‖

stands for the operator norm. We adopt the same notation ‖·‖op for tensors,
i.e. multilinear maps. Similarly, if {Ax}x∈T ′ is a family of linear maps, its
L∞ operator norm is denoted by ‖A‖op = supx∈T ′ ‖Ax‖op. When it is well

defined, we will write πB(z) for the projection of z ∈ RD onto the closed
subset B ⊂ RD, that is the nearest neighbor of z in B. The distance between
two linear subspaces U, V ⊂ RD of the same dimension is measured by
the principal angle ∠(U, V ) = ‖πU − πV ‖op . The Hausdorff distance [20] in

RD is denoted by dH . For a probability distribution P , EP stands for the
expectation with respect to P . We write P⊗n for the n-times tensor product
of P .

Throughout this paper, Cα will denote a generic constant depending on
the parameter α. For clarity’s sake, C ′α, cα, or c′α may also be used when
several constants are involved.

2.2. Reach and Regularity of Submanifolds

As introduced in [16], the reach τM of a subset M ⊂ RD is the maximal
neighborhood radius for which the projection πM onto M is well defined.
More precisely, denoting by d(·,M) the distance to M , the medial axis of M
is defined to be the set of points which have at least two nearest neighbors
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τM

M

Med(M)

Figure 1: Medial axis and reach of a closed curve in the plane.

on M , that is

Med(M) =
{
z ∈ RD|∃p 6= q ∈M, ‖z − p‖ = ‖z − q‖ = d(z,M)

}
.

The reach is then defined by

τM = inf
p∈M

d (p,Med(M)) = inf
z∈Med(M)

d (z,M) .

It gives a minimal scale of geometric and topological features of M . As a
generalized convexity parameter, τM is a key parameter in reconstruction
[1, 20] and in topological inference [28]. Having τM ≥ τmin > 0 prevents M
from almost auto-intersecting, and bounds its curvature in the sense that∥∥IIMp ∥∥op ≤ τ−1

M ≤ τ−1
min for all p ∈M [28, Proposition 6.1].

For τmin > 0, we let C2
τmin denote the set of d-dimensional compact con-

nected submanifolds M of RD such that τM ≥ τmin > 0. A key property of
submanifolds M ∈ C2

τmin is the existence of a parametrization closely related
to the projection onto tangent spaces. We let expp : TpM → M denote the
exponential map of M [13, Chapter 3], that is defined by expp(v) = γp,v(1),
where γp,v is the unique constant speed geodesic path of M with initial value
p and velocity v.

Lemma 1. If M ∈ C2
τmin, expp : BTpM (0, τmin/4) → M is one-to-one.

Moreover, it can be written as

expp : BTpM (0, τmin/4) −→M

v 7−→ p+ v + Np(v)

with Np such that for all v ∈ BTpM (0, τmin/4),

Np(0) = 0, d0Np = 0, ‖dvNp‖op ≤ L⊥ ‖v‖ ,

where L⊥ = 5/(4τmin). Furthermore, for all p, y ∈M ,

y − p = πTpM (y − p) +R2(y − p),

where ‖R2(y − p)‖ ≤ ‖y−p‖
2

2τmin
.
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A proof of Lemma A.1 is given in Section A.1 of the Appendix. In other
words, elements of C2

τmin have local parametrizations on top of their tangent
spaces that are defined on neighborhoods with a minimal radius, and these
parametrizations differ from the identity map by at most a quadratic term.
The existence of such local parametrizations leads to the following conver-
gence result: if data Y1, . . . , Yn are drawn uniformly enough on M ∈ C2

τmin ,

then it is shown in [1, Proposition 14] that a tangent space estimator T̂
based on local PCA achieves

E max
1≤j≤n

∠
(
TYjM, T̂j

)
≤ C

(
1

n

) 1
d

.

When M is smoother, it has been proved in [11] that a convergence rate
in n−2/d might be achieved, based on the existence of a local order 3 Taylor
expansion of the submanifold on top of its tangent spaces. Thus, a natural
extension of the C2

τmin model to Ck-submanifolds should ensure that such an
expansion exists at order k and satisfies some regularity constraints. To this
aim, we introduce the following class of regularity Ckτmin,L.

Definition 1. For k ≥ 3, τmin > 0, and L = (L⊥, L3, . . . , Lk), we let
Ckτmin,L denote the set of d-dimensional compact connected submanifolds M

of RD with τM ≥ τmin and such that, for all p ∈ M , there exists a local
one-to-one parametrization Ψp of the form:

Ψp : BTpM (0, r) −→M

v 7−→ p+ v + Np(v)

for some r ≥ 1
4L⊥

, with Np ∈ Ck
(
BTpM (0, r) ,RD

)
such that

Np(0) = 0, d0Np = 0,
∥∥d2

vNp

∥∥
op
≤ L⊥,

for all ‖v‖ ≤ 1
4L⊥

. Furthermore, we require that∥∥divNp

∥∥
op
≤ Li for all 3 ≤ i ≤ k.

It is important to note that such a family of Ψp’s exists for any compact
Ck-submanifold, if one allows τ−1

min, L⊥, L3,. . .,Lk to be large enough. Note
that the radius 1/(4L⊥) has been chosen for convenience. Other smaller
scales would do and we could even parametrize this constant, but without
substantial benefits in the results.

The Ψp’s can be seen as unit parametrizations of M . The conditions on
Np(0), d0Np, and d2

vNp ensure that Ψ−1
p is close to the projection πTpM .
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The bounds on divNp (3 ≤ i ≤ k) allow to control the coefficients of the
polynomial expansion we seek. Indeed, whenever M ∈ Ckτmin,L, Lemma 2

shows that for every p in M , and y in B
(
p,

τmin∧L−1
⊥

4

)
∩M ,

y − p = π∗(y − p) +

k−1∑
i=2

T ∗i (π∗(y − p)⊗i) +Rk(y − p),(1)

where π∗ denotes the orthogonal projection onto TpM , the T ∗i are i-linear
maps from TpM to RD with ‖T ∗i ‖op ≤ L′i and Rk satisfies ‖Rk(y − p)‖ ≤
C‖y − p‖k, where the constants C and the L′i’s depend on the parameters
τmin, d, k, L⊥, . . . , Lk.

Note that for k ≥ 3 the exponential map can happen to be only Ck−2 for a
Ck-submanifold [24]. Hence, it may not be a good choice of Ψp. However, for
k = 2, taking Ψp = expp is sufficient for our purpose. For ease of notation, we
may write C2

τmin,L
although the specification of L is useless. In this case, we

implicitly set by default Ψp = expp and L⊥ = 5/(4τmin). As will be shown
in Theorem 1, the global assumption τM ≥ τmin > 0 cannot be dropped,
even when higher order regularity bounds Li’s are fixed.

Let us now describe the statistical model. Every d-dimensional submani-
fold M ⊂ RD inherits a natural uniform volume measure by restriction of
the ambient d-dimensional Hausdorff measure Hd. In what follows, we will
consider probability distributions that are almost uniform on some M in
Ckτmin,L, with some bounded noise, as stated below.

Definition 2 (Noise-Free and Tubular Noise Models).
- (Noise-Free Model) For k ≥ 2, τmin > 0, L = (L⊥, L3, . . . , Lk) and fmin ≤
fmax, we let Pkτmin,L,fmin,fmax denote the set of distributions P0 with support

M ∈ Ckτmin,L that have a density f with respect to the volume measure on
M , and such that for all y ∈M ,

0 < fmin ≤ f(y) ≤ fmax <∞.

- (Tubular Noise Model) For 0 ≤ σ < τmin, we denote by Pkτmin,L,fmin,fmax (σ)
the set of distributions of random variables X = Y +Z, where Y has distribu-
tion P0 ∈ Pkτmin,L,fmin,fmax, and Z ∈ TYM⊥ with ‖Z‖ ≤ σ and E(Z|Y ) = 0.

For short, we write Pk and Pk(σ) when there is no ambiguity. We denote
by Xn an i.i.d. n-sample {X1, . . . , Xn}, that is, a sample with distribution
P⊗n for some P ∈ Pk(σ), so that Xi = Yi + Zi, where Y has distribution
P0 ∈ Pk, Z ∈ BTYM⊥(0, σ) with E(Z|Y ) = 0. It is immediate that for
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σ < τmin, we have Y = πM (X). Note that the tubular noise model Pk(σ) is
a slight generalization of that in [21].

In what follows, though M is unknown, all the parameters of the model
will be assumed to be known, including the intrinsic dimension d and the
order of regularity k. We will also denote by Pk(x) the subset of elements in

Pk whose support contains a prescribed x ∈ RD.
In view of our minimax study on Pk, it is important to ensure by now

that Pk is stable with respect to deformations and dilations.

Proposition 1. Let Φ : RD → RD be a global Ck-diffeomorphism.
If ‖dΦ− ID‖op ,

∥∥d2Φ
∥∥
op

, . . . ,
∥∥dkΦ∥∥

op
are small enough, then for all

P in Pkτmin,L,fmin,fmax, the pushforward distribution P ′ = Φ∗P belongs to

Pkτmin/2,2L,fmin/2,2fmax
.

Moreover, if Φ = λID (λ > 0) is an homogeneous dilation, then P ′ ∈
Pk
λτmin,L(λ),fmin/λ

d,fmax/λd
, where L(λ) = (L⊥/λ, L3/λ

2, . . . , Lk/λ
k−1).

Proposition A.4 follows from a geometric reparametrization argument
(Proposition A.5 in Appendix A) and a change of variable result for the
Hausdorff measure (Lemma A.6 in Appendix A).

2.3. Necessity of a Global Assumption

In the previous Section 2.2, we generalized C2-like models — stated in terms
of reach — to Ck, for k ≥ 3, by imposing higher order differentiability bounds
on parametrizations Ψp’s. The following Theorem 1 shows that the global
assumption τM ≥ τmin > 0 is necessary for estimation purpose.

Theorem 1. Assume that τmin = 0. If D ≥ d + 3, then for all k ≥ 3
and L⊥ > 0, provided that L3/L

2
⊥, . . . , Lk/L

k−1
⊥ , Ld⊥/fmin and fmax/L

d
⊥ are

large enough (depending only on d and k), for all n ≥ 1,

inf
T̂

sup
P∈Pk

(x)

EP⊗n∠
(
TxM, T̂

)
≥ 1

2
> 0,

where the infimum is taken over all the estimators T̂ = T̂
(
X1, . . . , Xn

)
.

Moreover, for any D ≥ d+1, provided that L3/L
2
⊥, . . . , Lk/L

k−1
⊥ , Ld⊥/fmin

and fmax/L
d
⊥ are large enough (depending only on d and k), for all n ≥ 1,

inf
ÎI

sup
P∈Pk

(x)

EP⊗n
∥∥∥IIMx ◦ πTxM − ÎI∥∥∥

op
≥ L⊥

4
> 0,

where the infimum is taken over all the estimators ÎI = ÎI
(
X1, . . . , Xn

)
.
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The proof of Theorem 1 can be found in Section C.5. In other words, if the
class of submanifolds is allowed to have arbitrarily small reach, no estimator
can perform uniformly well to estimate neither TxM nor IIMx . And this,
even though each of the underlying submanifolds have arbitrarily smooth
parametrizations. Indeed, if two parts of M can nearly intersect around x
at an arbitrarily small scale Λ → 0, no estimator can decide whether the
direction (resp. curvature) of M at x is that of the first part or the second
part (see Figures 8 and 9).

x

Λ Λ

M1 M ′
1

x

Figure 2: Inconsistency of tangent space estimation for τmin = 0.

M2 M ′
2

2Λ
x x

2Λ

Figure 3: Inconsistency of curvature estimation for τmin = 0.

3. Main Results

Let us now move to the statement of the main results. Given an i.i.d. n-
sample Xn = {X1, . . . , Xn} with unknown common distribution P ∈ Pk(σ),
we detail non-asymptotic rates for the estimation of tangent spaces TYjM ,
second fundamental forms IIMYj , and M itself.

For this, we need one more piece of notation. For 1 ≤ j ≤ n, P
(j)
n−1 de-

notes integration with respect to 1/(n − 1)
∑

i 6=j δ(Xi−Xj), and z⊗i denotes
the D × i-dimensional vector (z, . . . , z). For a constant t > 0 and a band-
width h > 0 to be chosen later, we define the local polynomial estimator
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(π̂j , T̂2,j , . . . , T̂k−1,j) at Xj to be any element of

arg min
π,sup2≤i≤k ‖Ti‖op≤t

P
(j)
n−1

∥∥∥∥∥x− π(x)−
k−1∑
i=2

Ti(π(x)⊗i)

∥∥∥∥∥
2

1B(0,h)(x)

 ,(2)

where π ranges among all the orthogonal projectors on d-dimensional sub-

spaces, and Ti :
(
RD
)i → RD among the symmetric tensors of order i such

that ‖Ti‖op ≤ t. For k = 2, the sum over the tensors Ti is empty, and

the integrated term reduces to ‖x− π(x)‖2 1B(0,h)(x). By compactness of
the domain of minimization, such a minimizer exists almost surely. In what
follows, we will work with a maximum scale h ≤ h0, with

h0 =
τmin ∧ L−1

⊥
8

.

The set of d-dimensional orthogonal projectors is not convex, which le-
ads to a more involved optimization problem than usual least squares. In
practice, this problem may be solved using tools from optimization on Gras-
sman manifolds [34], or adopting a two-stage procedure such as in [9]: from
local PCA, a first d-dimensional space is estimated at each sample point,
along with an orthonormal basis of it. Then, the optimization problem
(2) is expressed as a minimization problem in terms of the coefficients of
(πj , T2,j , . . . , Tk,j) in this basis under orthogonality constraints. It is worth
mentioning that a similar problem is explicitly solved in [11], leading to an
optimal tangent space estimation procedure in the case k = 3.

The constraint ‖Ti‖op ≤ t involves a parameter t to be calibrated. As will
be shown in the following section, it is enough to choose t roughly smaller
than 1/h, but still larger than the unknown norm of the optimal tensors
‖T ∗i ‖op. Hence, for h → 0, the choice t = h−1 works to guarantee optimal
convergence rates. Such a constraint on the higher order tensors might have
been stated under the form of a ‖.‖op-penalized least squares minimization
— as in ridge regression — leading to the same results.

3.1. Tangent Spaces

By definition, the tangent space TYjM is the best linear approximation of
M nearby Yj . Thus, it is natural to take the range of the first order term
minimizing (2) and write T̂j = im π̂j . The T̂j ’s approximate simultaneously
the TYjM ’s with high probability, as stated below.
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Theorem 2. Assume that t ≥ Ck,d,τmin,L ≥ sup2≤i≤k ‖T ∗i ‖op. Set h =(
Cd,k

f2
max logn
f3
min(n−1)

)1/d
, for Cd,k large enough, and assume that σ ≤ h/4. If n is

large enough so that h ≤ h0, then with probability at least 1−
(

1
n

)k/d
,

max
1≤j≤n

∠
(
TYjM, T̂j

)
≤ Cd,k,τmin,L

√
fmax
fmin

(hk−1 ∨ σh−1)(1 + th).

As a consequence, taking t = h−1, for n large enough,

sup
P∈Pk(σ)

EP⊗n max
1≤j≤n

∠
(
TYjM, T̂j

)
≤ C

(
log n

n− 1

) k−1
d

{
1 ∨ σ

(
log n

n− 1

)− k
d

}
,

where C = Cd,k,τmin,L,fmin,fmax.

The proof of Theorem 2 is given in Section 5.1.2. The same bound holds
for the estimation of TyM at a prescribed y ∈M in the model Pk(y)(σ). For

that, simply take P
(y)
n = 1/n

∑
i δ(Xi−y) as integration in (2).

In the noise-free setting, or when σ ≤ hk, this result is in line with those
of [9] in terms of the sample size dependency (1/n)(k−1)/d. Besides, it shows
that the convergence rate of our estimator does not depend on the ambient
dimension D, even in codimension greater than 2. When k = 2, we recover
the same rate as [1], where we used local PCA, which is a reformulation of
(2). When k ≥ 3, the procedure (2) outperforms PCA-based estimators of
[31] and [33], where convergence rates of the form (1/n)β with 1/d < β < 2/d
are obtained. This bound also recovers the result of [11] in the case k = 3,
where a similar procedure is used. When the noise level σ is of order hα, with
1 ≤ α ≤ k, Theorem 2 yields a convergence rate in hα−1. Since a polynomial
decomposition up to order kα = dαe in (2) results in the same bound, the
noise level σ = hα may be thought of as an α-regularity threshold. At last, it
may be worth mentioning that the results of Theorem 2 also hold when the
assumption E(Z|Y ) = 0 is relaxed. Theorem 2 nearly matches the following
lower bound.

