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Abstract. The definition and manipulation of Langevin equations with
multiplicative white noise require special care (one has to specify the time
discretisation and a stochastic chain rule has to be used to perform changes of
variables). While discretisation-scheme transformations and non-linear changes
of variable can be safely performed on the Langevin equation, these same
transformations lead to inconsistencies in its path-integral representation. We
identify their origin and we show how to extend the well-known Itō prescription
(dB2 = dt) in a way that defines a modified stochastic calculus to be used inside
the path-integral representation of the process, in its Onsager-Machlup form.
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1. Introduction

Physical phenomena are often non-deterministic, presenting a stochastic behaviour
induced by the action of a large number of constituents or by more intrinsic sources
of noise [1, 2, 3, 4]. A paradigmatic example is the one of Brownian motion, the
study of which is at the source of stochastic calculus. From a modelisation viewpoint,
the evolution of such systems can be described by a Langevin-type equation or by
the path probability of its trajectories. An important aspect of these descriptions is
that the trajectories are not differentiable in general. This peculiarity implies that
the definition of the evolution equation requires special care, namely, it demands the
specification of a non-ambiguous time-discretisation scheme and, moreover, it induces
a modification of the rules of calculus [1, 2, 3, 4].

The important role of the time discretisation in the Langevin equation is now
clearly elucidated [5] and many results have been obtained for the construction of an
associated path-integral formalism, whose functional action and Jacobian correctly
take into account the choice of discretisation [6, 7, 8, 9, 10, 11, 12, 13].

An important point in the manipulation of Langevin equations is that the usual
differential-calculus chain rule for changes of variables, dt

[
u(x(t))

]
= u′(x(t)) dtx(t),

has to be modified. It is replaced by the Itō formula (or ‘stochastic chain rule’), which
is itself the consequence of the Itō substitution rule dB2 = dt for an infinitesimal
increment dB = Bt+dt − Bt of a Brownian motion Bt of unit variance. Although
such manipulations are well understood at the Langevin equation level, the situation
is less clear for the transformation of fields performed inside the action functional
corresponding to the Langevin equation. It is known, for instance, that the use of the
stochastic chain rule in the action can yield unsolved inconsistencies, both in statistical
field theory [14, 7] and in quantum field theory [15, 16, 17, 14, 18, 19].

In this article, we elucidate the source of this inconsistency, focusing on the case
of the Onsager-Machlup action functional corresponding to a Langevin equation for
one degree of freedom, with multiplicative white noise. We find that the sole Itō
substitution rule dB2 = dt proves to be insufficient to correctly perform non-linear
changes of variables in the action. We identify the required generalised substitution
rules and we determine that their use should be performed with extreme care, since
they take different forms when applied inside the exponential of the time-discrete
action, or in the prefactor of its Gaussian weight factor.

In continuous time, we show that, in general, the use of the usual stochastic chain
rule inside the action yields wrong results – and this even for a Stratonovich-discretised
additive-noise Langevin equation. We determine a modified stochastic chain rule that
allows one to manipulate the action directly, even in continuous time.

The organisation of the article is the following. In Sec. 2, we review the non-
ambiguous construction of the Langevin equation, providing three detailed examples
which illustrate the role of the Itō substitution rule. In Sec. 3, we recall inconsistencies
that appear when one manipulates the action incorrectly, and we determine the valid
substitution rules. We synthesise our results in Sec. 4. Appendices gather part of the
technical details.
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2. Langevin equation and stochastic calculus

In this Section, we briefly review the definition of multiplicative Langevin equations.
For completeness, we first describe the standard construction of an unambiguous
stochastic evolution equation through time discretisation, and we then provide three
examples illustrating how differential calculus is generalised for stochastic variables,
following this construction.

2.1. Discretisation convention of Langevin equations

Consider a time-dependent variable x(t) which verifies a Langevin equation with a
force f(x) and a multiplicative noise g(x)η,

dtx(t) = f(x(t)) + g(x(t)) η(t) . (1)

The function g(x), that depends in general on the value of the variable, describes the
amplitude of the stochastic term of this equation. The noise η(t) is a centred Gaussian
white noise of 2-point correlator equal to 〈η(t)η(t′)〉 = 2Dδ(t′ − t), where D plays the
role of temperature. It is well known that the Langevin equation in its continuous-
time writing (1) is ambiguous: one needs to specify a ‘discretisation scheme’ in order
to give it a meaning (see [5, 3] for reviews).

Such a scheme is defined in discrete time, in the zero time step limit. We denote by
xt the time-discrete variable, with now t ∈ dtN. The central feature of the definition
of the Langevin equation is the following. Upon the time step t y t + dt, the right-
hand-side (r.h.s.) of (1) is evaluated at a value of x = x̄t chosen as a weighted average
between xt and xt+dt as

xt+dt − xt
dt

= f(x̄t) + g(x̄t)ηt 〈ηtηt′〉 =
2D

dt
δtt′ (2)

where the α-discretised evaluation point is

x̄t = αxt+dt + (1− α)xt = xt + α(xt+dt − xt) . (3)

In the time-discrete evolution (2), the noise ηt is a centred Gaussian random variable
(independent from those at other times, and thus independent of xt). Its explicit
distribution reads

∀t, Pnoise(ηt) =

√
dt

4πD
e−

1
2
dt
2D η

2
t . (4)

Its form implies that the stochastic term g(x̄t)ηt in (2) is typically of order dt−1/2, that
is much larger than f(x̄t), which is of order dt0. This difference is at the core of the
ambiguity of the equation (1): as dt → 0, the deterministic contribution f(x̄t) to (2)
is independent of the choice of α-discretisation; however, different values of α lead to
different behaviours of the stochastic term g(x̄t)ηt. Indeed, making the discretisation
explicit with a superscript we see, by Taylor expansion, that[

g
(
x̄

(ᾱ)
t

)
− g
(
x̄

(α)
t

)]
ηt =

[
g
(
x̄

(α)
t + (ᾱ− α)(xt+dt − xt)

)
− g
(
x̄

(α)
t

)]
ηt

= (ᾱ− α)(xt+dt − xt)g′(x̄(α)
t )ηt +O(dt−

1
2 ) (5)

is typically of order dt0. This shows that, in general, g(x̄
(α)
t )ηt and g(x̄

(ᾱ)
t )ηt are not

equivalent in (2) when α 6= ᾱ.
Standard discretisation choices are α = 1

2 (known as ‘mid-point’ or Stratonovich
convention) and α = 0 (Itō convention). The Stratonovich choice is invariant by
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time reversal but, as other choices of 0 < α ≤ 1, yields an implicit equation (2) for
xt+dt at each time step. The Itō convention, yielding independent increments for
x(t), is often chosen in mathematics, where the construction of the corresponding
“stochastic calculus” [4] is done by defining a stochastic integral for the integral
equation corresponding to (1).

In general, we will denote the α-discretised Langevin equation (1) as

dtx
α
= f(x) + g(x) η . (6)

2.2. Three examples

In this Section, we review three archetypal situations illustrating the role played by
the choice of α-discretisation. We explain the computations in detail, so as to start
off on the right footing for understanding the origin of the apparent contradictions
discussed in Sec. 3.

2.2.1. The stochastic chain rule (or Itō formula)

A first consequence of the presence of a term of order dt−1/2 in the discrete-time
Langevin equation (2) is that the usual formulæ of differential calculus have to be
altered. For instance, the chain rule describing the time derivative of a function of
x(t) is modified as [3, 2]

dt
[
u(x)

] α
= u′(x)dtx+ (1− 2α)Dg(x)2u′′(x) , (7)

where x = x(t) verifies the Langevin equation (6). It is only for the Stratonovich
discretisation that one recovers the chain rule of differentiable functions. For α = 0,
the relation (7) is known as the “Itō formula”.

