RANDOM WALKS ON BRATTELI DIAGRAMS - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

RANDOM WALKS ON BRATTELI DIAGRAMS

Résumé

In a 1989 article, A. Connes and E. J. Woods made a connection between hyperfinite von Neumann algebras and Poisson boundaries of time dependent random walks. I will explain this connection and will present two theorems given there: the description of an almost periodic state on a hyperfinite von Neumann algebra (due to A. Connes) and the ergodic decomposition of a Markov measure via harmonic functions (a classical result in J. Neveu 64). The crux of the first theorem is a model for conditional expectations on finite dimensional C*-algebras. Our proof of the second theorem hinges on the notion of cotransition probability.
Fichier principal
Vignette du fichier
OT26.pdf (342.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01514270 , version 1 (25-04-2017)

Identifiants

Citer

Jean N Renault. RANDOM WALKS ON BRATTELI DIAGRAMS. 2017. ⟨hal-01514270⟩
110 Consultations
123 Téléchargements

Altmetric

Partager

More