Theorem 3. If τminL⊥, . . . , τ
k−1
minLk, (τ

d
minfmin)−1 and τdminfmax are large

enough (depending only on d and k), then

inf
T̂

sup
P∈Pk(σ)

EP⊗n∠
(
TπM (X1)M, T̂

)
≥ cd,k,τmin

{(
1

n− 1

) k−1
d

∨
(

σ

n− 1

) k−1
d+k

}
,
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where the infimum is taken over all the estimators T̂ = T̂ (X1, . . . , Xn).

A proof of Theorem 3 can be found in Section 5.2.2. When σ . (1/n)k/d,
the lower bound matches Theorem 2 in the noise-free case, up to a log n
factor. Thus, the rate (1/n)(k−1)/d is optimal for tangent space estimation
on the model Pk. The rate (log n/n)1/d obtained in [1] for k = 2 is therefore
optimal, as well as the rate (log n/n)2/d given in [11] for k = 3. The rate
(1/n)(k−1)/d naturally appears on the the model Pk, as the estimation rate
of differential objects of order 1 from k-smooth submanifolds.

When σ � (1/n)α/d with α < k, the lower bound provided by Theo-
rem 3 is of order (1/n)(k−1)(α+d)/[d(d+k)], hence smaller than the (1/n)α/d

rate of Theorem 2. This suggests that the local polynomial estimator (2) is
suboptimal whenever σ � (1/n)k/d on the model Pk(σ).

Here again, the same lower bound holds for the estimation of TyM at a
fixed point y in the model Pk(y)(σ).

3.2. Curvature

The second fundamental form IIMYj : TYjM × TYjM → TYjM
⊥ ⊂ RD is a

symmetric bilinear map that encodes completely the curvature of M at Yj
[13, Chap. 6, Proposition 3.1]. Estimating it only from a point cloud Xn does
not trivially make sense, since IIMYj has domain TYjM which is unknown. To

bypass this issue we extend IIMYj to RD. That is, we consider the estimation

of IIMYj ◦ πTYjM which has full domain RD. Following the same ideas as in

the previous Section 3.1, we use the second order tensor T̂2,j ◦ π̂j obtained
in (2) to estimate IIMYj ◦ πTYjM .

Theorem 4. Let k ≥ 3. Take h as in Theorem 2, σ ≤ h/4, and
t = 1/h. If n is large enough so that h ≤ h0 and h−1 ≥ C−1

k,d,τmin,L
≥

(sup2≤i≤k ‖T ∗i ‖op)−1, then with probability at least 1−
(

1
n

)k/d
,

max
1≤j≤n

∥∥∥IIMYj ◦ πTYjM − T̂2,j ◦ π̂j
∥∥∥
op
≤ Cd,k,τmin,L

√
fmax
fmin

(hk−2 ∨ σh−2).

In particular, for n large enough,

sup
P∈Pk(σ)

EP⊗n max
1≤j≤n

∥∥∥IIMYj ◦ πTYjM − T̂2,j ◦ π̂j
∥∥∥
op

≤ Cd,k,τmin,L,fmin,fmax
(

log n

n− 1

) k−2
d

{
1 ∨ σ

(
log n

n− 1

)− k
d

}
.
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The proof of Theorem 4 is given in Section 5.1.3. As in Theorem 2, the
case σ ≤ hk may be thought of as a noise-free setting, and provides an
upper bound of the form hk−2. Interestingly, Theorems 2 and 4 are enough
to provide estimators of various notions of curvature. For instance, consider
the scalar curvature [13, Section 4.4] at a point Yj , defined by

ScMYj =
1

d(d− 1)

∑
r 6=s

[〈
IIMYj (er, er), II

M
Yj (es, es)

〉
− ‖IIMYj (er, es)‖2

]
,

where (er)1≤r≤d is an orthonormal basis of TYjM . A plugin estimator of ScMYj
is

Ŝcj =
1

d(d− 1)

∑
r 6=s

[〈
T̂2,j(êr, êr), T̂2,j(ês, ês)

〉
− ‖T̂2,j(êr, ês)‖2

]
,

where (êr)1≤r≤d is an orthonormal basis of T̂2,j . Theorems 2 and 4 yield

EP⊗n max
1≤j≤n

∣∣∣Ŝcj − ScMYj ∣∣∣ ≤ C ( log n

n− 1

) k−2
d

{
1 ∨ σ

(
log n

n− 1

)− k
d

}
,

where C = Cd,k,τmin,L,fmin,fmax .
The (near-)optimality of the bound stated in Theorem 4 is assessed by

the following lower bound.

Theorem 5. If τminL⊥, . . . , τ
k−1
minLk, (τ

d
minfmin)−1 and τdminfmax are large

enough (depending only on d and k), then

inf
ÎI

sup
P∈Pk(σ)

EP⊗n
∥∥∥IIMπM (X1) ◦ πTπM (X1)M − ÎI

∥∥∥
op

≥ cd,k,τmin

{(
1

n− 1

) k−2
d

∨
(

σ

n− 1

) k−2
d+k

}
,

where the infimum is taken over all the estimators ÎI = ÎI(X1, . . . , Xn).

The proof of Theorem 5 is given in Section 5.2.2. The same remarks as in
Section 3.1 hold. If the estimation problem consists in approximating IIMy
at a fixed point y known to belong to M beforehand, we obtain the same
rates. The ambient dimension D still plays no role. The shift k−2 in the rate
of convergence on a Ck-model can be interpreted as the order of derivation
of the object of interest, that is 2 for curvature.

Notice that the lower bound (Theorem 5) does not require k ≥ 3. Hence,
we get that for k = 2, curvature cannot be estimated uniformly consistently
on the C2-model P2. This seems natural, since the estimation of a second
order quantity should require an additional degree of smoothness.
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M̂

Figure 4: M̂ is a union of polynomial patches at sample points.

3.3. Support Estimation

For each 1 ≤ j ≤ n, the minimization (2) outputs a series of tensors
(π̂j , T̂2,j , . . . , T̂k−1,j). This collection of multidimensional monomials can be
further exploited as follows. By construction, they fit M at scale h around
Yj , so that

Ψ̂j(v) = Xj + v +
k−1∑
i=2

T̂i,j
(
v⊗i
)

is a good candidate for an approximate parametrization in a neighborhood
of Yj . We do not know the domain TYjM of the initial parametrization,

though we have at hand an approximation T̂j = im π̂j which was proved to
be consistent in Section 3.1. As a consequence, we let the support estimator
based on local polynomials M̂ be

M̂ =
n⋃
j=1

Ψ̂j

(
BT̂j (0, 7h/8)

)
.

The set M̂ has no reason to be globally smooth, since it consists of a mere
union of polynomial patches (Figure 4). However, M̂ is provably close to M
for the Hausdorff distance.

Theorem 6. With the same assumptions as Theorem 4, with probability

at least 1− 2
(

1
n

) k
d , we have

dH
(
M, M̂

)
≤ Cd,k,τmin,L,fmin,fmax(hk ∨ σ).

In particular, for n large enough,

sup
P∈Pk(σ)

EP⊗ndH
(
M,M̂

)
≤ Cd,k,τmin,L,fmin,fmax

{(
log n

n− 1

) k
d

∨ σ

}
.
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A proof of Theorem 6 is given in Section 5.1.4. As in Theorem 2, for
a noise level of order hα, α ≥ 1, Theorem 6 yields a convergence rate of
order h(k∧α)/d. Thus the noise level σ may also be thought of as a regularity
threshold. Contrary to [21, Theorem 2], the case h/4 < σ < τmin is not in
the scope of Theorem 6. Moreover, for 1 ≤ α < 2d/(d+ 2), [21, Theorem 2]
provides a better convergence rate of h2/(d+2). Note however that Theorem
6 is also valid whenever the assumption E(Z|Y ) = 0 is relaxed. In this non-
centered noise framework, Theorem 6 outperforms [26, Theorem 7] in the
case d ≥ 3, k = 2, and σ ≤ h2.

In the noise-free case or when σ ≤ hk, for k = 2, we recover the rate
(log n/n)2/d obtained in [1, 20, 25] and improve the rate (log n/n)2/(d+2) in
[21, 26]. However, our estimator M̂ is an unstructured union of d-dimensional
balls in RD. Consequently, M̂ does not recover the topology of M as the
estimator of [1] does.

When k ≥ 3, M̂ outperforms reconstruction procedures based on a so-
mewhat piecewise linear interpolation [1, 20, 26], and achieves the faster
rate (log n/n)k/d for the Hausdorff loss. This seems quite natural, since our
procedure fits higher order terms. This is done at the price of a probably
worse dependency on the dimension d than in [1, 20]. Theorem 6 is now
proved to be (almost) minimax optimal.

Theorem 7. If τminL⊥, . . . , τ
k−1
minLk, (τ

d
minfmin)−1 and τdminfmax are large

enough (depending only on d and k), then for n large enough,

inf
M̂

sup
P∈Pk(σ)

EP⊗ndH
(
M,M̂

)
≥ cd,k,τmin

{(
1

n

) k
d

∨
(σ
n

) k
d+k

}
,

where the infimum is taken over all the estimators M̂ = M̂(X1, . . . , Xn).

Theorem 7, whose proof is given in Section 5.2.1, is obtained from Le
Cam’s Lemma (Theorem C.20). Let us note that it is likely for the extra
log n term appearing in Theorem 6 to actually be present in the minimax
rate. Roughly, it is due to the fact that the Hausdorff distance dH is similar
to a L∞ loss. The log n term may be obtained in Theorem 7 with the same
combinatorial analysis as in [25] for k = 2.

As for the estimation of tangent spaces and curvature, Theorem 7 ma-
tches the upper bound in Theorem 6 in the noise-free case σ . (1/n)k/d.
Moreover, for σ < τmin, it also generalizes Theorem 1 in [21] to higher or-
ders of regularity (k ≥ 3). Again, for σ � (1/n)−k/d, the upper bound in
Theorem 6 is larger than the lower bound stated in Theorem 7. However our
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estimator M̂ achieves the same convergence rate if the assumption E(Z|Y )
is dropped.

4. Conclusion, Prospects

In this article, we derived non-asymptotic bounds for inference of geome-
tric objects associated with smooth submanifolds M ⊂ RD. We focused on
tangent spaces, second fundamental forms, and the submanifold itself. We
introduced new regularity classes Ckτmin,L for submanifolds that extend the
case k = 2. For each object of interest, the proposed estimator relies on lo-
cal polynomials that can be computed through a least square minimization.
Minimax lower bounds were presented, matching the upper bounds up to
log n factors in the regime of small noise.

The implementation of (2) needs to be investigated. The non-convexity of
the criterion comes from that we minimize over the space of orthogonal pro-
jectors, which is non-convex. However, that space is pretty well understood,
and it seems possible to implement gradient descents on it [34]. Another way
to improve our procedure could be to fit orthogonal polynomials instead of
monomials. Such a modification may also lead to improved dependency on
the dimension d and the regularity k in the bounds for both tangent space
and support estimation.

Though the stated lower bounds are valid for quite general tubular noise
levels σ, it seems that our estimators based on local polynomials are subop-
timal whenever σ is larger than the expected precision for Ck models in a
d-dimensional space (roughly (1/n)k/d). In such a setting, it is likely that a
preliminary centering procedure is needed, as the one exposed in [21]. Ot-
her pre-processings of the data might adapt our estimators to other types
of noise. For instance, whenevever outliers are allowed in the model C2, [1]
proposes an iterative denoising procedure based on tangent space estima-
tion. It exploits the fact that tangent space estimation allows to remove a
part of outliers, and removing outliers enhances tangent space estimation.
An interesting question would be to study how this method can apply with
local polynomials.

Another open question is that of exact topology recovery with fast rates
for k ≥ 3. Indeed, M̂ converges at rate (log n/n)k/d but is unstructured. It
would be nice to glue the patches of M̂ together, for example using interpo-
lation techniques, following the ideas of [18].
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5. Proofs

5.1. Upper bounds

5.1.1. Preliminary results on polynomial expansions

To prove Theorem 2, 4 and 6, the following lemmas are needed. First, we
relate the existence of parametrizations Ψp’s mentioned in Definition 1 to a
local polynomial decomposition.

Lemma 2. For any M ∈ Ckτmin,L and y ∈M , the following holds.

(i) For all v1, v2 ∈ BTyM
(

0, 1
4L⊥

)
,

3

4
‖v2 − v1‖ ≤ ‖Ψy(v2)−Ψy(v1)‖ ≤ 5

4
‖v2 − v1‖ .

(ii) For all h ≤ 1
4L⊥
∧ 2τmin

5 ,

M ∩ B
(
y,

3h

5

)
⊂ Ψy

(
BTyM (y, h)

)
⊂M ∩ B

(
y,

5h

4

)
.

(iii) For all h ≤ τmin
2 ,

BTyM
(

0,
7h

8

)
⊂ πTyM (B(y, h) ∩M) .

(iv) Denoting by π∗ = πTyM the orthogonal projection onto TyM , for all
y ∈ M , there exist multilinear maps T ∗2 , . . . , T

∗
k−1 from TyM to RD,

and Rk such that for all y′ ∈ B
(
y,

τmin∧L−1
⊥

4

)
∩M ,

y′ − y = π∗(y′ − y) + T ∗2 (π∗(y′ − y)⊗2) + . . .+ T ∗k−1(π∗(y′ − y)⊗k−1)

+Rk(y
′ − y),

with∥∥Rk(y′ − y)
∥∥ ≤ C ∥∥y′ − y∥∥k and ‖T ∗i ‖op ≤ L

′
i, for 2 ≤ i ≤ k − 1,

where L′i depends on d, k, τmin, L⊥, . . . , Li, and C on d, k, τmin, L⊥,. . .,
Lk. Moreover, for k ≥ 3, T ∗2 = IIMy .

(v) For all y ∈ M ,
∥∥IIMy ∥∥op ≤ 1/τmin. In particular, the sectional curva-

tures of M satisfy

−2

τ2
min

≤ κ ≤ 1

τ2
min

.
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The proof of Lemma 2 can be found in Section A.2. A direct consequence
of Lemma 2 is the following Lemma 3.

Lemma 3. Set h0 = (τmin ∧ L−1
⊥ )/8 and h ≤ h0. Let M ∈ Ckτmin,L,

x0 = y0 +z0, with y0 ∈M and ‖z0‖ ≤ σ ≤ h/4. Denote by π∗ the orthogonal
projection onto Ty0M , and by T ∗2 , . . . , T

∗
k−1 the multilinear maps given by

Lemma 2, iv).
Then, for any x = y+z such that y ∈M , ‖z‖ ≤ σ ≤ h/4 and x ∈ B(x0, h),

for any orthogonal projection π and multilinear maps T2, . . . , Tk−1, we have

x− x0 − π(x− x0)−
k−1∑
j=2

Tj(π(x− x0)⊗j) =
k∑
j=1

T ′j(π
∗(y − y0)⊗j)

+Rk(x− x0),

where T ′j are j-linear maps, and ‖Rk(x − x0)‖ ≤ C
(
σ ∨ hk

)
(1 + th), with

t = maxj=2...,k ‖T‖op and C depending on d, k, τmin, L⊥,. . ., Lk. Moreover,
we have

T ′1 = (π∗ − π),
T ′2 = (π∗ − π) ◦ T ∗2 + (T ∗2 ◦ π∗ − T2 ◦ π),

and, if π = π∗ and Ti = T ∗i , for i = 2, . . . , k−1, then T ′j = 0, for j = 1, . . . , k.

Lemma 3 roughly states that, if π, Tj , j ≥ 2 are designed to locally
approximate x = y + z around x0 = y0 + z0, then the approximation error
may be expressed as a polynomial expansion in π∗(y − y0).