The stochastic chain rule (7) is understood as follows. Coming back to the
discrete-time definition of dt[u(x)], one performs a Taylor expansion in powers of
∆x ≡ xt+dt − xdt, keeping in mind that, as seen from (2), ∆x is of order dt1/2; this
yields

u(xt+dt)− u(xt)

dt
=
u
(
x̄t + (1− α)∆x

)
− u
(
x̄t − α∆x

)
dt

=
∆x

dt
u′(x̄t) +

1

2
(1− 2α)

∆x2

dt
u′′(x̄t) +O(dt

1
2 ) . (8)

For a differentiable function x(t), the term ∝ ∆x2/dt would be negligible in the dt→ 0
limit but this is not the case for a stochastic x(t). The next step is to understand
the continuous-time limit dt → 0 of (8): the so-called “Itō prescription” amounts to
replacing ∆x2/dt in this expression by its quadratic variation

∆x2

dt
7→ 2Dg(x̄t)

2 as dt→ 0 (9)

(which is not equal to the expectation value of ∆x2/dt, as occasionally read in the
literature, since g(x̄t) depends on the value of x̄t without averaging). Note that in
Eq. (8), one could as well replace ∆x2/dt by the Itō-discretised 2Dg(xt)

2 (or any other
discretisation point) instead of the α-discretised one in (9) since this would only add
terms of order dt1/2 to (8) – hence the name “Itō prescription”. In this article, we
will rather use the name “substitution rule” for two reasons: one is that we work in a
generic α-discretisation scheme; another one is that we will introduce generalisations
of (9) at a later stage.
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We emphasise that the substitution rule (9) has to be used with care, as will
be illustrated many times in this article. The validity of its use relies on the precise
definition of the chain rule (7): this identity has to be understood in an “L2-norm”

sense, i.e. it corresponds to having 〈[
∫ tf

0
dt {l.h.s.−r.h.s.}]2〉 = 0 (∀tf) and not to having

a point-wise equality. The precise formulation and the demonstration of (7) and (9)
are given in Sec. B.1 of App. B, along the lines of Øksendal’s reference textbook [4].

As this sort of issues is often overlooked in the theoretical physics literature, we
now explain why an argument that is regularly proposed to justify (9) is in fact invalid.
One could argue that the distribution of ∆x2 in (8) is sharply peaked around its most
probable value 2Dg(x̄t)

2dt, because its variance 〈∆x4〉 − 〈∆x2〉2 is of order dt2 as
read from (2) and (4); this would allow one to replace ∆x2/dt by 2Dg(x̄t)

2 as dt→ 0
in (8), hence justifying (9). However, this argument is incorrect because the variance
of ∆x2/dt is of the same order dt0 as some other terms in the time-discrete Langevin
equation (8). To understand this point in detail, it is convenient to rephrase the
argument as follows. First, one notes that according to (2) and (4), the quantity
∆x/dt is dominated by its most singular contribution g(xt)ηt in the dt→ 0 limit

∆x

dt
= g(xt)ηt +O(dt0) . (10)

In this expression, we have chosen to evaluate g(x) at x = xt instead of x̄t, the
difference being gathered with other terms of order O(dt0) (see (5) for a proof). This
allows one to use the fact that ηt is independent of xt in order to compute the variance
of ∆x2/dt by Gaussian integration over ηt as〈[∆x2

dt

]2〉
−
〈∆x2

dt

〉2

=
{〈[

g(xt)ηt
]4〉− 〈[g(xt)ηt

]2〉2}
dt2 +O(dt)

= 4D2
(

3〈g(xt)
4〉 − 〈g(xt)

2〉2
)

+O(dt) (11)

and one observes that it does not vanish as dt → 0 (even for a constant noise
amplitude g(x) = g). The variance of ∆x2/dt is thus of the same order dt0 as other
terms in Eq. (8); this means that the properties of the distribution of ∆x2/dt cannot
be invoked to justify the substitution rule (9). This rule has to be understood in an L2

sense that we explain in App. B.1. As will prove to be essential, it means that the
chain rule (7) is not true “point-wise” but only in a weaker sense – which has to be
taken care of meticulously in the path integral action, as we discuss thoroughly in
Sec. 3.2.

Finally, we note that the substitution rule (9) is equivalently written as follows‡
η2
t dt 7→ 2D (12)

for the discrete time white noise ηt.

2.2.2. Changing discretisation while keeping the same evolution

Since the solution x(t) of the Langevin equation (1) depends crucially on the choice
of α-discretisation, although this choice seems to be arbitrary, one can wonder
whether x(t) can also be described as the solution of another Langevin equation,

‡ Another writing is dB2
t 7→ dt for a Brownian motion Bt of unit variance – the relation with our

discrete white noise being ηt dt = (2D)1/2(Bt+dt −Bt).
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with a different ᾱ-discretisation and a modified force. To answer this question, one
comes back to the discrete-time evolution (2)-(3)

xt+dt − xt
dt

= f
(
x̄

(α)
t

)
+ g
(
x̄

(α)
t

)
ηt (13)

where we wrote explicitly the discretisation convention in superscript. Then, writing

x̄
(α)
t = x̄

(ᾱ)
t + (α− ᾱ)(xt+dt − xt) (14)

and expanding in powers of ∆x = xt+dt − xt = O(dt1/2) one obtains

xt+dt − xt
dt

= f
(
x̄

(ᾱ)
t

)
+ g
(
x̄

(ᾱ)
t

)
ηt + (α− ᾱ)g′

(
x̄

(ᾱ)
t

)
∆x ηt +O(dt

1
2 )

= f
(
x̄

(ᾱ)
t

)
+ g
(
x̄

(ᾱ)
t

)
ηt + (α− ᾱ)g

(
x̄

(ᾱ)
t

)
g′
(
x̄

(ᾱ)
t

)
η2
t dt+O(dt

1
2 ) (15)

where we used (2) for the last line.
Finally, using the substitution rule (12) and sending dt to zero, one finds that

the process x(t), solution of the Langevin equation (6) in the α-discretisation, is also
verifying another Langevin equation

dtx
ᾱ
= fα→ᾱ(x) + g(x) η (16)

fα→ᾱ(x) = f(x) + 2(α− ᾱ)Dg(x)g′(x) (17)

which is understood in ᾱ-discretisation and presents a modified force fα→ᾱ(x). One
checks directly that the Fokker-Planck equations corresponding to the two Langevin
equations (1) and (16)-(17) are identical, illustrating the equivalence of the two
corresponding processes (see for instance [5] for the special case α = 0 and ᾱ = 1/2).
However, we emphasise that, since we used the substitution rule (12), we have to keep
in mind that the equivalence between (6) and (16)-(17) is not true pointwise and this
can be the source of unexpected problems, as discussed in Sec. 3.1.

