Rules of calculus in the path integral representation of white noise Langevin equations
Résumé
The definition and manipulation of Langevin equations with multiplicative white noise require special care (one has to specify the time discretisation and a stochastic chain rule has to be used to perform changes of variables). While discretisation-scheme transformations and non-linear changes of variable can be safely performed on the Langevin equation, these same transformations lead to inconsistencies in its path-integral representation. We identify their origin and we show how to extend the well-known Itō prescription (dB²=dt) in a way that defines a modified stochastic calculus to be used inside the path-integral representation of the process, in its Onsager-Machlup form.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...