Proof of Lemma 3. For short assume that y0 = 0. In what follows C
will denote a constant depending on d, k, τmin, L⊥,. . ., Lk. We may write

x− x0 − π(x− x0)−
k−1∑
j=2

Tj(π(x− x0)⊗j) = y − π(y)−
k−1∑
j=2

Tj(π(y)⊗j)

+R′k(x− x0),

with ‖R′k(x−x0)‖ ≤ Cσ(1+th). Since σ ≤ h/4, y ∈ B(0, 3h/2), with h ≤ h0.
Hence Lemma 2 entails

y = π∗(y) + T ∗2 (π∗(y)⊗2) + . . .+ T ∗k−1(π∗(y)⊗k−1)

+R′′k(y),
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with ‖R′′k(y)‖ ≤ Chk. We deduce that

y−π(y)−
k−1∑
j=2

Tj(π(y)⊗j) = (π∗−π◦π∗)(y)+T ∗2 (π∗(y)⊗2)−π(T ∗2 (π∗(y)⊗2))

− T2(π ◦ π∗(y)⊗2) +
k∑
j=3

T ′k(π
∗(y)⊗j)− π(R′′k(y))−R′′′k (y),

with ‖R′′′k (y)‖ ≤ Cthk+1, since only tensors of order greater than 2 are
involved in R′′′k . Since T ∗2 = IIM0 , π∗ ◦ T ∗2 = 0, hence the result.

At last, we need a result relating deviation in terms of polynomial norm

and L2(P
(j)
0,n−1) norm, where P0 ∈ Pk, for polynomials taking arguments in

π∗,(j)(y). For clarity’s sake, the bounds are given for j = 1, and we denote

P
(1)
0,n−1 by P0,n−1. Without loss of generality, we can assume that Y1 = 0.

Let Rk[y1:d] denote the set of real-valued polynomial functions in d va-
riables with degree less than k. For S ∈ Rk[y1:d], we denote by ‖S‖2 the
Euclidean norm of its coefficients, and by Sh the polynomial defined by
Sh(y1:d) = S(hy1:d). With a slight abuse of notation, S(π∗(y)) will denote
S(e∗1(π∗(y)), . . . , e∗d(π

∗(y))), where e∗1, . . . , e
∗
d form an orthonormal coordi-

nate system of T0M .

Proposition 2. Set h =
(
K logn

n−1

) 1
d
. There exist constants κk,d, ck,d

and Cd such that, if K ≥ (κk,df
2
max/f

3
min) and n is large enough so that

h ≤ h0 ≤ τmin/8, then with probability at least 1−
(

1
n

) k
d

+1
, we have

P0,n−1[S2(π∗(y))1B(h/2)(y)] ≥ ck,dh
dfmin‖Sh‖22,

N(3h/2) ≤ Cdfmax(n− 1)hd,

for every S ∈ Rk[y1:d], where N(3h/2) =
∑n

j=2 1B(0,3h/2)(Yj).

The proof of Proposition B.8 is deferred to Section B.2.

5.1.2. Upper Bound for Tangent Space Estimation

Proof of Theorem 2. We recall that for every j = 1, . . . , n, Xj = Yj+
Zj , where Yj ∈M is drawn from P0 and ‖Zj‖ ≤ σ ≤ h/4, where h ≤ h0 as de-
fined in Lemma 3. Without loss of generality we consider the case j = 1, Y1 =
0. From now on we assume that the probability event defined in Proposition
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B.8 occurs, and denote by Rn−1(π, T2, . . . , Tk−1) the empirical criterion defi-
ned by (2). Note that Xj ∈ B(X1, h) entails Yj ∈ B(0, 3h/2). Moreover, since
for t ≥ maxi=2,...,k−1 ‖T ∗i ‖op,Rn−1(π̂, T̂1, . . . , T̂k−1) ≤ Rn−1(π∗, T ∗2 , . . . , T

∗
k−1),

we deduce that

Rn−1(π̂, T̂1, . . . , T̂k−1) ≤
Cτmin,L

(
σ2 ∨ h2k

)
(1 + th)2N(3h/2)

n− 1
,

according to Lemma 3. On the other hand, note that if Yj ∈ B(0, h/2), then
Xj ∈ B(X1, h). Lemma 3 then yields

Rn−1(π̂, T̂2, . . . , T̂k−1) ≥P0,n−1

∥∥∥∥∥∥
k∑
j=1

T̂ ′j(π
∗(y)⊗j)

∥∥∥∥∥∥
2

1B(0,h/2)(y)


−
Cτmin,L

(
σ2 ∨ h2k

)
(1 + th)2N(3h/2)

n− 1
.

Using Proposition B.8, we can decompose the right-hand side as

D∑
r=1

P0,n−1

 k∑
j=1

T̂ ′
(r)
j (π∗(y)⊗j)1B(0,h/2)(y)

2

≤ Cτmin,Lfmaxhd
(
σ2 ∨ h2k

)
(1 + th)2,

where for any tensor T , T (r) denotes the r-th coordinate of T and is consi-
dered as a real valued r-order polynomial. Then, applying Proposition B.8
to each coordinate leads to

cd,kfmin

D∑
r=1

k∑
j=1

∥∥∥(T ′(r)j (π∗(y)⊗j)
)
h

∥∥∥2

2
≤ Cτmin,Lfmaxhd

(
σ2 ∨ h2k

)
(1 + th)2.

It follows that, for 1 ≤ j ≤ k,

‖T̂ ′j ◦ π∗‖2op ≤ Cd,k,L,τmin
fmax
fmin

(h2(k−j) ∨ σ2h−2j)(1 + t2h2).(3)

Noting that, according to [22, Section 2.6.2],

‖T̂ ′1 ◦ π∗‖op = ‖(π∗ − π̂)π∗‖op = ‖πT̂⊥1 ◦ π
∗‖ = ∠(TY1M, T̂1),

we deduce that

∠
(
TY1M, T̂1

)
≤ Cd,k,L,τmin

√
fmax
fmin

(h(k−1) ∨ σh−1)(1 + th).

Theorem 2 then follows from a straightforward union bound.
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5.1.3. Upper Bound for Curvature Estimation

Proof of Theorem 4. Without loss of generality, the derivation is con-
ducted in the same framework as in the previous Section 5.1.2. In accordance
with assumptions of Theorem 4, we assume that max2≤i≤k ‖T ∗i ‖op ≤ t ≤ 1/h.
Since, according to Lemma 3,

T ′2(π∗(y)⊗2) = (π∗ − π̂)(T ∗2 (π∗(y)⊗2)) + (T ∗2 ◦ π∗ − T̂2 ◦ π̂)(π∗(y)⊗2),

we deduce that

‖T ∗2 ◦π∗− T̂2◦ π̂‖op ≤ ‖T ′2◦π∗‖op+‖π̂−π∗‖op+‖T̂2◦ π̂◦π∗− T̂2◦ π̂◦ π̂‖op.

Using (3) with j = 1, 2 and th ≤ 1 leads to

‖T ∗2 ◦ π∗ − T̂2 ◦ π̂‖op ≤ Cd,k,L,τmin

√
fmax
fmin

(h(k−2) ∨ σh−2).

Finally, Lemma 2 states that IIMY1
= T ∗2 . Theorem 4 follows from a union

bound.

5.1.4. Upper Bound for Manifold Estimation

Proof of Theorem 6 . Recall that we take Xi = Yi+Zi, where Yi has
distribution P0 and ‖Zj‖ ≤ σ ≤ h/4. We also assume that the probabi-
lity events of Proposition B.8 occur simultaneously at each Yi, so that (3)
holds for all i, with probability larger than 1 − (1/n)k/d. Without loss of
generality set Y1 = 0. Let v ∈ BT̂1M

(0, 7h/8) be fixed. Notice that π∗(v) ∈
BT0M (0, 7h/8). Hence, according to Lemma 2, there exists y ∈ B(0, h) ∩M
such that π∗(v) = π∗(y). According to (3), we may write

Ψ̂(v) = Z1 + v +

k−1∑
j=2

T̂j(v
⊗j) = π∗(v) +

k−1∑
j=2

T̂j(π
∗(v)⊗j) +Rk(v),

where, since ‖T̂j‖op ≤ 1/h, ‖Rk(v)‖ ≤ Ck,d,τmin,L
√
fmax/fmin(hk∨σ). Using

(3) again leads to

π∗(v) +
k−1∑
j=2

T̂j(π
∗(v)⊗j) = π∗(v) +

k−1∑
j=2

T ∗j (π∗(v)⊗j) +R′(π∗(v))

= π∗(y) +
k−1∑
j=2

T ∗j (π∗(y)⊗j) +R′(π∗(y)),
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where ‖R′(π∗(y))‖ ≤ Ck,d,τmin,L
√
fmax/fmin(hk ∨ σ). According to Lemma

2, we deduce that ‖Ψ̂(v)− y‖ ≤ Ck,d,τmin,L
√
fmax/fmin(hk ∨ σ), hence

sup
u∈M̂

d(u,M) ≤ Ck,d,τmin,L

√
fmax
fmin

(hk ∨ σ).(4)

Now we focus on supy∈M d(y, M̂). For this, we need a lemma ensuring that
Yn = {Y1, . . . , Yn} covers M with high probability.

Lemma 4. Let h =
(
C′dk
fmin

logn
n

)1/d
with C ′d large enough. Then for n

large enough so that h ≤ τmin/4, with probability at least 1−
(

1
n

)k/d
,

dH (M,Yn) ≤ h/2.

The proof of Lemma 4 is given in Section B.1. Now we choose h satisfying
the conditions of Proposition B.8 and Lemma 4. Let y be in M and assume
that ‖y − Yj0‖ ≤ h/2. Then y ∈ B(Xj0 , 3h/4). According to Lemma 3 and

(3), we deduce that ‖Ψ̂j0(π̂j0(y−Xj0))−y‖ ≤ Ck,d,τmin,L
√
fmax/fmin(hk∨σ).

Hence, from Lemma 4,

sup
y∈M

d(y, M̂) ≤ Ck,d,τM ,L

√
fmax
fmin

(hk ∨ σ)(5)

with probability at least 1−2
(

1
n

)k/d
. Combining (4) and (5) gives Theorem

6.

5.2. Minimax Lower Bounds

This section is devoted to describe the main ideas of the proofs of the mi-
nimax lower bounds. We prove Theorem 7 on one side, and Theorem 3 and
Theorem 5 in a unified way on the other side. The methods used rely on
hypothesis comparison [36].

5.2.1. Lower Bound for Manifold Estimation

We recall that for two distributions Q and Q′ defined on the same space,
the L1 test affinity ‖Q ∧Q′‖1 is given by

∥∥Q ∧Q′∥∥
1

=

∫
dQ ∧ dQ′,
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Λ

δ

M0

M1

Figure 5: Manifolds M0 and M1 of Lemma 5 and Lemma 6. The width
δ of the bump is chosen to have ‖P σ0 ∧ P σ1 ‖

n
1 constant. The distance Λ =

dH(M0,M1) is of order δk to ensure that M1 ∈ Ck.

where dQ and dQ′ denote densities of Q and Q′ with respect to any domi-
nating measure.

The first technique we use, involving only two hypotheses, is usually refer-
red to as Le Cam’s Lemma [36]. Let P be a model and θ(P ) be the parameter
of interest. Assume that θ(P ) belongs to a pseudo-metric space (D, d), that
is d(·, ·) is symmetric and satisfies the triangle inequality. Le Cam’s Lemma
can be adapted to our framework as follows.

Theorem 8 (Le Cam’s Lemma [36]). For all pairs P, P ′ in P,

inf
θ̂

sup
P∈P

EP⊗nd(θ(P ), θ̂) ≥ 1

2
d
(
θ(P ), θ(P ′)

) ∥∥P ∧ P ′∥∥n
1
,

where the infimum is taken over all the estimators θ̂ = θ̂(X1, . . . , Xn).

In this section, we will get interested in P = Pk(σ) and θ(P ) = M , with
d = dH . In order to derive Theorem 7, we build two different pairs (P0, P1),
(P σ0 , P

σ
1 ) of hypotheses in the model Pk(σ). Each pair will exploit a different

property of the model Pk(σ).
The first pair (P0, P1) of hypotheses (Lemma 5) is built in the model

Pk ⊂ Pk(σ), and exploits the geometric difficulty of manifold reconstruction,
even if no noise is present. These hypotheses, depicted in Figure 5, consist
of bumped versions of one another.

Lemma 5. Under the assumptions of Theorem 7, there exist P0, P1 ∈ Pk
with associated submanifolds M0,M1 such that

dH(M0,M1) ≥ ck,d,τmin
(

1

n

) k
d

, and ‖P0 ∧ P1‖n1 ≥ c0.

The proof of Lemma 5 is to be found in Section C.4.1.
The second pair (P σ0 , P

σ
1 ) of hypotheses (Lemma 6) has a similar con-

struction than (P0, P1). Roughly speaking, they are the uniform distributions
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on the offsets of radii σ/2 of M0 and M1 of Figure 5. Here, the hypothe-
ses are built in Pk(σ), and fully exploit the statistical difficulty of manifold
reconstruction induced by noise.

Lemma 6. Under the assumptions of Theorem 7, there exist P σ0 , P
σ
1 ∈

Pk(σ) with associated submanifolds Mσ
0 ,M

σ
1 such that

dH(Mσ
0 ,M

σ
1 ) ≥ ck,d,τmin

(σ
n

) k
d+k

, and ‖P σ0 ∧ P σ1 ‖
n
1 ≥ c0.

The proof of Lemma 6 is to be found in Section C.4.2. We are now in
position to prove Theorem 7.

Proof of Theorem 7. Let us apply Theorem C.20 with P = Pk(σ),
θ(P ) = M and d = dH . Taking P = P0 and P ′ = P1 of Lemma 5, these
distributions both belong to Pk ⊂ Pk(σ), so that Theorem C.20 yields

inf
M̂

sup
P∈Pk(σ)

EP⊗ndH
(
M,M̂

)
≥ dH(M0,M1) ‖P0 ∧ P1‖n1

≥ ck,d,τmin
(

1

n

) k
d

× c0.

Similarly, setting hypotheses P = P σ0 and P ′ = P σ1 of Lemma 6 yields

inf
M̂

sup
P∈Pk(σ)

EP⊗ndH
(
M, M̂

)
≥ dH(Mσ

0 ,M
σ
1 ) ‖P σ0 ∧ P σ1 ‖

n
1

≥ ck,d,τmin
(σ
n

) k
k+d × c0,

which concludes the proof.

5.2.2. Lower Bounds for Tangent Space and Curvature Estimation

Let us now move to the proof of Theorem 3 and 5, that consist of lower
bounds for the estimation of TX1M and IIMX1

with random base point X1.
In both cases, the loss can be cast as

EP⊗n d(θX1(P ), θ̂) = EP⊗n−1

[
EP d(θX1(P ), θ̂)

]
= EP⊗n−1

[∥∥∥d(θ·(P ), θ̂
)∥∥∥
L1(P )

]
,

where θ̂ = θ̂(X,X ′), with X = X1 driving the parameter of interest, and
X ′ = (X2, . . . , Xn) = X2:n. Since ‖.‖L1(P ) obviously depends on P , the
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technique exposed in the previous section does not apply anymore. However,
a slight adaptation of Assouad’s Lemma [36] with an extra conditioning on
X = X1 carries out for our purpose. Let us now detail a general framework
where the method applies.

We let X ,X ′ denote measured spaces. For a probability distribution Q
on X × X ′, we let (X,X ′) be a random variable with distribution Q. The
marginals of Q on X and X ′ are denoted by µ and ν respectively. Let (D, d)
be a pseudo-metric space. For Q ∈ Q, we let θ·(Q) : X → D be defined µ-
almost surely, where µ is the marginal distribution of Q on X . The parameter
of interest is θX(Q), and the associated minimax risk over Q is

inf
θ̂

sup
Q∈Q

EQ
[
d
(
θX(Q), θ̂(X,X ′)

)]
,(6)

where the infimum is taken over all the estimators θ̂ : X × X ′ → D.
Given a set of probability distributions Q on X ×X ′, write Conv(Q) for

the set of mixture probability distributions with components in Q. For all
τ = (τ1, . . . , τm) ∈ {0, 1}m, τk denotes the m-tuple that differs from τ only
at the kth position. We are now in position to state the conditional version
of Assouad’s Lemma that allows to lower bound the minimax risk (6).