2.2.3. Infinitesimal propagator for a path integral formulation

The trajectory probability of stochastic processes described by a Langevin equation
has been the focus of many studies in statistical mechanics, either from the Onsager–
Machlup approach [20, 21] or from the Martin–Siggia–Rose–Janssen–De Dominicis
(MSRJD) one [22, 23, 24, 25, 26, 27]. The idea in the Onsager–Machlup approach
(to which we restrict our present analysis) is to write the probability of a trajectory
[x(t)]0≤t≤tf as

Prob
[
x(t)

]
= J [x(t)] e−S[x(t)] , (18)

where S[x(t)] is the “action”, which takes a Lagrangian form S[x(t)] =
∫ tf

0
dtL(x, dtx),

and J [x(t)] is a “normalisation prefactor”§. As can be expected from the discussion at
the beginning of subsec. 2.1, the form of the action and of the normalisation prefactor
will depend not only on the α-discretization of the underlying Langevin equation, but
also on the discretisation convention which is used to write them. The average of a
functional F of the trajectory can then be written in a path integral form as〈

F
[
x(t)

]〉
=

∫
DxF

[
x(t)

]
J [x(t)] Prob

[
x(t)

]
Pi

(
x(0)) . (19)

§ The prefactor J [x(t)] can be included in the measure Dx on trajectories, but is not exponentiated
in the action in general because it does not take a Lagrangian form.
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The path integral is understood in the Feynman sense [28]: a sum over possible
trajectories which start from an initial condition sampled by a distribution Pi(x).
It is best depicted in a time-discrete setup in the limit of zero time step, where one
integrates over the set of possible values xt of the trajectory at discrete times t ∈ dtN
separated by a time step dt, yielding

tf/dt−1∏
t=0

{
dxt P(xt+dt, t+ dt|xt, t)

} dt→0−→ DxJ [x(t)] e−S[x(t)] (20)

where P(xt+dt, t+ dt|xt, t) is a conditional probability (or “infinitesimal propagator”).
In this subsection, we focus our attention on the infinitesimal propagator between

two successive time steps, that for simplicity we take at the first time step. Our goal
is to compute P(xdt|x0) ≡ P(xdt, dt|x0, 0) and to understand how the full action and
normalisation prefactor are reconstituted through (20). We note that the correct form
of this propagator, taking into account the α-discretisation is well-known [6, 9, 8, 10].
Still, we derive it again by taking a pedestrian approach that illustrates the role played
by the substitution rules (9) or (12) – a role that proves essential to understand in
order to later find the correct rules of stochastic calculus in the action.

2.2.3.a First time step: changing from the distribution of η0 to that of xdt. Let us
fix the initial condition x0 and determine the distribution of xdt obtained from the
discrete Langevin equation (2). This equation is an implicit equation on xdt, the
solution of which takes the form

xdt = X1(x0, η0) . (21)

Therefore, the distribution of xdt reads

P(xdt|x0) =

∫
dη0 δ(xdt −X1(x0, η0)) Pnoise(η0) , (22)

with the noise distribution given in Eq. (4). In order to integrate over η0, we would
like to read the Dirac as a δ on the variable η0. Cancelling the argument of the Dirac
distribution in (22) defines a function H0(x0, xdt) such that(

xdt −X1(x0, η0)
)∣∣∣
η0=H0(x0,xdt)

= 0 . (23)

Then, the relation (22) yields

P(xdt|x0) =

∫
dη0

δ(η0 −H0(x0, xdt))∣∣∣∂η0

(
xdt −X1(x0, η0)

)∣∣∣
η0=H0(x0,xdt)

Pnoise(η0)

=
Pnoise

(
H0(x0, xdt)

)∣∣∣∂η0
X1

(
x0, H0(x0, xdt)

)∣∣∣ . (24)

Note that this relation can be derived by performing a change of variables in the
probability distribution Pnoise of η0, to obtain the distribution of xdt seen as a
function of η0 through (21). (Two ways of evaluating the denominator are recalled in
App. A.2 [10] and App. A.3 [8]; we follow here a different route that is better adapted
for our purposes.)
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2.2.3.b Expansions in the limit dt→ 0. The discrete Langevin equation (2) relating
(at t = 0) x0 and xdt is a non-linear equation for which there is no explicit solution

in general. As discussed previously, in the dt → 0 limit, one has xdt − x0 = O(dt1/2)
(which is true for instance for a Brownian motion when f(x) = 0 and g(x) = 1, and is
checked self-consistently in general). Writing x̄0 = x0+α(xdt−x0), we then expand (2)
in order to obtain x0 − xdt up to order O(dt) included. One deduces

xdt − x0 =
[
f(x0) + η0g(x0)

]
dt

+ αdt(xdt − x0)
[
f ′(x0) + η0g

′(x0) + 1
2αη0(xdt − x0)g′′(x0)

]
(25)

where we used η0 = O(dt−1/2). Solving for xdt, one obtains, after expansion,

X1(x0, η0) = x0 + dt f(x0) + dt η0 g(x0) + αdt2
[
f(x0) + η0g(x0)

][
f ′(x0) + η0g

′(x0)
]

+
1

2
α2dt3η2

0

{
2f(x0)g′(x0)2 + η0g(x0)2g′′(x0)

+ 2g(x0)
[
2f ′(x0)g′(x0) + f(x0)g′′(x0) + η0g

′(x0)2
]}

, (26)

where we kept terms of high enough order in η0 so as to ensure that the derivative
w.r.t. η0 used in (24) contains terms up to order O(dt2) included. This derivative
reads

∂η0
X1(x0, η0) = dt g(x0)

[
1 + 2αdtη0 g

′(x0) + αdtf ′(x0) + αdtf(x0) g
′(x0)
g(x0)

+ 3
2dt

2α2η2
0

(
2g′(x0)2 + g(x0)g′′(x0)

)]
. (27)

Inverting, we have

1∣∣∣∂η0
X1

(
x0, η0

)∣∣∣ =
1

|g(x0)dt|

[
1− 2αdtη0 g

′(x0)− αdtf ′(x0)− αdtf(x0) g
′(x0)
g(x0)

+ 1
2dt

2α2η2
0

(
2g′(x0)2 − 3g(x0)g′′(x0)

)]
. (28)

In this expression, one can now use the substitution rule (12) to derive

1∣∣∣∂η0X1

(
x0, η0

)∣∣∣ =
1

|g(x0)dt|

[
1− 2αdtη0 g

′(x0)− αdtf ′(x0)− αdtf(x0) g
′(x0)
g(x0)

+Dα2dt
(

2g′(x0)2 − 3g(x0)g′′(x0)
)]

. (29)

For later convenience, we prefer to express the numerator of the r.h.s. in terms of x̄0

instead of x0. We then utilise x0 = x̄0 − α(xdt − x0) and we replace xdt − x0 by its
expression deduced from (2). All in all, the only resulting non-trivial contribution
to (29) is

dt η0g
′(x0) = dt η0g

′
(
x̄0 − αdt

(
g(x̄0)η0 + f(x̄0)

))
= dt η0g

′(x̄0)− αdt2η2
0 g(x̄0)g′′(x̄0) + o(dt)

= dt η0g
′(x̄0)− 2αD dt g(x̄0)g′′(x̄0) + o(dt) (30)

and, finally, Eq. (29) becomes

1∣∣∣∂η0X1

(
x0, η0

)∣∣∣ =
1

|g(x0)dt|

[
1− 2αdtη0 g

′(x̄0)− αdtf ′(x̄0)− αdtf(x̄0) g
′(x̄0)
g(x̄0)

+Dα2dt
(

2g′(x̄0)2 + g(x̄0)g′′(x̄0)
)]

. (31)
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At this point one would like to exponentiate this expression, an operation that has to
be performed with care since η0 dt is of order dt1/2. Using the substitution rule (12)
as previously, one has

eAη0dt = 1 +Aη0dt+DA2dt+ o(dt) , (32)

eAη0dt−DA2dt = 1 +Aη0dt+ o(dt) . (33)

These relations imply

1∣∣∣∂η0X1

(
x0, η0

)∣∣∣ =
1

|g(x0)dt|
exp

[
− 2αdtη0 g

′(x̄0)− αdtf ′(x̄0)− αdtf(x̄0) g
′(x̄0)
g(x̄0)

−Dα2dt
(

2g′(x̄0)2 − g(x̄0)g′′(x̄0)
)]

. (34)

The other function that one needs to determine to compute the infinitesimal
propagator (24) is H0(x0, xdt), defined by Eq. (23), which is equivalent to Eq. (2)
evaluated at t = 0. After a simple rearrangement one finds

η0 =
1

dt

xdt − x0 − dtf(x0)

g(x0) + α(xdt − x0)g′(x0)
≡ H0(x0, xdt) . (35)

In the denominator, one recognises an expansion around x̄0 [with the l.h.s. η0 evaluated
up to O(dt0) included, so that Pnoise

(
H0(x0, xdt)

)
contains terms up to O(dt), as seen

from Eq. (4)]. This yields

H0(x0, xdt) =
xdt−x0

dt − f(x̄0)

g(x̄0)
. (36)

2.2.3.c Infinitesimal propagator. Coming back to Eq. (24), one obtains from Eqs. (4),
(31) and (36) that

P(xdt|x0)
α
=

√
dt−1

4πD

1

|g(x0)|
exp

{
− 1

2

dt

2D

[ xdt−x0

dt − f(x̄0)

g(x̄0)

]2

− αdtf ′(x̄0)

− 2αdt
xdt−x0

dt − f(x̄0)

g(x̄0)
g′(x̄0)− αdtf(x̄0) g

′(x̄0)
g(x̄0)

−Dα2dt
(

2g′(x̄0)2 − g(x̄0)g′′(x̄0)
)}

(37)

where the symbol
α
= indicates that in the r.h.s. x̄0 is the α-discretised point.

