Rules of calculus in the path integral representation of white noise Langevin equations - Archive ouverte HAL
Article Dans Une Revue Journal of Physics A General Physics (1968-1972) Année : 2017

Rules of calculus in the path integral representation of white noise Langevin equations

Résumé

The definition and manipulation of Langevin equations with multiplicative white noise require special care (one has to specify the time discretisation and a stochastic chain rule has to be used to perform changes of variables). While discretisation-scheme transformations and non-linear changes of variable can be safely performed on the Langevin equation, these same transformations lead to inconsistencies in its path-integral representation. We identify their origin and we show how to extend the well-known Itō prescription (dB²=dt) in a way that defines a modified stochastic calculus to be used inside the path-integral representation of the process, in its Onsager-Machlup form.
Fichier principal
Vignette du fichier
langevin-calculus_equation-vs-action.pdf (648.16 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01508497 , version 1 (02-03-2018)

Identifiants

Citer

Leticia F. Cugliandolo, Vivien Lecomte. Rules of calculus in the path integral representation of white noise Langevin equations. Journal of Physics A General Physics (1968-1972), 2017, 50 (34), pp.345001. ⟨10.1088/1751-8121/aa7dd6⟩. ⟨hal-01508497⟩
643 Consultations
694 Téléchargements

Altmetric

Partager

More