Lemma 7 (Conditional Assouad). Let m ≥ 1 be an integer and let
{Qτ}τ∈{0,1}m be a family of 2m submodels Qτ ⊂ Q. Let {Uk × U ′k}1≤k≤m
be a family of pairwise disjoint subsets of X ×X ′, and Dτ,k be subsets of D.
Assume that for all τ ∈ {0, 1}m and 1 ≤ k ≤ m,

• for all Qτ ∈ Qτ , θX(Qτ ) ∈ Dτ,k on the event {X ∈ Uk};
• for all θ ∈ Dτ,k and θ′ ∈ Dτk,k, d(θ, θ′) ≥ ∆.

For all τ ∈ {0, 1}m, let Qτ ∈ Conv(Qτ ), and write µ̄τ and ν̄τ for the mar-
ginal distributions of Qτ on X and X ′ respectively. Assume that if (X,X ′)
has distribution Qτ , X and X ′ are independent conditionally on the event
{(X,X ′) ∈ Uk × U ′k}, and that

min
τ∈{0,1}m
1≤k≤m

{(∫
Uk

dµ̄τ ∧ dµ̄τk
)(∫

U ′k

dν̄τ ∧ dν̄τk

)}
≥ 1− α.

Then,

inf
θ̂

sup
Q∈Q

EQ
[
d
(
θX(Q), θ̂(X,X ′)

)]
≥ m∆

2
(1− α),

where the infimum is taken over all the estimators θ̂ : X × X ′ → D.
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Note that for a model of the form Q = {δx0 ⊗ P, P ∈ P} with fixed x0 ∈
X , one recovers the classical Assouad’s Lemma [36] taking Uk = X and
U ′k = X ′. Indeed, when X = x is deterministic, the parameter of interest
θX(Q) = θ(Q) can be seen as non-random.

In this section, we will get interested in Q = Pk(σ)⊗n, and θX(Q) =
θX1(Q) being alternatively TX1M and IIMX1

. Similarly to Section 5.2.1, we
build two different families of submodels, each of them will exploit a different
kind of difficulty for tangent space and curvature estimation.

The first family, described in Lemma 8, highlights the geometric difficulty
of the estimation problems, even when the noise level σ is small, or even zero.
Let us emphasize that the estimation error is integrated with respect to the
distribution of X1. Hence, considering mixture hypotheses is natural, since
building manifolds with different tangent spaces (or curvature) necessarily
leads to distributions that are locally singular. Here, as in Section 5.2.1, the
considered hypotheses are composed of bumped manifolds (see Figure 7).
We defer the proof of Lemma 8 to Section C.3.1.

Lemma 8. Assume that the conditions of Theorem 3 or 5 hold. Given i ∈
{1, 2}, there exists a family of 2m submodels

{
P(i)
τ

}
τ∈{0,1}m ⊂ P

k, together

with pairwise disjoint subsets {Uk × U ′k}1≤k≤m of RD ×
(
RD
)n−1

such that
the following holds for all τ ∈ {0, 1}m and 1 ≤ k ≤ m.

For any distribution P
(i)
τ ∈ P(i)

τ with support M
(i)
τ = Supp

(
P

(i)
τ

)
, if

(X1, . . . , Xn) has distribution
(
P

(i)
τ

)⊗n
, then on the event {X1 ∈ Uk}, we

have:

• if τk = 0,

TX1M
(i)
τ = Rd × {0}D−d ,

∥∥∥∥IIM(i)
τ

X1
◦ π

TX1
M

(i)
τ

∥∥∥∥
op

= 0,

• if τk = 1,

– for i = 1: ∠
(
TX1M

(1)
τ ,Rd × {0}D−d

)
≥ ck,d,τmin

(
1

n− 1

) k−1
d

,

– for i = 2:

∥∥∥∥IIM(2)
τ

X1
◦ π

TX1
M

(2)
τ

∥∥∥∥
op

≥ ck,d,τmin
(

1

n− 1

) k−2
d

.

Furthermore, there exists Q̄
(i)
τ,n ∈ Conv

((
P(i)
τ

)⊗n)
such that if (Z1, . . . , Zn) =

(Z1, Z2:n) has distribution Q̄
(i)
τ,n, Z1 and Z2:n are independent conditionally

on the event {(Z1, Z2:n) ∈ Uk × U ′k}. The marginal distributions of Q̄
(i)
τ,n on
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RD ×
(
RD
)n−1

are Q̄
(i)
τ,1 and Q̄

(i)
τ,n−1, and we have∫

U ′k

dQ̄
(i)
τ,n−1 ∧ dQ̄

(i)

τk,n−1
≥ c0, and m ·

∫
Uk

dQ̄
(i)
τ,1 ∧ dQ̄

(i)

τk,1
≥ cd.

Λk

Λ+

δ

xk

(a) Flat bump: τk = 0.

δ

xkA−x1
A+x1

Akx1

(b) Linear bump: τk = 1, i = 1.

δ

xk

Akx
2
1A−x

2
1

A+x
2
1

(c) Quadratic bump: τk = 1, i = 2.

Figure 6: Distributions of Lemma 8 in the neighborhood of Uk (1 ≤ k ≤ m).

Black curves correspond to the support M
(i)
τ of a distribution of P(i)

τ ⊂ Pk.
The area shaded in grey depicts the mixture distribution Q̄

(i)
τ,1 ∈ Conv

(
P(i)
τ

)
.

The second family, described in Lemma 9, testifies of the statistical diffi-
culty of the estimation problem when the noise level σ is large enough. The
construction is very similar to Lemma 8 (see Figure 7). Though, in this case,
the magnitude of the noise drives the statistical difficulty, as opposed to the
sampling scale in Lemma 8. Note that in this case, considering mixture dis-
tributions is not necessary since the ample-enough noise make bumps that
are absolutely continuous with respect to each other. The proof of Lemma
9 can be found in Section C.3.2.

Lemma 9. Assume that the conditions of Theorem 3 or 5 hold, and that
σ ≥ Ck,d,τmin (1/(n− 1))k/d for Ck,d,τmin > 0 large enough. Given i ∈ {1, 2},
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there exists a collection of 2m distributions
{
P

(i),σ
τ

}
τ∈{0,1}m ⊂ P

k(σ) with as-

sociated submanifolds
{
M

(i),σ
τ

}
τ∈{0,1}m, together with pairwise disjoint sub-

sets {Uσk }1≤k≤m of RD such that the following holds for all τ ∈ {0, 1}m and
1 ≤ k ≤ m.

If x ∈ Uσk and y = π
M

(i),σ
τ

(x), we have

• if τk = 0,

TyM
(i),σ
τ = Rd × {0}D−d ,

∥∥∥IIM(i),σ
τ

y ◦ π
TyM

(i),σ
τ

∥∥∥
op

= 0,

• if τk = 1,

– for i = 1: ∠
(
TyM

(1),σ
τ ,Rd × {0}D−d

)
≥ ck,d,τmin

(
σ

n− 1

) k−1
k+d

,

– for i = 2:
∥∥∥IIM(2),σ

τ
y ◦ π

TyM
(2),σ
τ

∥∥∥
op
≥ c′k,d,τmin

(
σ

n− 1

) k−2
k+d

.

Furthermore,∫
(RD)n−1

(
P(i),σ
τ

)⊗n−1 ∧
(
P

(i),σ

τk

)⊗n−1 ≥ c0, and m ·
∫
Uσk

P(i),σ
τ ∧P

(i),σ

τk
≥ cd.

Proof of Theorem 3. Let us apply Lemma C.11 with X = RD, X ′ =(
RD
)n−1

, Q =
(
Pk(σ)

)⊗n
, X = X1, X ′ = (X2, . . . , Xn) = X2:n, θX(Q) =

TXM , and the angle between linear subspaces as the distance d.
If σ < Ck,d,τmin (1/(n− 1))k/d, for Ck,d,τmin > 0 defined in Lemma 9, then,

applying Lemma C.11 to the family
{
Q̄

(1)
τ,n

}
τ

together with the disjoint sets
Uk × U ′k of Lemma 8, we get

inf
T̂

sup
P∈Pk(σ)

EP⊗n∠
(
TπM (X1)M, T̂

)
≥ m · ck,d,τmin

(
1

n− 1

) k−1
d

· c0 · cd

= c′d,k,τmin

{(
1

n− 1

) k−1
d

∨
(

σ

n− 1

) k−1
d+k

}
,

where the second line uses that σ < Ck,d,τmin (1/(n− 1))k/d.

If σ ≥ Ck,d,τmin (1/(n− 1))k/d, then Lemma 9 holds, and considering the

family
{(

P
(1),σ
τ

)⊗n}
τ
, together with the disjoint sets Uσk ×

(
RD
)n−1

, Lemma
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C.11 gives

inf
T̂

sup
P∈Pk(σ)

EP⊗n∠
(
TπM (X1)M, T̂

)
≥ m · ck,d,τmin

(
σ

n− 1

) k−1
k+d

· c0 · cd

= c′′d,k,τmin

{(
1

n− 1

) k−1
d

∨
(

σ

n− 1

) k−1
d+k

}
,

hence the result.

Proof of Theorem 5. The proof follows the exact same lines as that
of Theorem 3 just above. Namely, consider the same setting with θX(Q) =

IIMπM (X). If σ ≥ Ck,d,τmin (1/(n− 1))k/d, apply Lemma C.11 with the family{
Q̄

(2)
τ,n

}
τ

of Lemma 8. If σ > Ck,d,τmin (1/(n− 1))k/d, Lemma C.11 can be

applied to
{(

P
(2),σ
τ

)⊗n}
τ

in Lemma 9. This yields the announced rate.
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Appendix: Geometric background and proofs of
intermediate results

Appendix A: Properties and Stability of the Models

A.1. Property of the Exponential Map in C2
τmin

Here we show the following Lemma 1, reproduced as Lemma A.1.

Lemma A.1. If M ∈ C2
τmin, expp : BTpM (0, τmin/4)→M is one-to-one.

Moreover, it can be written as

expp : BTpM (0, τmin/4) −→M

v 7−→ p+ v + Np(v)

with Np such that for all v ∈ BTpM (0, τmin/4),

Np(0) = 0, d0Np = 0, ‖dvNp‖op ≤ L⊥ ‖v‖ ,

where L⊥ = 5/(4τmin). Furthermore, for all p, y ∈M ,

y − p = πTpM (y − p) +R2(y − p),

where ‖R2(y − p)‖ ≤ ‖y−p‖
2

2τmin
.

Proof of Lemma A.1. Proposition 6.1 in [28] states that for all x ∈M ,∥∥IIMx ∥∥op ≤ 1/τmin. In particular, Gauss equation ([13, Proposition 3.1 (a),

p.135]) yields that the sectional curvatures of M satisfy −2/τ2
min ≤ κ ≤

1/τ2
min. Using Corollary 1.4 of [3], we get that the injectivity radius of M is

at least πτmin ≥ τmin/4. Therefore, expp : BTpM (0, τmin/4) → M is one-to-
one.

Let us write Np(v) = expp(v) − p − v. We clearly have Np(0) = 0
and d0Np = 0. Let now v ∈ BTpM (0, τmin/4) be fixed. We have dvNp =
dv expp−IdTpM . For 0 ≤ t ≤ ‖v‖, we write γ(t) = expp(tv/ ‖v‖) for the
arc-length parametrized geodesic from p to expp(v), and Pt for the parallel
translation along γ. From Lemma 18 of [14],∥∥∥dt v

‖v‖
expp−Pt

∥∥∥
op
≤ 2

τ2
min

t2

2
≤ t

4τmin
.
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We now derive an upper bound for
∥∥Pt − IdTpM∥∥op. For this, fix two unit

vectors u ∈ RD and w ∈ TpM , and write g(t) = 〈Pt(w) − w, u〉. Letting ∇̄
denote the ambient derivative in RD, by definition of parallel translation,∣∣g′(t)∣∣ =

∣∣〈∇̄γ′(t)Pt(w)− w, u〉
∣∣

=
∣∣∣〈IIMγ(t)

(
γ′(t), Pt(w)

)
, u〉
∣∣∣

≤ 1/τmin.

Since g(0) = 0, we get
∥∥Pt − IdTpM∥∥op ≤ t/τmin. Finally, the triangle ine-

quality leads to

‖dvNp‖op =
∥∥dv exp−IdTpM

∥∥
op

≤
∥∥dv exp−P‖v‖

∥∥
op

+
∥∥P‖v‖ − IdTpM∥∥op

≤ 5 ‖v‖
4τmin

.

We conclude with the property of the projection π∗ = πTpM . Indeed, defining
R2(y − p) = (y − p)− π∗(y − p), Lemma 4.7 in [16] gives

‖R2(y − p)‖ = d(y − p, TpM)

≤ ‖y − p‖
2

2τmin
.

A.2. Geometric Properties of the Models Ck

Lemma A.2. For any M ∈ Ckτmin,L and x ∈M , the following holds.

(i) For all v1, v2 ∈ BTxM
(

0, 1
4L⊥

)
,

3

4
‖v2 − v1‖ ≤ ‖Ψx(v2)−Ψx(v1)‖ ≤ 5

4
‖v2 − v1‖ .

(ii) For all h ≤ 1
4L⊥
∧ 2τmin

5 ,

M ∩ B
(
x,

3h

5

)
⊂ Ψx (BTxM (x, h)) ⊂M ∩ B

(
x,

5h

4

)
.

(iii) For all h ≤ τmin
2 ,

BTxM
(

0,
7h

8

)
⊂ πTxM (B(x, h) ∩M) .
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(iv) Denoting by π∗ = πTxM the orthogonal projection onto TxM , for all
x ∈ M , there exist multilinear maps T ∗2 , . . . , T

∗
k−1 from TxM to RD,

and Rk such that for all y ∈ B
(
x,

τmin∧L−1
⊥

4

)
∩M ,

y − x = π∗(y − x) + T ∗2 (π∗(y − x)⊗2) + . . .+ T ∗k−1(π∗(y − x)⊗k−1)

+Rk(y − x),

with

‖Rk(y − x)‖ ≤ C ‖y − x‖k and ‖T ∗i ‖op ≤ L
′
i, for 2 ≤ i ≤ k − 1,

where L′i depends on d, k, τmin, L⊥, . . . , Li, and C on d, k, τmin, L⊥,
. . ., Lk. Moreover, for k ≥ 3, T ∗2 = IIMx .

(v) For all x ∈ M ,
∥∥IIMx ∥∥op ≤ 1/τmin. In particular, the sectional curva-

tures of M satisfy

−2

τ2
min

≤ κ ≤ 1

τ2
min

.

Proof of Lemma A.2. (i) Simply notice that from the reverse tri-
angle inequality,∣∣∣∣‖Ψx(v2)−Ψx(v1)‖

‖v2 − v1‖
− 1

∣∣∣∣ ≤ ‖Nx(v2)−Nx(v1)‖
‖v2 − v1‖

≤ L⊥(‖v1‖ ∨ ‖v2‖) ≤
1

4
.

(ii) The right-hand side inclusion follows straightforwardly from (i). Let us
focus on the left-hand side inclusion. For this, consider the map defined
by G = πTxM ◦Ψx on the domain BTxM (0, h). For all v ∈ BTxM (0, h),
we have

‖dvG− IdTxM‖op = ‖πTxM ◦ dvNx‖op ≤ ‖dvNx‖op ≤ L⊥ ‖v‖ ≤
1

4
< 1.

Hence, G is a diffeomorphism onto its image and it satisfies ‖G(v)‖ ≥
3 ‖v‖/4. It follows that

BTxM
(

0,
3h

4

)
⊂ G (BTxM (0, h)) = πTxM (Ψx (BTxM (0, h))) .

Now, according to Lemma A.1, for all y ∈ B
(
x, 3h

5

)
∩M ,

‖πTxM (y − x)‖ ≤ ‖y − x‖+
‖y − x‖2

2τmin
≤
(

1 +
1

4

)
‖y − x‖ ≤ 3h

4
,
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from what we deduce πTxM
(
B
(
x, 3h

5

)
∩M

)
⊂ BTxM

(
0, 3h

4

)
. As a con-

sequence,

πTxM

(
B
(
x,

3h

5

)
∩M

)
⊂ πTxM (Ψx (BTxM (0, h))) ,

which yields the announced inclusion since πTxM is one to one on
B
(
x, 5h

4

)
∩M from Lemma 3 in [4], and(
B
(
x,

3h

5

)
∩M

)
⊂ Ψx (BTxM (0, h)) ⊂ B

(
x,

5h

4

)
∩M.