Recognising a double-product to complete the square, one gets

P(xdt|x0)
α
=

√
dt−1

4πD

1

|g(x0)| exp

{
− 1

2

dt

2D

[
xdt−x0
dt

− f(x̄0) + 4αD g(x̄0)g′(x̄0)

g(x̄0)

]2

− αdtf ′(x̄0)

− αdtf(x̄0) g
′(x̄0)
g(x̄0)

+Dα2dt

(
2g′(x̄0)2 + g(x̄0)g′′(x̄0)

)}
. (38)

The global prefactor |g(x0)|−1 in the infinitesimal propagator (38) can also be
expressed in terms of |g(x̄0)|−1. For this, one starts again from x0 = x̄0 −α(xdt − x0)
and replaces xdt − x0 by its expression deduced from (2). This leads to

1

|g(x0)|
=

1

|g(x̄0)|

[
1 + αdtη0 g

′(x̄0) + αdtf(x̄0) g
′(x̄0)
g(x̄0)

+Dα2dt
(

2g′(x̄0)2 − g(x̄0)g′′(x̄0)
)]

. (39)
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Exponentiating in the same way as we obtained (31),

1

|g(x0)|
=

1

|g(x̄0)|
exp

[
1 + αdtη0 g

′(x̄0) + αdtf(x̄0) g
′(x̄0)
g(x̄0)

+Dα2dt
(
g′(x̄0)2 − g(x̄0)g′′(x̄0)

)]
. (40)

Since this relation contains a term ∝ η0, once again one has to complete the square.
Coming back to Eq. (24), finally, many terms compensate and, instead of Eq. (38),
one obtains a simpler expression for the infinitesimal propagator:

P(xdt|x0)
α
=

√
dt−1

4πD

1

|g(x̄0)|

× exp

{
− 1

2

dt

2D

[ xdt−x0

dt − f(x̄0) + 2αD g(x̄0)g′(x̄0)

g(x̄0)

]2

− αdtf ′(x̄0)

}
. (41)

2.2.3.d The continuous-time limit. The result (41) is well-known and can be derived
in simpler ways [6, 9, 10] that are reviewed in App. A, and that do not use (or use
in a different way) the equivalent substitution rules (9) or (12). Having such different
approaches leading to the same result is important in order to identify the conditions
under which this substitution rule can be used; we note in particular that we used
this rule in Eqs. (29), (34) and (40) only in the prefactor of the exponential Pnoise(H0)
and not inside the exponential. As discussed throughout Sec. 3, such restriction on
the condition under which the substitution rule (9) is valid proves to be crucial.

We can read from Eq. (41) the continuous-time limit (20): this yields the
trajectory probability in the form (18) with the so-called Onsager–Machlup action

S[x(t)]
α
=

∫ tf

0

dt

{
1

2

1

2D

[
dtx− f(x) + 2αD g(x)g′(x)

g(x)

]2

+ αf ′(x)

}
(42)

where the arguments of the functions f and g are taken in α-discretisation. The
associated normalisation prefactor reads

J [x(t)]
α
=
∏
t

{√
dt−1

4πD

1

|g(x̄t)|

}
. (43)

We emphasise (and this seems to have been little stressed in the literature) that it is
essential to specify the discretisation point of the normalisation prefactor J [x(t)], since
it can yield different contributions to the action for different discretisation conventions,
as should be clear from Eq. (40). For instance, when proving the Fluctuation-
Dissipation Theorem and the Fluctuation Theorem for Langevin equations with
multiplicative noise [8], one has to take into account that reversing the time
changes the discretisation from α to 1 − α. This implies that when comparing the
trajectory probability of a path and its time reversed, the discretisation of one of the
normalisation prefactors has to be restored to α from 1 − α, which induces terms
similar to those in (40) in the action without which the Fluctuation Theorem would
not be verified.

We also note that Itami and Sasa have recently discussed in [10] the consequences
of choosing different α-discretisations in the Langevin equation and in the action.
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3. Stochastic calculus in the path integral action

In general, the different actions S[x(t)] that are studied in statistical mechanics (or
in quantum field theory [29]) take the form of the time integral of a “Lagrangian”:

S[x(t)] =
∫ tf

0
dtL(dtx(t), x(t)). This is the case, for instance, of the action (42) that we

derived in the previous Section and which corresponds to the α-discretised Langevin
equation (6). Since the trajectories x(t) that verify the Langevin equation are not
differentiable, it is natural to expect that the Lagrangian L(dtx(t), x(t)) should be
sensitive to the convention of α-discretisation for its writing, and that the differential
transformations performed in the Lagrangian should incorporate terms akin to the
stochastic ones ∝ (1− 2α) of the modified chain rule (7).

It is often assumed that the continuous-time chain rule (7) can be applied when
manipulating the action (see for instance [30]) or that the formulæ (16)-(17) describing
the change of discretisation in the Langevin equation can be equally used. In this
Section, we show

(i) that performing a change of discretisation in the Onsager–Machlup action is
possible but completely wrong if one uses the relations (16)-(17); and

(ii) similarly, that non-linear changes of variables are allowed in the action but are
also wrong if one applies the chain rule (7).

In both cases, one arrives at inconsistencies when using the incorrect transformations
to manipulate the action. We describe the procedure which enables ones to elucidate
the origin of such apparent contradictions of stochastic calculus. The moral of the story
is that the substitution rule (9) alone is insufficient to understand the transformations
of the action and that other transformations, that we derive, are needed.

3.1. From one discretisation to another

In this subsection, we examine the condition of validity of the transformation rules
allowing one to go from an α-discretised Langevin equation (6) to an equivalent
ᾱ-discretised Langevin equation (16)-(17). We focus on the transformation from a
generic α-discretisation to the Stratonovich one (α = 1/2), which is often performed for
the reason that the stochastic chain rule (7) takes a simple form for α = 1/2 (yielding
back the standard chain rule of differential calculus). We show that, although it seems
natural to perform the same transformations in the action as at the Langevin level,
such as changing discretisation through (16)-(17), the resulting action actually proves
to be invalid (see Fig. 1 for a schematic representation of the procedure). Finally, we
identify the reason why the correct rules of calculus in the action are more complex
than at the Langevin level, and we determine the correct calculus to be used in the
action that actually involves generalised substitution rules akin to (9).

