A Priori Lipschitz Estimates for Solutions of Local and Nonlocal Hamilton-Jacobi Equations with Ornstein-Uhlenbeck Operator - Archive ouverte HAL
Article Dans Une Revue Revista Matemática Iberoamericana Année : 2019

A Priori Lipschitz Estimates for Solutions of Local and Nonlocal Hamilton-Jacobi Equations with Ornstein-Uhlenbeck Operator

Résumé

We establish a priori Lipschitz estimates for unbounded solutions of second-order Hamilton-Jacobi equations in R^N in presence of an Ornstein-Uhlenbeck drift. We generalize the results obtained by Fujita, Ishii & Loreti (2006) in several directions. The first one is to consider more general operators. We first replace the Laplacian by a general diffusion matrix and then consider a nonlocal integro-differential operator of fractional Laplacian type. The second kind of extension is to deal with more general Hamiltonians which are merely sublinear. These results are obtained for both degenerate and nondegenerate equations.
Fichier principal
Vignette du fichier
cln_vf.pdf (436.66 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01515409 , version 1 (27-04-2017)

Identifiants

Citer

Emmanuel Chasseigne, Olivier Ley, Thi-Tuyen Nguyen. A Priori Lipschitz Estimates for Solutions of Local and Nonlocal Hamilton-Jacobi Equations with Ornstein-Uhlenbeck Operator. Revista Matemática Iberoamericana, 2019, 35 (5), pp.1415-1449. ⟨10.4171/RMI/1093⟩. ⟨hal-01515409⟩
604 Consultations
305 Téléchargements

Altmetric

Partager

More