(iii) Straightforward application of Lemma 3 in [4].
(iv) Notice that Lemma A.1 gives the existence of such an expansion for

k = 2. Hence, we can assume k ≥ 3. Taking h =
τmin∧L−1

⊥
4 , we showed

in the proof of (ii) that the map G is a diffeomorphism onto its image,
with ‖dvG− IdTxM‖op ≤

1
4 < 1. Additionally, the chain rule yields∥∥divG∥∥op ≤ ∥∥divΨx

∥∥
op
≤ Li for all 2 ≤ i ≤ k. Therefore, from Lemma

A.3, the differentials of G−1 up to order k are uniformly bounded. As
a consequence, we get the announced expansion writing

y − x = Ψx ◦G−1 (π∗(y − x)) ,

and using the Taylor expansions of order k of Ψx and G−1.
Let us now check that T ∗2 = IIMx . Since, by construction, T ∗2 is the
second order term of the Taylor expansion of Ψx ◦ G−1 at zero, a
straightforward computation yields

T ∗2 = (ID − πTxM ) ◦ d2
0Ψx

= πTxM⊥ ◦ d
2
0Ψx.

Let v ∈ TxM be fixed. Letting γ(t) = Ψx(tv) for |t| small enough, it
is clear that γ′′(0) = d2

0Ψ(v⊗2). Moreover, by definition of the second
fundamental form [13, Proposition 2.1, p.127], since γ(0) = x and
γ′(0) = v, we have

IIMx (v⊗2) = πTxM⊥(γ′′(0)).

Hence

T ∗2 (v⊗2) = πTxM⊥ ◦ d
2
0Ψx(v⊗2)

= πTxM⊥(γ′′(0))

= IIMx (v⊗2),

which concludes the proof.
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(v) The first statement is a rephrasing of Proposition 6.1 in [28]. It yields
the bound on sectional curvature, using the Gauss equation [13, Pro-
position 3.1 (a), p.135].

In the proof of Lemma A.2 (iv), we used a technical lemma of differential
calculus that we now prove. It states quantitatively that if G is Ck-close
to the identity map, then it is a diffeomorphism onto its image and the
differentials of its inverse G−1 are controlled.

Lemma A.3. Let k ≥ 2 and U be an open subset of Rd. Let G : U → Rd
be Ck. Assume that ‖Id − dG‖op ≤ ε < 1, and that for all 2 ≤ i ≤ k,∥∥diG∥∥

op
≤ Li for some Li > 0. Then G is a Ck-diffeomorphism onto its

image, and for all 2 ≤ i ≤ k,∥∥Id − dG−1
∥∥
op
≤ ε

1− ε
and

∥∥diG−1
∥∥
op
≤ L′i,ε,L2,...,Li <∞, for 2 ≤ i ≤ k.

Proof of Lemma A.3. For all x ∈ U , ‖dxG− Id‖op < 1, so G is one to
one, and for all y = G(x) ∈ G(U),∥∥Id − dyG−1

∥∥
op

=
∥∥Id − (dxG)−1

∥∥
op

≤
∥∥(dxG)−1

∥∥
op
‖Id − dxG‖op

≤
‖Id − dxG‖op

1− ‖Id − dxG‖op
≤ ε

1− ε
.

For 2 ≤ i ≤ k and 1 ≤ j ≤ i, write Π
(j)
i for the set of partitions of {1, . . . , i}

with j blocks. Differentiating i times the identity G ◦G−1 = IdG(U), Faa di
Bruno’s formula yields that, for all y = G(x) ∈ G(U) and all unit vectors
h1, . . . , hi ∈ RD,

0 = dy
(
G ◦G−1

)
.(hα)1≤α≤i =

i∑
j=1

∑
π∈Π

(j)
i

djxG.
((
d|I|y G

−1. (hα)α∈I

)
I∈π

)
.
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Isolating the term for j = 1 entails∥∥∥dxG.(diyG−1. (hα)1≤α≤i

)∥∥∥
op

=

∥∥∥∥∥∥∥−
i∑

j=2

∑
π∈Π

(j)
i

djxG.
((
d|I|y G

−1. (hα)α∈I

)
I∈π

)∥∥∥∥∥∥∥
op

≤
i∑

j=2

∑
π∈Π

(j)
i

∥∥djG∥∥
op

∏
I∈π

∥∥∥d|I|G−1
∥∥∥
op
.

Using the first order Lipschitz bound on G−1, we get

∥∥diG−1
∥∥
op
≤ 1 + ε

1− ε

i∑
j=2

Lj
∑
π∈Π

(j)
i

∏
I∈π

∥∥∥d|I|G−1
∥∥∥
op
.

The result follows by induction on i.

A.3. Proof of Proposition 1

This section is devoted to prove Proposition 1 (reproduced below as Propo-
sition A.4), that asserts the stability of the model with respect to ambient
diffeomorphisms.

Proposition A.4. Let Φ : RD → RD be a global Ck-diffeomorphism.
If ‖dΦ− ID‖op ,

∥∥d2Φ
∥∥
op

, . . . ,
∥∥dkΦ∥∥

op
are small enough, then for all

P in Pkτmin,L,fmin,fmax, the pushforward distribution P ′ = Φ∗P belongs to

Pkτmin/2,2L,fmin/2,2fmax
.

Moreover, if Φ = λID (λ > 0) is an homogeneous dilation, then P ′ ∈
Pk
λτmin,L(λ),fmin/λ

d,fmax/λd
, where L(λ) = (L⊥/λ, L3/λ

2, . . . , Lk/λ
k−1).

Proof of Proposition A.4. The second part is straightforward since
the dilation λM has reach τλM = λτM , and can be parametrized locally by
Ψ̃λp(v) = λΨp(v/λ) = λp + v + λNp(v/λ), yielding the differential bounds
L(λ). Bounds on the density follow from homogeneity of the d-dimensional
Hausdorff measure.

The first part follows combining Proposition A.5 and Lemma A.6.

Proposition A.5 asserts the stability of the geometric model, that is, the
reach bound and the existence of a smooth parametrization when a subma-
nifold is perturbed.
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Proposition A.5. Let Φ : RD → RD be a global Ck-diffeomorphism. If
‖dΦ− ID‖op ,

∥∥d2Φ
∥∥
op

, . . . ,
∥∥dkΦ∥∥

op
are small enough, then for all M in

Ckτmin,L, the image M ′ = Φ (M) belongs to Ckτmin/2,2L⊥,2L3,...,2Lk
.

Proof of Proposition A.5. To bound τM ′ from below, we use the sta-
bility of the reach with respect to C2 diffeomorphisms. Namely, from Theo-
rem 4.19 in [16],

τM ′ = τΦ(M) ≥
(1− ‖ID − dΦ‖op)2

1+‖ID−dΦ‖op
τM

+ ‖d2Φ‖op

≥ τmin
(1− ‖ID − dΦ‖op)2

1 + ‖ID − dΦ‖op + τmin ‖d2Φ‖op
≥ τmin

2

for ‖ID − dΦ‖op and
∥∥d2Φ

∥∥
op

small enough. This shows the stability for
k = 2, as well as that of the reach assumption for k ≥ 3.

By now, take k ≥ 3. We focus on the existence of a good parametrization
of M ′ around a fixed point p′ = Φ(p) ∈ M ′. For v′ ∈ Tp′M ′ = dpΦ (TpM),
let us define

Ψ′p′(v
′) = Φ

(
Ψp

(
dp′Φ

−1.v′
))

= p′ + v′ + N′p′(v
′),

where N′p′(v
′) =

{
Φ
(
Ψp

(
dp′Φ

−1.v′
))
− p′ − v′

}
.

M M ′

TpM Tp′M
′

Φ

Ψp

dpΦ

Ψ′
p′

The maps Ψ′p′(v
′) and N′p′(v

′) are well defined whenever
∥∥dp′Φ−1.v′

∥∥ ≤ 1
4L⊥

,

so in particular if ‖v′‖ ≤ 1
4(2L⊥) ≤

1−‖ID−dΦ‖op
4L⊥

and ‖ID − dΦ‖op ≤
1
2 . One

easily checks that N′p′(0) = 0, d0N
′
p′ = 0 and writing c(v′) = p+dp′Φ

−1.v′+

Np′
(
dp′Φ

−1.v′
)
, for all unit vector w′ ∈ Tp′M ′,
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∥∥d2
v′N

′
p′(w

′⊗2)
∥∥ =

∥∥∥d2
c(v′)Φ

({
ddp′Φ−1.v′Ψp ◦ dp′Φ−1.w′

}⊗2
)

+ dc(v′)Φ ◦ d2
dp′Φ

−1.v′Ψp

({
dp′Φ

−1.w′
}⊗2

)∥∥∥
=
∥∥∥d2

c(v′)Φ

({
ddp′Φ−1.v′Ψp ◦ dp′Φ−1.w′

}⊗2
)

+
(
dc(v′)Φ− Id

)
◦ d2

dp′Φ
−1.v′Ψp

({
dp′Φ

−1.w′
}⊗2

)
+ d2

dp′Φ
−1.v′Ψp

({
dp′Φ

−1.w′
}⊗2

)∥∥∥
≤
∥∥d2Φ

∥∥
op

(
1 + L⊥

∥∥dp′Φ−1.v′
∥∥)2 ∥∥dp′Φ−1.w′

∥∥2

+ ‖ID − dΦ‖op L⊥
∥∥dp′Φ−1.w′

∥∥2

+ L⊥
∥∥dp′Φ−1.w′

∥∥2

≤
∥∥d2Φ

∥∥
op

(1 + 1/4)2
∥∥dp′Φ−1

∥∥2

op

+ ‖ID − dΦ‖op L⊥
∥∥dΦ−1

∥∥2

op

+ L⊥
∥∥dp′Φ−1

∥∥2

op
.

Writing further
∥∥dΦ−1

∥∥
op
≤ (1 − ‖ID − dΦ‖op)−1 ≤ 1 + 2 ‖ID − Φ‖op for

‖ID − dΦ‖op small enough depending only on L⊥, it is clear that the right-
hand side of the latter inequality goes below 2L⊥ for ‖ID − dΦ‖op and∥∥d2Φ

∥∥
op

small enough. Hence, for ‖ID − dΦ‖op and
∥∥d2Φ

∥∥
op

small enough

depending only on L⊥, ‖d2
v′N

′
p′‖op ≤ 2L⊥ for all ‖v′‖ ≤ 1

4(2L⊥) . From the
chain rule, the same argument applies for the order 3 ≤ i ≤ k differential of
N′p′ .

Lemma A.6 deals with the condition on the density in the models Pk.
It gives a change of variable formula for pushforward of measure on sub-
manifolds, ensuring a control on densities with respect to intrinsic volume
measure.

Lemma A.6 (Change of variable for the Hausdorff measure). Let P be
a probability distribution on M ⊂ RD with density f with respect to the
d-dimensional Hausdorff measure Hd. Let Φ : RD → RD be a global diffeo-
morphism such that ‖ID − dΦ‖op < 1/3. Let P ′ = Φ∗P be the pushforward

of P by Φ. Then P ′ has a density g with respect to Hd. This density can be
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chosen to be, for all z ∈ Φ(M),

g(z) =
f
(
Φ−1 (z)

)√
det

(
πTΦ−1(z)M

◦ dΦ−1(z)Φ
T ◦ dΦ−1(z)Φ TΦ−1(z)M

) .
In particular, if fmin ≤ f ≤ fmax on M , then for all z ∈ Φ(M),(

1− 3d/2 ‖ID − dΦ‖op

)
fmin ≤ g(z) ≤ fmax

(
1 + 3(2d/2 − 1) ‖ID − dΦ‖op

)
.

Proof of Lemma A.6. Let p ∈ M be fixed and A ⊂ B(p, r) ∩M for r
small enough. For a differentiable map h : Rd → RD and for all x ∈ Rd, we
let Jh(x) denote the d-dimensional Jacobian Jh(x) =

√
det (dxhT dxh). The

area formula ([17, Theorem 3.2.5]) states that if h is one-to-one,∫
A
u (h(x)) Jh(x)λd(dx) =

∫
h(A)

u(y)Hd(dy),

whenever u : RD → R is Borel, where λd is the Lebesgue measure on Rd. By
definition of the pushforward, and since dP = fdHd,∫

Φ(A)
dP ′(z) =

∫
A
f(y)Hd(dy).

Writing Ψp = expp : TpM → RD for the exponential map of M at p, we
have ∫

A
f(y)Hd(dy) =

∫
Ψp−1(A)

f(Ψp(x))JΨp(x)λd(dx).

Rewriting the right hand term, we apply the area formula again with h =
Φ ◦Ψp,∫

Ψp−1(A)
f(Ψp(x))JΨp(x)λd(dy)

=

∫
Ψp−1(A)

f
(
Φ−1 (h(x))

) JΨp(h
−1 (h(x)))

JΦ◦Ψp(h
−1 (h(x)))

JΦ◦Ψp(x)λd(dx)

=

∫
Φ(A)

f
(
Φ−1 (z)

) JΨp(h
−1 (z))

JΦ◦Ψp(h
−1 (z))

Hd(dz).

Since this is true for all A ⊂ B(p, r)∩M , P ′ has a density g with respect to
Hd, with

g(z) = f
(
Φ−1 (z)

) JΨΦ−1(z)
(Ψ−1

Φ−1(z)
◦ Φ−1 (z))

JΦ◦ΨΦ−1(z)
(Ψ−1

Φ−1(z)
◦ Φ−1 (z))

.
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Writing p = Φ−1(z), it is clear that Ψ−1
Φ−1(z)

◦Φ−1 (z) = Ψ−1
p (p) = 0 ∈ TpM .

Since d0 expp : TpM → RD is the inclusion map, we get the first statement.
We now let B and πT denote dpΦ and πTpM respectively. For any unit

vector v ∈ TpM ,∣∣∥∥πTBTBv
∥∥− ‖v‖∣∣ ≤ ∥∥πT (BTB − ID

)
v
∥∥

≤
∥∥BTB − ID

∥∥
op

≤
(

2 + ‖ID −B‖op

)
‖ID −B‖op

≤ 3 ‖ID −B‖op .

Therefore, 1−3 ‖ID −B‖op ≤
∥∥πTBTB TpM

∥∥
op
≤ 1 + 3 ‖ID −B‖op. Hence,√

det
(
πTBTB TpM

)
≤
(

1 + 3 ‖ID −B‖op

)d/2
≤ 1

1− 3d
2 ‖ID −B‖op

,

and√
det
(
πTBTB TpM

)
≥
(

1− 3 ‖ID −B‖op

)d/2
≥ 1

1 + 3(2d/2 − 1) ‖ID −B‖op

,

which yields the result.
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Appendix B: Some Probabilistic Tools

B.1. Volume and Covering Rate

The first lemma of this section gives some details about the covering rate of
a manifold with bounded reach.

Lemma B.7. Let P0 ∈ Pk have support M ⊂ RD. Then for all r ≤
τmin/4 and x in M ,

cdfminr
d ≤ px(r) ≤ Cdfmaxrd,

for some cd, Cd > 0, with px(r) = P0

(
B(x, r)

)
.

Moreover, letting h =
(
C′dk
fmin

logn
n

)1/d
with C ′d large enough, the following

holds. For n large enough so that h ≤ τmin/4, with probability at least 1 −(
1
n

)k/d
,

dH (M,Yn) ≤ h/2.

Proof of Lemma B.7. Denoting by BM (x, r) the geodesic ball of radius
r centered at x, Proposition 25 of [1] yields

BM (x, r) ⊂ B(x, r) ∩M ⊂ BM (x, 6r/5).

Hence, the bounds on the Jacobian of the exponential map given by Propo-
sition 27 of [1] yield

cdr
d ≤ V ol

(
B(x, r) ∩M

)
≤ Cdrd,

for some cd, Cd > 0. Now, since P has a density fmin ≤ f ≤ fmax with
respect to the volume measure of M , we get the first result.

Now we notice that since px(r) ≥ cdfminr
d, Theorem 3.3 in [10] entails,

for s ≤ τmin/8,

P
(
dH
(
M,Xn

)
≥ s
)
≤ 4d

cdfminsd
exp

(
−cdfmin

2d
nsd
)
.

Hence, taking s = h/2, and h =
(
C′dk
fmin

logn
n

)1/d
with C ′d so that C ′d ≥

8d

cdk
∨ 2d(1+k/d)

cdk
yields the result. Since k ≥ 1, taking C ′d = 8d

cd
is sufficient.
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B.2. Concentration Bounds for Local Polynomials

This section is devoted to the proof of the following proposition.