3.1.1. Direct change of discretisation in the action

The α-discretised Langevin equation (6) dtx
α
= f(x) + g(x) η is equivalent to the

following Langevin equation in Stratonovich discretisation, with an α-dependent
force fα

dtx
Strato

= fα(x) + g(x) η , (44)

fα(x) = f(x) + 2D(α− 1
2 )g′(x)g(x) . (45)
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Figure 1. Schematic representation, for a change of discretisation, of the
difference between the stochastic calculus performed in the Langevin equation and
in the Onsager–Machlup action. The α-discretised Langevin equation (6) can be
transformed by use of the substitution rule (9) into a Stratonovich-discretised one
(α = 1/2) given by Eqs. (44)-(45). However, one cannot use such equations in
the α-discretised Onsager–Machlup action (42) to get the correct Stratonovich-
discretised action. Instead, to go from one action to the other, one has to use
the generalised substitution rules (54)-(57) in discrete time for the infinitesimal
propagator (once expanded in powers of ∆x and dt), or to rely on modified
substitution rules (74)-(76) inside the exponential of the propagator.

This is seen, for instance, by coming back to the time-discrete definition (2)-(3) of the
α-discretisation and by working with the symmetric Stratonovich discretisation point
(the superscript S indicates such choice of discretisation in what follows)

x̄S
t = 1

2 (xt+dt + xt) , (46)

a procedure that we followed in Sec. 2.2.2 for a generic change of discretisation:
Eqs. (16)-(17) yield the result above, i.e. Eqs. (44)-(45) with a force fα = fα→1/2.

3.1.2. Change of discretisation in the infinitesimal propagator

Since the α-discretised Langevin equation (6) and the Stratonovich one (44)-(45) are
equivalent, they must possess equivalent infinitesimal propagators. The change of
discretisation in the infinitesimal propagator proves to be more involved than in the
equation itself.

3.1.2.a Expanding without throwing powers of ∆x out with the bathwater. We focus,
without loss of generality, on the first time step 0 y dt. The propagator (41) in
α-discretisation is

P(xdt|x0)
α
=

N
|g(x̄0)|

exp

{
− 1

2

dt

2D

[ xdt−x0

dt − f(x̄0) + 2αD g(x̄0)g′(x̄0)

g(x̄0)

]2

− αdtf ′(x̄0)

}
with N ≡

√
dt−1

4πD
. (47)

The aim is to determine an equivalent propagator in terms of the Stratonovich mid-
point x̄S

0 = 1
2 (xdt + x0). We expand (47) in powers of ∆x ≡ xdt − x0, using

x̄0 = x̄S
0 + (α− 1

2 )∆x (48)
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and keeping all terms of order dt0 inside the exponential (note that they define the
Gaussian weight), while putting all terms of order O(dt1/2) and O(dt) in a prefactor
of this weight. In this procedure, one should remember that ∆x = O(dt1/2). This
crucially implies that, in the exponential, the expansion of the term

−1

2

1

2Ddt

[
∆x

g
(
x̄S

0 + (α− 1
2 )∆x

)]2

(49)

generates terms of order O(dt1/2) and O(dt) which are proportional to dt−1∆x3 and
dt−1∆x4. Expanding then the exponential, one gets terms up to dt−2∆x6. Explicitly,
the result is

P(xdt|x0)

N
|g(x̄S

0)|e
− 1

2
dt
2D

(
∆x
dt

)2/
g(x̄S

0)2

S
=

1 +

[
f(x̄S

0)

2Dg(x̄S
0)2

+
(2− 8α)g′(x̄S

0)

4g(x̄S
0)

]
∆x+

[
(2α− 1)g′(x̄S

0)

4Dg(x̄S
0)3

]
∆x3dt−1

+

[
− α

(
αDg′(x̄S

0)2 + f ′(x̄S
0)

)
+
αf(x̄S

0)g′(x̄S
0)

g(x̄S
0)

− f(x̄S
0)2

4Dg(x̄S
0)2

]
dt

+

[
(−12α2 + 8α− 1)g′′(x̄S

0)

8g(x̄S
0)

+
(14α2 − 8α+ 1)Dg′(x̄S

0)2 + (2α− 1)f ′(x̄S
0)

4Dg(x̄S
0)2

+
(3− 8α)f(x̄S

0)g′(x̄S
0)

4Dg(x̄S
0)3

+
f(x̄S

0)2

8D2g(x̄S
0)4

]
∆x2

+

[
(1− 2α)2g′′(x̄S

0)

16Dg(x̄S
0)3

− (28α2 − 24α+ 5)g′(x̄S
0)2

16Dg(x̄S
0)4

+
(2α− 1)f(x̄S

0)g′(x̄S
0)

8D2g(x̄S
0)5

]
∆x4 dt−1

+
(1− 2α)2g′(x̄S

0)2

32D2g(x̄S
0)6

∆x6 dt−2 . (50)

Note that we also changed the discretisation of the normalisation prefactor from

1/|g(x̄0)| to 1/|g(x̄S
0)| using a relation similar to (39). The symbol

S
= indicates that

the r.h.s. is evaluated in the Stratonovich discretisation.

3.1.2.b Comparison to the propagator arising from changing discretisation at the
Langevin level. We would like to compare this result to that of the commutative
procedure depicted in Fig. 1, namely,

(i) transform the original α-discretised Langevin equation into the Stratonovich-
discretised one (44) which includes an α-dependent force fα(x) given by (45);
and

(ii) follow the same procedure as previously done to get the corresponding propagator,
that we denote PS

fα
.

The result is, of course, directly read from Eq. (47), where α is first replaced by 1/2
(and hence x̄0 by x̄S

0), and then f is replaced by fα; this yields

PS
fα(xdt|x0)

S
=

N
|g(x̄S

0)|
exp

{
− 1

2

dt

2D

[
∆x
dt
− fα(x̄S

0) +Dg(x̄S
0)g′(x̄S

0)

g(x̄S
0)

]2

− 1

2
dtf ′α(x̄S

0)

}
. (51)
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By consistency, this propagator should be equal to the result (47), in the small dt
limit. To check whether this is the case, we follow the same procedure as the one
leading to Eq. (50) from Eq. (47), that is to say, we expand in powers of ∆x and dt,
and we replace fα by its explicit expression in terms of f , g and α, to obtain

PS
fα(xdt|x0)

N
|g(x̄S

0)|e
− 1

2
dt
2D

(
∆x
dt

)2/
g(x̄S

0)2

S
=

1 +

[
f(x̄S

0)

2Dg(x̄S
0)2

+
(α− 1)g′(x̄S

0)

g(x̄S
0)

]
∆x

+

[
− f(x̄S

0)2

2Dg(x̄S
0)2
− f ′(x̄S

0)− 2(α− 1)f(x̄S
0)g′(x̄S

0)

g(x̄S
0)

+D

{
(1− 2α)g(x̄S

0)g′′(x̄S
0) + (−2(α− 1)α− 1)g′(x̄S

0)2

}]
1

2
dt

+
(2(α− 1)Dg(x̄S

0)g′(x̄S
0) + f(x̄S

0))2

8D2g(x̄S
0)4

∆x2 . (52)

The result is clearly different from the one in Eq. (50), while one expects P(xdt|x0) =
PS
fα

(xdt|x0) because these two propagators correspond to the same Langevin equation.

In particular, the maximum power of ∆x for PS
fα

(xdt|x0) in Eq. (52) is ∆x2 while it

is ∆x6 in Eq. (50) for P(xdt|x0).
Note that if one takes for g(x) a constant function g, the two propagators are

still different, as checked by direct inspection (unless α = 1/2, as it should because
then there is no change of discretisation and the two computations are identical). The
simple case of additive noise, thus, also requires a peculiar attention.

3.1.2.c Appropriate substitution rules to render the two approaches compatible. As
discussed in Sec. 2.2.1, the Itō prescription amounts to using the substitution rule

∆x2 7→ 2Dg(x)2dt as dt→ 0 , (53)

where on the r.h.s., the argument x of g(x) can be taken at any discretisation point, at
minimal order in dt. We have seen in paragraph 2.2.3.c that the use of such prescription
is justified as long as it is performed outside the exponential, for the determination of
the infinitesimal propagator.