Proposition B.8. Set h =
(
K logn

n−1

) 1
d
. There exist constants κk,d, ck,d

and Cd such that, if K ≥ (κk,df
2
max/f

3
min) and n is large enough so that

3h/2 ≤ h0 ≤ τmin/4, then with probability at least 1−
(

1
n

) k
d

+1
, we have

P0,n−1[S2(π∗(x))1B(h/2)(x)] ≥ ck,dh
dfmin‖Sh‖22,

N(3h/2) ≤ Cdfmax(n− 1)hd,

for every S ∈ Rk[x1:d], where N(h) =
∑n

j=2 1B(0,h)(Yj).

A first step is to ensure that empirical expectations of order k polynomials
are close to their deterministic counterparts.

Proposition B.9. Let b ≤ τmin/8. For any y0 ∈ M , we have

P

 sup
u1,...,uk,ε∈{0,1}k

∣∣∣∣∣∣(P0 − P0,n−1)

p∏
j=1

(
〈uj , y〉
b

)εj
1B(y0,b)(y)

∣∣∣∣∣∣
≥ py0(b)

(
4k
√

2π√
(n− 1)py0(b)

+

√
2t

(n− 1)py0(b)
+

2

3(n− 1)py0(b)

) ≤ e−t,
where P0,n−1 denotes the empirical distribution of n− 1 i.i.d. random vari-
ables Yi drawn from P0.

Proof of Proposition B.9. Without loss of generality we choose y0 =
0 and shorten notation to B(b) and p(b). Let Z denote the empirical pro-
cess on the left-hand side of Proposition B.9. Denote also by fu,ε the map∏k
j=1

(
〈uj ,y〉
b

)εj
1B(b)(y), and let F denote the set of such maps, for uj in

B(1) and ε in {0, 1}k.
Since ‖fu,ε‖∞ ≤ 1 and Pf2

u,ε ≤ p(b), the Talagrand-Bousquet inequality
([8, Theorem 2.3]) yields

Z ≤ 4EZ +

√
2p(b)t

n− 1
+

2t

3(n− 1)
,

with probability larger than 1− e−t. It remains to bound EZ from above.
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Lemma B.10. We may write

EZ ≤
√

2πp(b)√
n− 1

k.

Proof of Lemma B.10. Let σi and gi denote some independent Ra-
demacher and Gaussian variables. For convenience, we denote by EA the
expectation with respect to the random variable A. Using symmetrization
inequalities we may write

EZ = EY sup
u,ε

∣∣∣∣∣∣(P0 − P0,n−1)

k∏
j=1

(
〈uj , y〉
b

)εj
1B(b)(y)

∣∣∣∣∣∣
≤ 2

n− 1
EY Eσ sup

u,ε

n−1∑
i=1

σi

k∏
j=1

(
〈uj , Yi〉

b

)εj
1B(b)(Yi)

≤
√

2π

n− 1
EY Eg sup

u,ε

n−1∑
i=1

gi

k∏
j=1

(
〈uj , Yi〉

b

)εj
1B(b)(Yi).

Now let Yu,ε denote the Gaussian process
∑n−1

i=1 gi
∏k
j=1

(
〈uj ,Yi〉

b

)εj
1B(b)(Yi).

Since, for any y in B(b), u,v in B(1)k, and ε, ε′ in {0, 1}k, we have∣∣∣∣∣∣
k∏
j=1

(
〈y, uj〉
b

)εj
−

k∏
j=1

(
〈y, vj〉
b

)ε′j ∣∣∣∣∣∣
≤

∣∣∣∣∣∣
k∑
r=1

k+1−r∏
j=1

(
〈y, uj〉
b

)εj k∏
j=k+2−r

(
〈y, vj〉
b

)ε′j
−
k−r∏
j=1

(
〈y, uj〉
b

)εj k∏
j=k+1−r

(
〈y, vj〉
b

)ε′j∣∣∣∣∣∣
≤

k∑
r=1

∣∣∣∣∣∣
k−r∏
j=1

(
〈y, uj〉
b

)εj k∏
j=k+2−r

(
〈y, vj〉
b

)ε′j [(〈uk+1−r, y〉
b

)εk+1−r

−
(
〈vk+1−r, y〉

b

)ε′k+1−r
]∣∣∣∣∣

≤
k∑
r=1

∣∣∣∣〈εrur − ε′rvr, y〉b

∣∣∣∣ ,
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we deduce that

Eg(Yu,ε − Yv,ε′)2 ≤ k
n−1∑
i=1

k∑
r=1

(
〈εrur, Yi〉

b
− 〈ε

′
rvr, Yi〉
b

)2

1B(b)(Yi)

≤ Eg(Θu,ε −Θv,ε′)
2,

where Θu,ε =
√
k
∑n−1

i=1

∑k
r=1 gi,r

〈εrur,Yi〉
b 1B(b)(Yi). According to Slepian’s

Lemma [7, Theorem 13.3], it follows that

Eg sup
u,ε
Yg ≤ Eg sup

u,ε
Θu,ε

≤
√
kEg sup

u,ε

k∑
r=1

〈
εrur,

∑n−1
i=1 gi,r1B(b)(Yi)Yi

〉
b

≤
√
kEg sup

u,ε

√√√√√k

k∑
r=1

〈
εrur,

∑n−1
i=1 gi,r1B(b)(Yi)Yi

〉2

b2
.

We deduce that

Eg sup
u,ε

Yg ≤ Eg sup
u,ε

Θg

≤ k

√√√√√Eg sup
‖u‖=1,ε∈{0,1}

〈
εu,
∑n−1

i=1 gi1B(b)(Yi)Yi

〉2

b2

≤ k

√√√√Eg

∥∥∥∥∥
n−1∑
i=1

giYi
b
1B(b)(Yi)

∥∥∥∥∥
2

≤ k
√
N(b).

Then we can deduce that EXEg supu,ε Yg ≤ k
√
p(b).

Combining Lemma B.10 with Talagrand-Bousquet’s inequality gives the
result of Proposition B.9.

We are now in position to prove Proposition B.8.

Proof of Proposition B.8. If h/2 ≤ τmin/4, then, according to Lemma

B.7, p(h/2) ≥ cdfminhd, hence, if h =
(
K log(n)

n−1

) 1
d
, (n−1)p(h/2) ≥ Kcdfmin log(n).
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Choosing b = h/2 and t = (k/d+ 1) log(n) + log(2) in Proposition B.9 and
K = K ′/fmin, with K ′ > 1 leads to

P

 sup
u1,...,uk,ε∈{0,1}k

∣∣∣∣∣∣(P0 − P0,n−1)
k∏
j=1

(
2
〈uj , y〉
h

)εj
1B(y0,h/2)(y)

∣∣∣∣∣∣
≥
cd,kfmax√

K ′
hd

 ≤ 1

2

(
1

n

) k
d

+1

.

On the complement of the probability event mentioned just above, for a
polynomial S =

∑
α∈[0,k]d||α|≤k aαy

α
1:d, we have

(P0,n−1 − P0)S2(y1:d)1B(h/2)(y) ≥ −
∑
α,β

cd,kfmax√
K ′

|aαaβ|hd+|α|+|β|

≥ −
cd,kfmax√

K ′
hd‖Sh‖22.

On the other hand, we may write, for all r > 0 ,∫
B(0,r)

S2(y1:d)dy1 . . . dyd ≥ Cd,krd‖Sr‖22,

for some constant Cd,k. It follows that

P0S
2(y1:d)1B(h/2)(y) ≥ P0S

2(y1:d)1B(7h/16)(y1:d) ≥ ck,dhdfmin‖Sh‖22,

according to Lemma A.2. Then we may choose K ′ = κk,d(fmax/fmin)2, with
κk,d large enough so that

P0,n−1S
2(x1:d)1B(h/2)(y) ≥ ck,dfminhd‖Sh‖22.

The second inequality of Proposition B.8 is derived the same way from
Proposition B.9, choosing ε = (0, . . . , 0), b = 3h/2 and h ≤ τmin/8 so that
b ≤ τmin/4.
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Appendix C: Minimax Lower Bounds

C.1. Conditional Assouad’s Lemma

This section is dedicated to the proof of Lemma 7, reproduced below as
Lemma C.11.

Lemma C.11 (Conditional Assouad). Let m ≥ 1 be an integer and let
{Qτ}τ∈{0,1}m be a family of 2m submodels Qτ ⊂ Q. Let {Uk × U ′k}1≤k≤m be

a family of pairwise disjoint subsets of X × X ′, and Dτ,k be subsets of D.
Assume that for all τ ∈ {0, 1}m and 1 ≤ k ≤ m,

• for all Qτ ∈ Qτ , θX(Qτ ) ∈ Dτ,k on the event {X ∈ Uk};
• for all θ ∈ Dτ,k and θ′ ∈ Dτk,k, d(θ, θ′) ≥ ∆.

For all τ ∈ {0, 1}m, let Qτ ∈ Conv(Qτ ), and write µ̄τ and ν̄τ for the mar-
ginal distributions of Qτ on X and X ′ respectively. Assume that if (X,X ′)
has distribution Qτ , X and X ′ are independent conditionally on the event
{(X,X ′) ∈ Uk × U ′k}, and that

min
τ∈{0,1}m
1≤k≤m

{(∫
Uk

dµ̄τ ∧ dµ̄τk
)(∫

U ′k

dν̄τ ∧ dν̄τk

)}
≥ 1− α.

Then,

inf
θ̂

sup
Q∈Q

EQ
[
d
(
θX(Q), θ̂(X,X ′)

)]
≥ m∆

2
(1− α),

where the infimum is taken over all the estimators θ̂ : X × X ′ → D.

Proof of Lemma C.11. The proof follows that of Lemma 2 in [36]. Let
θ̂ = θ̂(X,X ′) be fixed. For any family of 2m distributions {Qτ}τ ∈ {Qτ}τ ,
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since the Uk × U ′k’s are pairwise disjoint,

sup
Q∈Q

EQ
[
d
(
θX(Q), θ̂(X,X ′)

)]
≥ max

τ
EQτd(θ̂, θX(Qτ ))

≥ max
τ

EQτ
m∑
k=1

d
(
θ̂, θX(Qτ )

)
1Uk×U ′k(X,X ′)

≥ 2−m
∑
τ

m∑
k=1

EQτd
(
θ̂, θX(Qτ )

)
1Uk×U ′k(X,X ′)

≥ 2−m
∑
τ

m∑
k=1

EQτd
(
θ̂,Dτ,k

)
1Uk×U ′k(X,X ′)

=
m∑
k=1

2−(m+1)
∑
τ

(
EQτd

(
θ̂,Dτ,k

)
1Uk×U ′k(X,X ′)

+ EQ
τk
d
(
θ̂,Dτk,k

)
1Uk×U ′k(X,X ′)

)
.

Since the previous inequality holds for all Qτ ∈ Qτ , it extends to Qτ ∈
Conv(Qτ ) by linearity. Let us now lower bound each of the terms of the
sum for fixed τ ∈ {0, 1}m and 1 ≤ k ≤ m. By assumption, if (X,X ′) has
distribution Qτ , then conditionally on {(X,X ′) ∈ Uk × U ′k}, X and X ′ are
independent. Therefore,

EQτd
(
θ̂,Dτ,k

)
1Uk×U ′k(X,X ′) + EQ

τk
d
(
θ̂,Dτk,k

)
1Uk×U ′k(X,X ′)

≥ EQτd
(
θ̂,Dτ,k

)
1Uk(X)1U ′k(X ′) + EQ

τk
d
(
θ̂,Dτk,k

)
1Uk(X)1U ′k(X ′)

= Eν̄τ
[
Eµ̄τ

(
d
(
θ̂,Dτ,k

)
1Uk(X)

)
1U ′k

(X ′)
]

+ Eν̄
τk

[
Eµ̄

τk

(
d
(
θ̂,Dτk,k

)
1Uk(X)

)
1U ′k

(X ′)
]

=

∫
Uk

∫
U ′k

d(θ̂,Dτ,k)dµ̄τ (x)dν̄τ (x′) +

∫
Uk

∫
U ′k

d(θ̂,Dτk,k)dµ̄τk(x)dν̄τk(x′)

≥
∫
Uk

∫
U ′k

(
d(θ̂,Dτ,k) + d(θ̂,Dτk,k)

)
dµ̄τ ∧ dµ̄τk(x)dν̄τ ∧ dν̄τk(x′)

≥ ∆

(∫
Uk

dµ̄τ ∧ dµ̄τk
)(∫

U ′k

dν̄τ ∧ dν̄τk

)
≥ ∆(1− α),

where we used that d(θ̂,Dτ,k) + d(θ̂,Dτk,k) ≥ ∆. The result follows by sum-
ming the above bound |{1, . . . ,m} × {0, 1}m| = m2m times.
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C.2. Construction of Generic Hypotheses

Let M
(0)
0 be a d-dimensional C∞-submanifold of RD with reach greater than

1 and such that it contains BRd×{0}D−d(0, 1/2). M
(0)
0 can be built for ex-

ample by flattening smoothly a unit d-sphere in Rd+1 × {0}D−d−1. Since

M
(0)
0 is C∞, the uniform probability distribution P

(0)
0 on M

(0)
0 belongs to

Pk
1,L(0),1/V

(0)
0 ,1/V

(0)
0

, for some L(0) and V
(0)

0 = V ol(M
(0)
0 ).

Let now M0 = (2τmin)M
(0)
0 be the submanifold obtained from M

(0)
0 by

homothecy. By construction, and from Proposition A.4, we have

τM0 ≥ 2τmin, BRd×{0}D−d(0, τmin) ⊂M0, V ol(M0) = Cdτ
d
min,

and the uniform probability distribution P0 on M0 satisfies

P0 ∈ Pk2τmin,L/2,2fmin,fmax/2,

whenever L⊥/2 ≥ L
(0)
⊥ /(2τmin), . . ., Lk/2 ≥ L

(0)
k /(2τmin)k−1, and provi-

ded that 2fmin ≤
(
(2τmin)dV

(0)
0

)−1 ≤ fmax/2. Note that L
(0)
⊥ , . . . , L

(0)
k ,

V ol(M
(0)
0 ) depend only on d and k. For this reason, all the lower bounds will

be valid for τminL⊥, . . . , τ
k−1
minLk, (τ

d
minfmin)−1 and τdminfmax large enough to

exceed the thresholds L
(0)
⊥ /2, . . . , L

(0)
k /2k−1, 2dV

(0)
0 and (2dV

(0)
0 )−1 respecti-

vely.
For 0 < δ ≤ τmin/4, let x1, . . . , xm ∈ M0 ∩ B(0, τmin/4) be a family of

points such that

for 1 ≤ k 6= k′ ≤ m, ‖xk − xk′‖ ≥ δ.

For instance, considering the family
{(
l1δ, . . . , ldδ, 0, . . . , 0

)}
li∈Z,|li|≤bτmin/(4δ)c

,

m ≥ cd
(τmin

δ

)d
,

for some cd > 0.
We let e ∈ RD denote the (d + 1)th vector of the canonical basis. In

particular, we have the orthogonal decomposition of the ambient space

RD =
(
Rd × {0}D−d

)
+ span(e) +

(
{0}d+1 × RD−d−1

)
.

Let φ : RD → [0, 1] be a smooth scalar map such that φ|B(0, 1
2) =

1 and φ|B(0,1)c = 0.
Let Λ+ > 0 and 1 ≥ A+ > A− > 0 be real numbers to be chosen later.

Let Λ = (Λ1, . . . ,Λm) with entries −Λ+ ≤ Λk ≤ Λ+, and A = (A1, . . . , Am)
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with entries A− ≤ Ak ≤ A+. For z ∈ RD, we write z = (z1, . . . , zD) for its
coordinates in the canonical basis. For all τ = (τ1, . . . , τm) ∈ {0, 1}m, define
the bump map as

(7) ΦΛ,A,i
τ (x) = x+

m∑
k=1

φ

(
x− xk
δ

){
τkAk(x− xk)i1 + (1− τk)Λk

}
e.

An analogous deformation map was considered in [1]. We let P
Λ,A,(i)
τ denote

the pushforward distribution of P0 by Φ
Λ,A,(i)
τ , and write M

Λ,A,(i)
τ for its

support. Roughly speaking, MΛ,A,i
τ consists of m bumps at the xk’s having

different shapes (Figure 7). If τk = 0, the bump at xk is a symmetric plateau
function and has height Λk. If τk = 1, it fits the graph of the polynomial
Ak(x−xk)i1 locally. The following Lemma C.12 gives differential bounds and

Uk

Λk

Λ+

δ

xk

(a) Flat bump: τk = 0.

Uk

δ

xkA−x1
A+x1

Akx1

(b) Linear bump: τk = 1, i = 1.

Uk

δ

xk

Akx
2
1A−x

2
1

A+x
2
1

(c) Quadratic bump: τk = 1, i = 2.

Figure 7: The three shapes of the bump map ΦΛ,A,i
τ around xk.

geometric properties of ΦΛ,A,i
τ .

Lemma C.12. There exists cφ,i < 1 such that if A+ ≤ cφ,iδ
i−1 and

Λ+ ≤ cφ,iδ, then ΦΛ,A,i
τ is a global C∞-diffeomorphism of RD such that for
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all 1 ≤ k ≤ m, ΦΛ,A,i
τ (B(xk, δ)) = B(xk, δ). Moreover,∥∥ID − dΦΛ,A,i

τ

∥∥
op
≤ Ci

{
A+

δ1−i

}
∨
{

Λ+

δ

}
,

and for j ≥ 2, ∥∥djΦΛ,A,i
τ

∥∥
op
≤ Ci,j

{
A+

δj−i

}
∨
{

Λ+

δj

}
.

Proof of Lemma C.12. Follows straightforwardly from chain rule, si-
milarly to Lemma 11 in [1].

Lemma C.13. If τminL⊥, . . . , τ
k−1
minLk, (τ

d
minfmin)−1 and τdminfmax are

large enough (depending only on d and k), then provided that Λ+ ∨A+δ
i ≤

ck,d,τminδ
k, for all τ ∈ {0, 1}m, PΛ,A,i

τ ∈ Pkτmin,L,fmin,fmax

Proof of Lemma C.13. Follows using the stability of the model Lemma
A.4 applied to the distribution P0 ∈ Pk2τmin,L/2,2fmin,fmax/2 and the map

ΦΛ,A,i
τ , of which differential bounds are asserted by Lemma C.12.

C.3. Hypotheses for Tangent Space and Curvature

C.3.1. Proof of Lemma 8

This section is devoted to the proof of Lemma 8, for which we first derive
two slightly more general results, with parameters to be tuned later. The
proof is split into two intermediate results Lemma C.14 and Lemma C.15.

Let us write Q̄
(i)
τ,n for the mixture distribution on (RD)n defined by

Q̄(i)
τ,n =

∫
[−Λ+,Λ+]m

∫
[A−,A+]m

(
PΛ,A,(i)
τ

)⊗n dA

(A+ −A−)m
dΛ

(2Λ+)m
.(8)

Although the probability distribution Q̄
(i)
τ,n depends on A−, A+ and Λ+, we

omit this dependency for the sake of compactness. Another way to define

Q̄
(i)
τ,n is the following: draw uniformly Λ in [−Λ+,Λ+]m and A in [A−, A+]m,

and given (Λ,A), take Zi = ΦΛ,A,i
τ (Yi), where Y1, . . . , Yn is an i.i.d. n-sample

with common distribution P0 on M0. Then (Z1, . . . , Zn) has distribution

Q̄
(i)
τ,n.

Lemma C.14. Assume that the conditions of Lemma C.12 hold, and let

Uk = BRd×{0}D−d (xk, δ/2) + Bspan(e)(0, τmin/2),
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and

U ′k =
(
RD \

{
BRd×{0}D−d (xk, δ) + Bspan(e)(0, τmin/2)

})n−1
.

Then the sets Uk ×U ′k are pairwise disjoint, Q̄
(i)
τ,n ∈ Conv

((
P(i)
τ

)⊗n)
, and if

(Z1, . . . , Zn) = (Z1, Z2:n) has distribution Q̄
(i)
τ,n, Z1 and Z2:d are independent

conditionally on the event {(Z1, Z2:n) ∈ Uk × U ′k}.
Moreover, if (X1, . . . , Xn) has distribution

(
P

Λ,A,(i)
τ

)⊗n
(with fixed A and

Λ), then on the event {X1 ∈ Uk}, we have:

• if τk = 0,

TX1M
Λ,A,(i)
τ = Rd × {0}D−d ,

∥∥∥∥IIMΛ,A,(i)
τ

X1
◦ π

TX1
M

Λ,A,(i)
τ

∥∥∥∥
op

= 0

and dH
(
M0,M

Λ,A,(i)
τ

)
≥ |Λk|.

• if τk = 1,

– for i = 1: ∠
(
TX1M

Λ,A,(1)
τ ,Rd × {0}D−d

)
≥ A−/2.

– for i = 2:

∥∥∥∥IIMΛ,A,(2)
τ

X1
◦ π

TX1
M

Λ,A,(2)
τ

∥∥∥∥
op

≥ A−/2.

Proof of Lemma C.14. It is clear from the definition (8) that Q̄
(i)
τ,n ∈

Conv
((
P(i)
τ

)⊗n)
. By construction of the ΦΛ,A,i

τ ’s, these maps leave the sets

BRd×{0}D−d (xk, δ) + Bspan(e)(0, τmin/2)

unchanged for all Λ,L. Therefore, on the event {(Z1, Z2:n) ∈ Uk × U ′k}, one
can write Z1 only as a function of X1,Λk, Ak, and Z2:n as a function of the
rest of the Xj ’s,Λk’s and Ak’s. Therefore, Z1 and Z2:n are independent.

We now focus on the geometric statements. For this, we fix a deterministic

point z = Φ
Λ,A,(i)
τ (x0) ∈ Uk ∩M

Λ,A,(i)
τ . By construction, one necessarily has

x0 ∈M0 ∩ B(xk, δ/2).

• If τk = 0, locally around x0, Φ
Λ,A,(1)
τ is the translation of vector Λke.

Therefore, since M0 satisfies Tx0M0 = Rd × {0}D−d and IIM0
x0

= 0, we
have

TzM
Λ,A,(i)
τ = Rd × {0}D−d and

∥∥∥IIMΛ,A,(i)
τ

z ◦ π
TzM

Λ,A,(i)
τ

∥∥∥
op

= 0.

• if τk = 1,
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– for i = 1: locally around x0, Φ
Λ,A,(1)
τ can be written as x 7→ x+

Ak(x−xk)1e. Hence, TzM
Λ,A,(i)
τ contains the direction (1, Ak) in

the plane span(e1, e) spanned by the first vector of the canonical
basis and e. As a consequence, since e is orthogonal to Rd ×
{0}D−d,

∠
(
TzM

Λ,A,(1)
τ ,Rd × {0}D−d

)
≥
(
1 + 1/A2

k

)−1/2 ≥ Ak/2 ≥ A−/2.

– for i = 2: locally around x0, Φ
Λ,A,(2)
τ can be written as x 7→

x+Ak(x−xk)2
1e. Hence, M

Λ,A,(2)
τ contains an arc of parabola of

equation y = Ak(x − xk)2
1 in the plane span(e1, e). As a conse-

quence, ∥∥∥IIMΛ,A,(2)
τ

z ◦ π
TzM

Λ,A,(2)
τ

∥∥∥
op
≥ Ak/2 ≥ A−/2.

Lemma C.15. Assume that the conditions of Lemma C.12 and Lemma
C.14 hold. If in addition, cA+(δ/4)i ≤ Λ+ ≤ CA+(δ/4)i for some absolute
constants C ≥ c > 3/4, and A− = A+/2, then,

∫
Uk

dQ̄
(i)
τ,1 ∧ dQ̄

(i)

τk,1
≥
cd,i
C

(
δ

τmin

)d
,

and ∫
U ′k

dQ̄
(i)
τ,n−1 ∧ dQ̄

(i)

τk,n−1
=

(
1− c′d

(
δ

τmin

)d)n−1

.

Proof of Lemma C.15. First note that all the involved distributions
have support in Rd × span(e) × {0}D−(d+1). Therefore, we use the canoni-
cal coordinate system of Rd × span(e), centered at xk, and we denote the
components by (x1, x2, . . . , xd, y) = (x1, x2:d, y). Without loss of generality,
assume that τk = 0 (if not, flip τ and τk). Recall that φ has been chosen to
be constant and equal to 1 on the ball B(0, 1/2).

By definition (8), on the event {Z ∈ Uk}, a random variable Z having

distribution Q̄
(i)
τ,1 can be represented by Z = X + φ

(
X−xk
δ

)
Λke = X + Λke

where X and Λk are independent and have respective distributions P0 (the
uniform distribution on M0) and the uniform distribution on [−Λ+,Λ+].
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Therefore, on Uk, Q̄
(i)
τ,1 has a density with respect to the Lebesgue measure

λd+1 on Rd × span(e) that can be written as

q̄
(i)
τ,1(x1, x2:d, y) =

1[−Λ+,Λ+](y)

2V ol(M0)Λ+
.

Analogously, nearby xk a random variable Z having distribution Q̄
(i)

τk,1
can be

represented by Z = X+Ak(X−xk)i1e where Ak has uniform distribution on
[A−, A+]. Therefore, a straightforward change of variable yields the density

q̄
(i)

τk,1
(x1, x2:d, y) =

1[A−xi1,A+xi1](y)

V ol(M0) (A+ −A−)xi1
.

We recall that V ol(M0) = (2τmin)dV ol
(
M

(0)
0

)
= c′dτ

d
min. Let us now tackle

the right-hand side inequality, writing

∫
Uk

dQ̄
(i)
τ,1 ∧ dQ̄

(i)

τk,1

=

∫
B(xk,δ/2)

(
1[−Λ+,Λ+](y)

2V ol(M0)Λ+

)
∧

(
1[A−xi1,A+xi1](y)

V ol(M0) (A+ −A−)xi1

)
dydx1dx2:d

≥
∫
BRd−1 (0, δ

4
)

∫ δ/4

−δ/4

∫
R

(
1[−Λ+,Λ+](y)

2Λ+

)
∧

(
1[A−xi1,A+xi1](y)

A+xi1/2

)
dydx1dx2:d

V ol(M0)
.

It follows that∫
Uk

dQ̄
(i)
τ,1 ∧ dQ̄

(i)

τk,1

≥ cd

τdmin
δd−1

∫ δ/4

0

∫ Λ+∧(A+xi1)

A+xi1/2

1

2Λ+
∧ 2

A+xi1
dydx1

≥ cd

τdmin
δd−1

∫ δ/4

0

∫ (c∧1)(A+xi1)

A+xi1/2

(2c ∧ 1/2)

2Λ+
dydx1

=
cd

τdmin
δd−1(2c ∧ 1/2) (c ∧ 1− 1/2)

A+

Λ+

(δ/4)i+1

i+ 1

≥
cd,i
C

(
δ

τmin

)d
.

For the integral on U ′k, notice that by definition, Q̄
(i)
τ,n−1 and Q̄

(i)

τk,n−1
coi-

ncide on U ′k since they are respectively the image distributions of P0 by
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functions that are equal on that set. Moreover, these two functions leave

RD \
{
BRd×{0}D−d (xk, δ) + Bspan(e)(0, τmin/2)

}
unchanged. Therefore,∫

U ′k

dQ̄
(i)
τ,n−1∧dQ̄

(i)

τk,n−1

= P⊗n−1
0

(
U ′k
)

=
(

1− P0

(
BRd×{0}D−d (xk, δ) + Bspan(e)(0, τmin/2)

))n−1

=
(

1− ωdδd/V ol(M0)
)n−1

,

hence the result.

Proof of Lemma 8. The properties of
{
Q̄

(i)
τ,n

}
τ

and {Uk × U ′k}k given
by Lemma C.14 and Lemma C.15 yield the result, setting Λ+ = A+δ

i/4,

A+ = 2A− = εδk−i for ε = εk,d,τmin , and δ such that c′d

(
δ

τmin

)d
= 1

n−1 .

C.3.2. Proof of Lemma 9

This section details the construction leading to Lemma 9 that we restate in
Lemma C.16.

Lemma C.16. Assume that τminL⊥,. . .,τk−1
minLk,(τdminfmin)−1, τdminfmax

are large enough (depending only on d and k), and σ ≥ Ck,d,τmin (1/(n− 1))k/d

for Ck,d,τmin > 0 large enough. Given i ∈ {1, 2}, there exists a collection

of 2m distributions
{
P

(i),σ
τ

}
τ∈{0,1}m ⊂ P

k(σ) with associated submanifolds{
M

(i),σ
τ

}
τ∈{0,1}m, together with pairwise disjoint subsets {Uσk }1≤k≤m of RD

such that the following holds for all τ ∈ {0, 1}m and 1 ≤ k ≤ m.
If x ∈ Uσk and y = π

M
(i),σ
τ

(x), we have

• if τk = 0,

TyM
(i),σ
τ = Rd × {0}D−d ,

∥∥∥IIM(i),σ
τ

y ◦ π
TyM

(i),σ
τ

∥∥∥
op

= 0,

• if τk = 1,

– for i = 1: ∠
(
TyM

(1),σ
τ ,Rd × {0}D−d

)
≥ ck,d,τmin

(
σ

n− 1

) k−1
k+d

,

– for i = 2:
∥∥∥IIM(2),σ

τ
y ◦ π

TyM
(2),σ
τ

∥∥∥
op
≥ c′k,d,τmin

(
σ

n− 1

) k−2
k+d

.
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Furthermore,∫
(RD)n−1

(
P(i),σ
τ

)⊗n−1 ∧
(
P

(i),σ

τk

)⊗n−1 ≥ c0, and m ·
∫
Uσk

P(i),σ
τ ∧P

(i),σ

τk
≥ cd.

Proof of Lemma C.16. Following the notation of Section C.2, for i ∈
{1, 2}, τ ∈ {0, 1}m, δ ≤ τmin/4 and A > 0, consider

(9) ΦA,i
τ (x) = x+

m∑
k=1

φ

(
x− xk
δ

){
τkA(x− xk)i1

}
e.

Note that (9) is a particular case of (7). Clearly from the definition, ΦA,i
τ

and ΦA,i
τk

coincide outside B(xk, δ), (Φ(x) − x) ∈ span(e) for all x ∈ RD,

and ‖ID − Φ‖∞ ≤ Aδi. Let us define MA,i
τ = ΦA,i

τ (M0). From Lemma C.13,

we have MA,i
τ ∈ Ckτmin,L provided that τminL⊥, . . . , τ

k−1
minLk are large enough,

and that δ ≤ τmin/2, with A/δk−i ≤ ε for ε = εk,d,τmin,i small enough.
Furthermore, let us write

Uσk = BRd×{0}D−d (xk, δ/2) + B{0}d×RD−d (xk, σ/2) .

Then the family {Uσk }1≤k≤m is pairwise disjoint. Also, since τk = 0 implies

that MA,i
τ coincides with M0 on B(xk, δ), we get that if x ∈ Uσk and y =

π
MA,i
τ

(x),

TyM
A,i
τ = Rd × {0}D−d ,

∥∥∥IIMA,i
τ

y ◦ π
TyM

A,i
τ

∥∥∥
op

= 0.

Furthermore, by construction of the bump function ΦA,i
τ , if x ∈ Uσk and

τk = 1, then

∠
(
TyM

A,i
τ ,Rd × {0}D−d

)
≥ A

2
,

and ∥∥∥IIMA,i
τ

y ◦ π
TyM

A,i
τ

∥∥∥
op
≥ A

2
.

Now, let us write

OA,iτ =
{
y + ξ

∣∣∣y ∈MA,i
τ , ξ ∈

(
TyM

A,i
τ

)⊥
, ‖ξ‖ ≤ σ/2

}
for the offset of MΛ,A,i

τ of radius σ/2. The sets
{
OA,iτ

}
τ

are closed subsets

of RD with non-empty interiors. Let PA,i
τ denote the uniform distribution

on OA,iτ . Finally, let us denote by PA,iτ =
(
π
MA,i
τ

)
∗P

A,i
τ the pushforward
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distributions of PA,i
τ by the projection maps π

MA,i
τ

. From Lemma 19 in [26],

PA,iτ has a density fA,iτ with respect to the volume measure on MA,i
τ , and

this density satisfies

V ol
(
MA,i
τ

)
fA,iτ ≤

(
τmin + σ/2

τmin − σ/2

)d
≤
(

5

3

)d
,

and

V ol
(
MA,i
τ

)
fA,iτ ≥

(
τmin − σ/2
τmin + σ/2

)d
≥
(

3

5

)d
.