Therefore, in order to recover from (50) the simpler result (52) for the propagator,
a natural possibility is to look for “generalised substitution rules” akin to (53), but
now for terms of the form ∆xndtm with n,m chosen so that ∆xndtm is typically
of order O(dt1/2) or O(dt). One finds by direct computation that, to guarantee
that (50) becomes (52), there is a unique prescription to replace the terms ∆xndtm

by standard infinitesimals of the natural form Cst × (2Dg(x)2)n/2dt when n is even
and Cst ×∆x (2Dg(x)2)(n−1)/2 when n is odd. It reads

∆x2 = 2Dg(x)2 dt , (54)

∆x3 dt−1 = 3 ∆x 2Dg(x)2 , (55)

∆x4 dt−1 = 3
(
2Dg(x)2

)2
dt , (56)

∆x6 dt−2 = 15
(
2Dg(x)2

)3
dt . (57)
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A justification of these generalised substitution rules, to be understood in a
precise L2 sense, is presented in App. B. It is similar in spirit to the usual mathematical
definition of the first rule (the usual Itō prescription (9)), the L2 definition of which
is also recalled in this Appendix.

3.1.2.d Discussion and comparison to a naive continuous-time computation. In
Sec. 3.1.1 we showed that the change of discretisation at the Langevin equation
level requires the use of the standard substitution rule (9) (the Itō prescription).
This transformation follows the upper branch in Fig. 1. In Sec. 3.1.2.c we
proved that the change of discretisation at the Onsager–Machlup level (for the
infinitesimal propagator) requires a full set of generalised substitution rules, given
by the relations (54)-(57), that include the Itō prescription (9) but extend it with
transformation rules for three other infinitesimals. This transformation follows the
lower branch in Fig. 1. Therefore, the paths along the upper and lower branches
should be followed using procedures that involve a different set of substitution rules.

The key point that explains the discrepancy between the two approaches is that
when one changes the discretisation in the action, the term which is quadratic in ∆x
(see (49)) transforms in a non-trivial way and contributes to a higher order in powers
of ∆x than when one changes the discretisation in the Langevin equation (as done
in subsec. 3.1.1). Technically, the presence of a square (∆x/dt)2 divided by the noise
amplitude in the infinitesimal propagator implies that, when keeping terms of order
O(dt1/2) and O(dt), higher powers of ∆x are generated, as observed in (50).

An instructive observation is to draw a comparison between the Stratonovich-
discretised continuous-time action corresponding to (51)

SS
fα [x(t)]

S
=

1

2

∫ tf

0

dt

{
1

2D

[
dtx− fα(x) +Dg(x)g′(x)

g(x)

]2

− dtf ′α(x)

}
(58)

and the result of a naive computation. First, one notes that both the right-down
and the down-right branches of the commutative diagram represented in Fig. 1 agree
with the same result (58), together with the corresponding prefactor

∏
t |g(x̄S

t )|; this is
true provided one uses the generalised substitution rules (54)-(57). Another – naive –
approach consists in attempting to arrive at this result by changing the discretisation
directly in the time-continuous action, with the following procedure:

(i) start from the continuous-time α-discretised action (42);

(ii) use the rules (16)-(17) for the change of discretisation in the Langevin equation;

(iii) change the discretisation of the normalisation prefactor (43) from α to
Stratonovich, using a relation similar to (40)‡.

However, as detailed in App. D, the result of this procedure is different from (58) and
is thus incorrect. The reason lies in the fact that the rules (16)-(17) for the change of
discretisation in the Langevin equation do not involve substitution rules of high enough
order in ∆x: they disregard essential terms contributing to the expansion (50) that
are crucial to arrive at the final correct propagator (51) (or, equivalently, to recover
the correct action (58) with its associated Stratonovich-discretised normalisation
prefactor). This confirms that the sole standard substitution rule (9) is not sufficient to
handle successfully the path integral representation of the stochastic process, and that
the generalised substitution rules (54)-(57) that we propose have to be used instead.

‡ The relation (40) allows one to change the discretisation of the prefactor J [x(t)] from the Itō one
(α = 0) to the α one, but is easily adapted to change from α to Stratonovich (α = 1/2); see Eq. (D.6).
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Figure 2. Schematic representation, for a non-linear (bijective) change of
variables x 7→ u(x), of the difference between the stochastic calculus performed in
the Langevin equation and in the Onsager–Machlup action. The α-discretised
Langevin equation (6) can be transformed exploiting the chain rule (7) into
a Langevin equation (59) for U(t) = u(x(t)). To this equation corresponds
a Onsager–Machlup action, equivalent to the infinitesimal propagator (63).
However, one cannot use such chain rule in the α-discretised Onsager–Machlup
action (42) to derive the correct action of the process U(t), as explained in
App. C. To go from one action to the other, one has to use, instead, the
generalised substitution rules (54)-(57) in discrete time after expanding the action
[or equivalently (74)-(76) inside the discretised action], or to rely on a modified
chain rule for the time-continuous process as discussed in subsec. 3.3.2. In the
text, for simplicity, the lower branch of this commutative diagram is performed
from right to left.

3.2. Non-linear transformation

A similar apparent contradiction occurs when one attempts to use the chain rule (7)
in the action, instead of restricting its use to the Langevin level. Such inconsistency
was observed for non-linear field transformations for the MSRJD action in App. E
of [7]§. In App. C of the present article, we translate this computation to the case
of the Onsager–Machlup action, and the result is the same: using the chain rule (7)
in the action brings an inconsistency when changing variables. Related issues have
been observed in the context of quantum field theory [15, 16, 17, 14, 18, 19]. In this
subsection, we examine the origin of this paradox. We show that it is again due to an
invalid use of the Itō substitution rule (9) in the action, and we provide the correct
treatment of non-linear transformations in the action, working with the infinitesimal
propagator. We also propose a modified chain rule that can be used in continuous
time inside the action.

3.2.1. Non-linear transformation in the Langevin equation

We start from the α-discretised Langevin equation (6) and consider an increasing C1

function u(x) which is a bijection and is used as a non-linear change of variables.
The chain rule (7) implies that the function U(t) = u(x(t)) satisfies an α-discretised
Langevin equation

dtU
α
= u′f + (1− 2α)Dg2u′′ + u′g η . (59)

§ Note that this Appendix is found only in the arXiv v1 preprint version.
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This writing is a shortcut for the Langevin equation with a force F and a noise
amplitude G

dtU(t)
α
=

≡F (U(t))︷ ︸︸ ︷
u′(xU (t)) f(xU (t)) + (1− 2α)Dg(xU (t))2u′′(xU (t))

+ u′(xU (t)) g(xU (t))︸ ︷︷ ︸
≡G(U(t))

η(t) (60)

xU (t) = u−1(U(t))
(
i.e. u(xU (t)) = U(t)

)
. (61)

Our aim is to compare different procedures represented on the commutative diagram
of Fig. 2. Concretely we take the following two paths.

(i) The down path (on the left) that starts from the α-discretised Langevin
equation (6) and arrives at the Onsager–Machlup action on x(t) given by
the expression in (42), which, together with its associated normalisation
prefactor (43), is equivalent to the infinitesimal propagator (41).

(ii) The right-down-left path. It starts from the Langevin equation (59), goes next
to its corresponding Onsager–Machlup representation and, finally, through the
application of rules that we still need to find, this path performs a non-linear
transformation on the Onsager–Machlup action on U(t) that should take it to the
one on x(t).

We first analyse these procedures at the infinitesimal propagator level.