Since, by construction, V ol(M0) = cdτ
d
min, and c′d ≤ V ol

(
MΛ,A,i
τ

)
/V ol(M0) ≤

C ′d whenever A/δi−1 ≤ ε′d,τmin,i, we get that PA,iτ belongs to the model Pk

provided that (τdminfmin)−1 and τdminfmax are large enough. This proves that

under these conditions, the family
{
PA,i
τ

}
τ∈{0,1}m is included in the model

Pk(σ).
Let us now focus on the bounds on the L1 test affinities. Let τ ∈ {0, 1}m

and 1 ≤ k ≤ m be fixed, and assume, without loss of generality, that τk = 0
(if not, flip the role of τ and τk). First, note that∫

(RD)n−1

(
PA,i
τ

)⊗n−1 ∧
(
PA,i
τk

)⊗n−1 ≥
(∫

RD
PA,i
τ ∧PA,i

τk

)n−1

.

Furthermore, since PA,i
τ and PA,i

τk
are the uniform distributions on OA,iτ and

OA,iτ ,∫
RD

PA,i
τ ∧PA,i

τk
= 1− 1

2

∫
RD

∣∣∣PA,i
τ −PA,i

τk

∣∣∣
= 1− 1

2

∫
RD

∣∣∣∣∣∣ 1OA,iτ
(a)

V ol
(
OA,iτ

) − 1OA,iτ
(a)

V ol
(
OA,i
τk

)
∣∣∣∣∣∣ dHD(a).
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Furthermore,

1

2

∫
RD

∣∣∣∣∣∣ 1OA,iτ
(a)

V ol
(
OA,iτ

) − 1OA,i
τk

(a)

V ol
(
OA,i
τk

)
∣∣∣∣∣∣ dHD(a)

=
1

2
V ol

(
OA,iτ ∩ O

A,i
τk

) ∣∣∣∣∣∣ 1

V ol
(
OA,iτ

) − 1

V ol
(
OA,i
τk

)
∣∣∣∣∣∣

+
1

2

V ol
(
OA,iτ \ OA,iτk

)
V ol

(
OA,iτ

) +
V ol

(
OA,i
τk
\ OA,iτ

)
V ol

(
OA,i
τk

)


≤ 3

2

V ol
(
OA,iτ \ OA,iτk

)
∨ V ol

(
OA,i
τk
\ OA,iτ

)
V ol

(
OA,iτ

)
∧ V ol

(
OA,i
τk

) .

To get a lower bound on the denominator, note that for δ ≤ τmin/2, MA,i
τ

and MA,i
τk

both contain

BRd×{0}D−d(0, τmin) \ BRd×{0}D−d(0, τmin/4),

so that OA,iτ and OA,i
τk

both contain(
BRd×{0}D−d(0, τmin) \ BRd×{0}D−d(0, τmin/4)

)
+ B{0}d×RD−d(0, σ/2).

As a consequence, V ol
(
OA,iτ

)
∧V ol

(
OA,i
τk

)
≥ cdωdτdminωD−d(σ/2)D−d, where

ω` denote the volume of a `-dimensional unit Euclidean ball.
We now derive an upper bound on V ol

(
OA,iτ \ OA,iτk

)
. To this aim, let us

consider a0 = y + ξ ∈ OA,iτ \ OA,i
τk

, with y ∈ MA,i
τ and ξ ∈

(
TyM

A,i
τ

)⊥
.

Since ΦA,i
τ and ΦA,i

τk
coincide outside B(xk, δ), so do MA,i

τ and MA,i
τk

. Hence,

one necessarily has y ∈ B(xk, δ). Thus,
(
TyM

A,i
τ

)⊥
= TyM

⊥
0 = span(e) +

{0}d+1 × RD−d−1, so we can write ξ = se+ z with s ∈ R and z ∈ {0}d+1 ×
RD−d−1. By definition of OA,iτ , ‖ξ‖ =

√
s2 + ‖z‖2 ≤ σ/2, which yields ‖z‖ ≤

σ/2 and |s| ≤
√

(σ/2)2 − ‖z‖2. Furthermore, y0 does not belong to OA,i
τk

,
which translates to

σ/2 < d
(
a0,M

A,i
τk

)
≤
∥∥∥y0 + se+ z − ΦA,i

τk
(y0)

∥∥∥
=

√∣∣∣s+
〈
e, y0 − ΦA,i

τk
(y0)

〉∣∣∣2 + ‖z‖2,
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from what we get |s| ≥
√

(σ/2)2 − ‖z‖2 −
∥∥∥ID − ΦA,i

τk

∥∥∥
∞

. We just proved

that OA,iτ \ OA,iτk
is a subset of

Bd(xk, δ) +

{
se+ z

∣∣∣∣ (s, z) ∈ R× RD−d−1, ‖z‖ ≤ σ/2 and√
(σ/2)2 − ‖z‖2 −

∥∥∥ID − ΦA,i
τk

∥∥∥
∞
≤ |s| ≤

√
(σ/2)2 − ‖z‖2

}
.

Hence,

V ol
(
OA,iτ \ O

A,i
τk

)
≤ ωdδd × 2

∥∥∥ID − ΦA,i
τk

∥∥∥
∞
× ωD−d−1(σ/2)D−d−1.(10)

Similar arguments lead to

V ol
(
OA,i
τk
\ OA,iτ

)
≤ ωdδd × 2

∥∥ID − ΦA,i
τ

∥∥
∞ × ωD−d−1(σ/2)D−d−1.(11)

Since
∥∥∥ID − ΦA,i

τ

∥∥∥
∞
∨
∥∥∥ID − ΦA,i

τk

∥∥∥
∞
≤ Aδi, summing up bounds (10) and

(11) yields ∫
RD

PA,i
τ ∧PA,i

τk
≥ 1− 3

ωdωD−d−1Aδ
i · δd(σ/2)D−d−1

ωdτ
d
minωD−d(σ/2)D−d

≥ 1− 3
Aδi

σ

(
δ

τmin

)d
.

To derive the last bound, we notice that since Uσk ⊂ O
A,i
τ = Supp

(
PA,i
τ

)
,

we have

∫
Uσk

PA,i
τ ∧PA,i

τk
≥

V ol
(
Uσk ∩ O

A,i
τk

)
V ol

(
OA,iτ

)
∧ V ol

(
OA,i
τk

)
≥
V ol (Uσk )− V ol

(
Uσk \ O

A,i
τk

)
V ol

(
OA,iτ

)
∧ V ol

(
OA,i
τk

)
≥
V ol (Uσk )− V ol

(
OA,iτ \ OA,iτk

)
V ol

(
OA,iτ

)
∧ V ol

(
OA,i
τk

)
≥ ωd(δ/2)dωD−d(σ/2)D−d − ωdδdAδiωD−d−1(σ/2)D−d−1

ωdτ
d
minωD−d(σ/2)D−d

.
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Hence, whenever Aδi ≤ cdσ for cd small enough, we get∫
Uσk

PA,i
τ ∧PA,i

τk
≥ c′d

(
δ

τmin

)d
.

Since m can be chosen such that m ≥ cd(τmin/δ)d, we get the last bound.

Eventually, writting P
(i),σ
τ = PA,i

τ for the particular parameters A =

εδk−i, for ε = εk,d,τmin small enough, and δ such that 3Aδi

σ

(
δ

τmin

)d
= 1

n−1

yields the result. Such a choice of parameter δ does meet the condition

Aδi = εδk ≤ cdσ, provided that σ ≥ cd
ε

(
1

n−1

)k/d
.

C.4. Hypotheses for Manifold Estimation

C.4.1. Proof of Lemma 5

Let us prove Lemma 5, stated here as Lemma C.17.

Lemma C.17. If τminL⊥, . . . , τ
k−1
minLk, (τ

d
minfmin)−1 and τdminfmax are

large enough (depending only on d and k), there exist P0, P1 ∈ Pk with
associated submanifolds M0,M1 such that

dH(M0,M1) ≥ ck,d,τmin
(

1

n

) k
d

, and ‖P0 ∧ P1‖n1 ≥ c0.

Proof of Lemma C.17. Following the notation of Section C.2, for δ ≤
τmin/4 and Λ > 0, consider

ΦΛ
τ (x) = x+ φ

(x
δ

)
Λ · e,

which is a particular case of (7). Define MΛ = ΦΛ(M0), and PΛ = ΦΛ
∗ P0.

Under the conditions of Lemma C.13, P0 and PΛ belong to Pk, and by con-
struction, dH(M0,M

Λ) = Λ. In addition, since P0 and PΛ coincide outside
B(0, δ), ∫

RD
dP0 ∧ dPΛ = P0

(
B(0, δ)

)
= ωd

(
δ

τmin

)d
.

Setting P1 = PΛ with ωd

(
δ

τmin

)d
= 1

n and Λ = ck,d,τminδ
k for ck,d,τmin > 0

small enough yields the result.
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C.4.2. Proof of Lemma 6

Here comes the proof of Lemma 6, stated here as Lemma C.17.

Lemma C.18. If τminL⊥, . . . , τ
k−1
minLk, (τ

d
minfmin)−1 and τdminfmax are

large enough (depending only on d and k), there exist P σ0 , P
σ
1 ∈ Pk(σ) with

associated submanifolds Mσ
0 ,M

σ
1 such that

dH(Mσ
0 ,M

σ
1 ) ≥ ck,d,τmin

(σ
n

) k
d+k

, and ‖P σ0 ∧ P σ1 ‖
n
1 ≥ c0.

Proof of Lemma C.18. The proof follows the lines of that of Lemma
C.16. Indeed, with the notation of Section C.2, for δ ≤ τmin/4 and 0 < Λ ≤
ck,d,τminδ

k for ck,d,τmin > 0 small enough, consider

ΦΛ
τ (x) = x+ φ

(x
δ

)
Λ · e.

Define MΛ = ΦΛ(M0). Write O0, OΛ for the offsets of radii σ/2 of M0, MΛ,
and and P0,P

Λ for the uniform distributions on these sets.
By construction, we have dH(M0,M

Λ) = Λ, and as in the proof of Lemma
C.16, we get ∫

RD
P0 ∧PΛ ≥ 1− 3

Λ

σ

(
δ

τmin

)d
.

Denoting P σ0 = P0 and P σ1 = PΛ with Λ = εk,d,τminδ
k and δ such that

3Λ
σ

(
δ

τmin

)d
yields the result.

C.5. Minimax Inconsistency Results

This section is devoted to the proof of Theorem 1, reproduced here as The-
orem C.19.

Theorem C.19. Assume that τmin = 0. If D ≥ d+3, then, for all k ≥ 2
and L⊥ > 0, provided that L3/L

2
⊥, . . . , Lk/L

k−1
⊥ , Ld⊥/fmin and fmax/L

d
⊥ are

large enough (depending only on d and k), for all n ≥ 1,

inf
T̂

sup
P∈Pk

(x)

EP⊗n∠
(
TxM, T̂

)
≥ 1

2
> 0,

where the infimum is taken over all the estimators T̂ = T̂
(
X1, . . . , Xn

)
.
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Figure 8: Hypotheses for minimax lower bound on tangent space estimation
with τmin = 0.

Moreover, for any D ≥ d+1, provided that L3/L
2
⊥, . . . , Lk/L

k−1
⊥ , Ld⊥/fmin

and fmax/L
d
⊥ are large enough (depending only on d and k), for all n ≥ 1,

inf
ÎI

sup
P∈Pk

(x)

EP⊗n
∥∥∥IIMx ◦ πTxM − ÎI∥∥∥

op
≥ L⊥

4
> 0,

where the infimum is taken over all the estimators ÎI = ÎI
(
X1, . . . , Xn

)
.

We will make use of Le Cam’s Lemma, which we recall here.

Theorem C.20 (Le Cam’s Lemma [36]). For all pairs P, P ′ in P,

inf
θ̂

sup
P∈P

EP⊗nd(θ(P ), θ̂) ≥ 1

2
d
(
θ(P ), θ(P ′)

) ∥∥P ∧ P ′∥∥n
1
,

where the infimum is taken over all the estimators θ̂ = θ̂(X1, . . . , Xn).

Proof of Theorem C.19. For δ ≥ Λ > 0, let C, C′ ⊂ R3 be closed
curves of the Euclidean space as in Figure 8, and such that outside the
figure, C and C′ coincide and are C∞. The bumped parts are obtained with
a smooth diffeomorphism similar to (7) and centered at x. Here, δ and Λ
can be chosen arbitrarily small.

Let Sd−1 ⊂ Rd be a d− 1-sphere of radius 1/L⊥. Consider the Cartesian
products M1 = C × Sd−1 and M ′1 = C′ × Sd−1. M1 and M ′1 are subsets
of Rd+3 ⊂ RD. Finally, let P1 and P ′1 denote the uniform distributions on
M and M ′. Note that M , M ′ can be built by homothecy of ratio λ =

1/L⊥ from some unitary scaled M
(0)
1 ,M ′

(0)
1 , similarly to Section 5.3.2 in

[2], yielding, from Proposition A.4, that P1, P
′
1 belong to Pk(x) provided that
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Figure 9: Hypotheses for minimax lower bound on curvature estimation with
τmin = 0.

L3/L
2
⊥, . . . , Lk/L

k−1
⊥ , Ld⊥/fmin and fmax/L

d
⊥ are large enough (depending

only on d and k), and that Λ, δ and Λk/δ are small enough. From Le Cam’s
Lemma C.20, we have for all n ≥ 1,

inf
T̂

sup
P∈Pk

(x)

EP⊗n∠
(
TxM, T̂

)
≥ 1

2
∠
(
TxM1, TxM

′
1

) ∥∥P1 ∧ P ′1
∥∥n

1
.

By construction, ∠
(
TxM1, TxM

′
1

)
= 1, and since C and C′ coincide outside

BR3(0, δ),∥∥P1 ∧ P ′1
∥∥

1
= 1− V ol

(
(BR3(0, δ) ∩ C)× Sd−1

)
/V ol

(
C × Sd−1

)
= 1− Length (BR3(0, δ) ∩ C) /Length(C)
≥ 1− cL⊥δ.

Hence, at fixed n ≥ 1, letting Λ, δ go to 0 with Λk/δ small enough, we get
the announced bound.

We now tackle the lower bound on curvature estimation with the same
strategy. Let M2,M

′
2 ⊂ RD be d-dimensional submanifolds as in Figure

9: they both contain x, the part on the top of M2 is a half d-sphere of
radius 2/L⊥, the bottom part of M ′2 is a piece of a d-plane, and the bumped
parts are obtained with a smooth diffeomorphism similar to (7), centered
at x. Outside B(x, δ), M2 and M ′2 coincide and connect smoothly the upper
and lower parts. Let P2, P

′
2 be the probability distributions obtained by the

pushforward given by the bump maps. Under the same conditions on the
parameters as previously, P2 and P ′2 belong to Pk(x) according to Proposition



64 E. AAMARI AND C. LEVRARD

A.4. Hence from Le Cam’s Lemma C.20 we deduce

inf
ÎI

sup
P∈Pk

(x)

EP⊗n
∥∥∥IIMx ◦ πTxM − ÎI∥∥∥

op

≥ 1

2

∥∥∥IIM2
x ◦ πTxM2 − II

M ′2
x ◦ πTxM ′2

∥∥∥
op

∥∥P2 ∧ P ′2
∥∥n

1
.

But by construction,
∥∥IIM2

x ◦ πTxM2

∥∥
op

= 0, and since M ′2 is a part of a

sphere of radius 2/L⊥ nearby x,
∥∥∥IIM ′2x ◦ πTxM ′2

∥∥∥
op

= L⊥/2. Hence,

∥∥∥IIM2
x ◦ πTxM2 − II

M ′2
x ◦ πTxM ′2

∥∥∥
op
≥ L⊥/2.

Moreover, since P2 and P ′2 coincide on RD \ B(x, δ),∥∥P2 ∧ P ′2
∥∥

1
= 1− P2(B(x, δ)) ≥ 1− cd,L⊥δ

d.

At n ≥ 1 fixed, letting Λ, δ go to 0 with Λk/δ small enough, we get the
desired result.
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