3.2.2. Direct determination of the propagator

As in subsec. 3.1.2, we perform the comparison by keeping only the quadratic in ∆x
contribution to the Gaussian weight in the exponential, and by expanding the rest
in front of this weight. The propagator (41) associated to the Langevin equation (6)
reads

P(xdt|x0)
α
=

N
|g(x̄0)|

e−
1
2
dt
2D

(
∆x
dt

)2/
g(x̄0)2

×
{

1− dtαf ′ (x̄0) +
f (x̄0)− 2Dαg (x̄0) g′ (x̄0)

2Dg (x̄0) 2
∆x

}
. (62)

In this expansion, we have already used the standard substitution rule (9) to
reexpress ∆x2.

3.2.3. Indirect path: passing through the propagator for U(t)

Corresponding to the Langevin equation (60) for U(t), one can write from (41) the
propagator

PU (Udt|U0)
α
=

N
|G(Ū0)|

exp

{
− 1

2

dt

2D

[
Udt−U0

dt
− F (Ū0) + 2αDG(Ū0)G′(Ū0)

G(Ū0)

]2

− αdtF ′(Ū0)

}
. (63)
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Since the two Langevin equations (6) and (60) are equivalent, this propagator has to
be equivalent to (62). As remarked in the literature in the stochastic [31, 7] and the
quantum mechanical [15, 16, 17, 14, 18, 19] contexts, the application of the chain rule
does not yield back (62) or (41). The computation describing this inconsistency for
our Onsager–Machlup action of interest is recalled for completeness in App. C

The idea to examine the origin of this inconsistency, as done previously for the

change of discretisation, is to treat the “dangerous” term of the propagator
[
Udt−U0

dtG(Ū0)

]2
in a safe way, by expanding the propagator and putting all terms in prefactor, apart
from the quadratic part defining the Gaussian weight itself. To set up the expansion,
one uses that

Ū0 = (1− α)u(x0) + αu(xdt) , (64)

x0 = x̄0 − α∆x , (65)

xdt = x̄0 + (1− α)∆x , (66)

and one expands in powers of ∆x, keeping in mind that this quantity is O(dt1/2). The
change of variables in the (conditional) probability

PU (Udt|U0) u′(xdt) = P(xdt|x0) (67)

is also needed, where in u′(xdt) one uses (66). After a tedious computation (where the
substitution rule (53) for ∆x2 is employed though only in the prefactor), the result is
that the propagator P(xdt|x0) obtained from (67), with PU read from (63), is

P(xdt|x0)

N
|g(x̄0)|e

− 1
2
dt
2D

(
∆x
dt

)2/
g(x̄0)2

α
= 1 +

[
f(x̄0)

2Dg(x̄0)2
− αg′(x̄0)

g(x̄0)
− 3(−1 + 2α)u′′(x̄0)

2u′(x̄0)

]
∆x

+

[
3Dα(−2 + 3α)g(x̄0)g′(x̄0)u′′(x̄0)

u′(x̄0)
− (2αf ′(x̄0)u′(x̄0) + 3(−1 + 2α)f(x̄0)u′′(x̄0))

2u′(x̄0)
+

+
Dg(x̄0)2(3(1− 6α+ 6α2)u′′(x̄0)2 + 2(1− 3α+ 3α2)u′(x̄0)u(3)(x̄0))

2u′(x̄0)2

]
dt

+
(−1 + 2α)u′′(x̄0)

4dtDg(x̄0)2u′(x̄0)
∆x3

+

[
(−1 + 2α)f(x̄0)u′′(x̄0)

8dtD2g(x̄0)4u′(x̄0)
− α(−2 + 3α)g′(x̄0)u′′(x̄0)

4dtDg(x̄0)3u′(x̄0)

− 3(7− 32α+ 32α2)u′′(x̄0)2 + 4(1− 3α+ 3α2)u′(x̄0)u(3)(x̄0)

48dtDg(x̄0)2u′(x̄0)2

]
∆x4

+
(1− 2α)2u′′(x̄0)2

32dt2D2g(x̄0)4u′(x̄0)2
∆x6 . (68)

This form seems to be different from (62) because it still involves the function u(x)
that should not be present in the microscopic propagator for x (unless of course the
transformation is the identity u(x) = x in which case (68) is equal to (62)). However,
as checked with a direct computation, using the generalised substitution rules (55)-
(57) allows one to remove all dependencies of (68) in the function u(x). Strikingly,
the result is the correct propagator (62).
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This computation shows that one can follow without inconsistencies the different
branches of Fig. 2 for non-linear transformations, provided that the correct expansion
is done when performing the change of variables in the action (yielding (68)) and that
the generalised substitution rules (55)-(57) are applied to the prefactor of the Gaussian

weight |g(x̄t)|−1
exp
{
−∆x2/[4Ddt g(x̄t)]

2
}

, after the expansion of the infinitesimal
propagator.

3.3. Discussion

In this subsection, we gather the previous results on the change of discretisation and
the change of variables in a common description, aiming at understanding which are
the valid rules of stochastic calculus that apply in the action. We first describe the
origin of the observed issues in the infinitesimal propagator, setting down modified
substitution rules than can be applied “inside” the exponential of the propagator
(instead of “outside”, on the prefactor of the Gaussian weight as done so far). We
then formulate a modified chain rule in continuous time that one should apply in the
path integral formalism.

3.3.1. (Generalised) substitution rules and exponentials of infinitesimals

In subsec. 3.1 and 3.2, we noted that the expansion of the infinitesimal propagator
involves a separation between

(i) a purely Gaussian weight (which defines the probability distribution of the
increment ∆x = xdt − x0) and

(ii) a prefactor gathering all other terms, of the form 1 +O(dt1/2) +O(dt).

We now first show explicitly that the generalised substitution rules (54)-(57) cannot be
applied in the exponential and we elucidate which are the“modified substitution rules”
to use in the exponentiated expression. Recalling the notation, N = 1/(4πDdt)1/2 we
denote by

PG
t

α
=

N
|g(x̄t)|

e−
1
2
dt
2D

(
∆x
dt

)2/
g(x̄t)

2

(69)

the part of the infinitesimal propagator (taken in a given α-discretisation) which
corresponds to the Gaussian distribution of ∆x. Then, either for the change of
discretisation (50) or for the non-linear change of variables (68), the microscopic
propagator is decomposed as

P(xdt|x0)
α
= PG

0 ×exp

{
A0dt+A1∆x+A2∆x2 +A3

∆x3

dt
+A4

∆x4

dt

}
(70)

where A0, . . . , A4 are functions of x̄0 taken in α-discretisation. The number of terms
inside the exponential is finite, because higher-order powers of ∆x and dt do not
contribute at the orders O(dt1/2) and O(dt) we are interested in‖. Note that (50)
and (68) are written in an expanded form, which goes up to order ∆x6 as

exp

{
A0dt+A1∆x+A2∆x2 +A3

∆x3

dt
+A4

∆x4

dt

}
‖ Of course other computations than the change of discretisation and the change of variables that we
considered in subsec. 3.1 and 3.2 could generate larger powers of ∆x, such as ∆x5/dt2 or ∆x6/dt2,
which are respectively of order O(dt1/2) and O(dt). The modified rule that we present in the present
subsection are easily adapted to such terms.
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= 1 +A0dt+A1∆x+
(1

2
A2

1 +A2

)
∆x2

+A3
∆x3

dt
+
(
A1A3 +A4

)∆x4

dt
+
A2

3

2

∆x6

dt2
. (71)

In this form, one can then apply the generalised substitution rules (54)-(57) in a valid
manner and reexponentiate the result, taking into account the orders in dt correctly.
(This is similar to what we have done in (33) when treating the exponential of functions
of the noise ηt only that now we deal with a function of ∆x.) Denoting by σ = 2Dg2(x)
the noise amplitude, one finds that the form (70) of the propagator becomes

P(xdt|x0)
α
= PG

0 ×exp

{[
A1 + 3A3σ

]
∆x+

[
A0 +A2σ + 3(A3)2σ2 + 3A4σ

2
]
dt

}
(72)

with terms in the exponential that are order ∆x (or dt1/2) and dt only, as they should.

One observes by direct inspection that the generalised substitution rules (54)-
(57) cannot be used directly inside the exponential of (70) in order to get the correct

result (72). Indeed, the term A3
∆x3

dt in (70) generates a quadratic contribution∝ (A3)2

in (72). The valid “modified substitution rule” to use in the exponential (70) are thus

A2(x)∆x2 7→ A2(x) 2Dg(x)2 dt (74)

A3(x)∆x3 dt−1 7→ 3A3(x) 2Dg(x)2∆x+ 3
[
A3(x) 2Dg(x)2∆x

]2
dt (75)

A4(x)∆x4 dt−1 7→ 3A4(x)
(
2Dg(x)2

)2
dt (76)


valid
only in
the exp.

One observes that while the first and third line coincide with the corresponding ones
in (54) and (56), the second line is different: in (55) ∆x3dt−1 is substituted by an
expression which is independent of its possible prefactor, while in the exponential (70)
we need to use (75) that effectively replaces ∆x3dt−1 by an expression which explicitly
depends on its prefactor A3 (in other words, the second term depends on [A3(x)]2).

In the formulation leading from (70) to (72) it is rather evident that the
generalised substitution rules (54)-(57) cannot be applied inside the exponential:

indeed one can see eA3∆x3/dt as equivalent to a moment-generating function of
parameter A3, and the exponent in (72) as the corresponding cumulant-generating
function, cut after O(dt); thus, forgetting the quadratic term ∝ (A3)2 in (75), which is
of order dt, amounts to forgetting the term of degree 2 in the expansion of a cumulant-
generating function¶.

We note that Gervais and Jevicki [15] have also determined in a quantum-field
theory context that the correct procedure to change variables (in their case, to perform
a canonical transformation) requires an expansion of the exponent up to terms of order
∆x4dt−1, akin to (70). However, to our understanding, their treatment of these terms
is unrelated to ours and remains perturbative in D, in contrast to our treatment which
is non-perturbative.

3.3.2. Modified chain rule

The chain rule (7) allows one to deduce an α-discretised Langevin equation on a
variable U(t) = u(x(t)) from the corresponding Langevin equation on the variable

¶ For ∆x2 and ∆x4, the higher-order term of the cumulant expansion do not contribute because
they are o(dt). However, if a term in A5∆x5dt−2 had been present in (70), its modified substitution
rule in the exponential would present a quadratic contribution ∝ (A5)2 as in (75) for A3∆x3dt−1.
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x(t) after a non-linear transformation, as discussed in Sec. 3.2. This same chain rule
does not directly allow one to perform such non-linear change of variables at the level
of the action (see App. C). To understand this issue on a general footing, let us start
from a Langevin equation of the form (60)

dtU(t)
α
= F (U(t)) +G(U(t))η(t) (76)

The corresponding Onsager–Machlup weight reads∏
t

N
|G(Ū)|

× exp

{
−
∫ tf

0

dt

[
1

4D

(
dtU − F (Ū) + 2αDG(Ū)G′(Ū)

G(Ū)

)2

+ αdtF ′(Ū)

]}
(77)

with each Ū = U(t) taken in α-discretisation. The naive approach consists in
substituting U(t) by u(x(t)) and then using the chain rule to determine the Onsager–
Machlup weight for the trajectory x(t). In the next paragraphs, in order to
understand why this procedure fails, we come back to the microscopic propagator (63)
corresponding to (77), in which we expand the square and we study separately the
terms affine in dtU and the term quadratic in dtU . As we now show, the result is
that the standard chain rule allows one to transform the terms affine in dtU , while
to correctly transform the quadratic term ∝ (dtU)2, one has to use a “modified chain
rule”.

3.3.2.a Terms affine in dtU . For the infinitesimal propagator, these terms take the
form

B1 = dtB0(Ū) + dtB1(Ū) dtU (78)

where the first and second terms are of orders O(dt) and O(dt1/2), respectively. In
order to reexpress eB1 in terms of the original variable x(t) one can follow either of
the two following approaches.

(i) In discrete time, one takes the same path as in the previous subsection. Firstly,
one discretises time explicitly; secondly, one expands Udt−U0 = U(xdt)−U(x0) in
powers of ∆x = xdt − x0 around x̄0 using (65)-(66). With the usual substitution
rule (9) ∆x2 = 2Dg(x)2 dt, after reexponentiation one obtains that

eB1
α
= exp

{
dtB0

(
u(x(t)

)
+ dtB1

(
u(x(t)

)[
u′(x(t)) dtx(t) + (1− 2α)Dg

(
x(t)

)2
u′′
(
x(t)

)]}
(79)

in the dt→ 0 limit. In the light of subsec. 3.1.1, the computation involves no term
in ∆x3dt−1 (nor higher order in powers of ∆xndtm), implying that the standard
substitution rules could have also been applied inside the exponential.

(ii) In continuous time, one can use the chain rule (7) inside the exponential, for
U(t) = u(x(t)) to get the result (79). It is valid here as shown by the discrete-
time computation described in the previous point.

3.3.2.b Term proportional to (dtU)2. This term takes the form

B2 = −1

2

dt

2D
B2(Ū)

(
dtU

)2
with B2 =

1

G2
. (80)

It is of order dt0 and if one naively uses the chain rule to compute dtU = dt[u(x(t))],
one misses a number of terms; such computation would yield

eB2
wrong!

= exp

{
− dt

4D
B2

(
u(x(t)

)[
u′(x(t))dtx(t) + (1− 2α)Dg

(
x(t)

)2
u′′
(
x(t)

)]2}
(81)
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where g(x)2 = 1/B2(u(x)). Instead, one should discretise in time, using

B2 = − 1

4D
dt−1B2(Ū0)

(
Udt − U0)2 as dt→ 0 (82)

where U0 = u(x0), Udt = u(xdt) and Ū0 is defined in (64). We also define the function
b2(x) = B2(u(x)) = 1/g(x)2 for lighter notations.

Expansion of B2 – Using the relations (64)-(66), one then expands (82) in powers
of ∆x up to order dt to find

B2 = − 1

4Dg(x̄0)2

∆x2

dt
+

(−1 + 2α)u′′(x̄0)

4Dg(x̄0)2u′(x̄0)

∆x3

dt

+

[
− (−1 + α)αg′(x̄0)u′′(x̄0)

4Dg(x̄0)3u′(x̄0)
− (1 + 8(−1 + α)α)u′′(x̄0)2

16Dg(x̄0)2u′(x̄0)2

+
(−1− 3(−1 + α)α)u(3)(x̄0)

12Dg(x̄0)2u′(x̄0)

]
∆x4

dt
, (83)

which is not obviously related to (81). We note that this expression contains a crucial
term proportional to ∆x3dt−1 which, as we have discussed in subsec. 3.3.1, has to be
treated with great care. The modified substitution rule (75) has to be used here [and
not the rule (55)], in order to handle correctly ∆x3dt−1 inside the exponential. We
also remark that the term in ∆x3dt−1 is non-zero for an additive noise (i.e. when g(x)
is constant), indicating that non-linear changes of variables also have to be handled
with care in this case.

Expansion of eB2 – The correct procedure to follow in order to first use the
(simple) substitution rules (54)-(57) for ∆xn is to first expand the terms of (83) which
are not in ∆x2dt−1, and to use then the substitution rules (54)-(57). Alternatively, one
can use the modified ones (74)-(76) which are valid inside an exponential. Recalling
the notation g2 = 1/b2, and writing

e(...)∆x2

= exp
[
− 1

2

b2(x̄0) dt

2D

(∆x

dt

)2(
u′(x̄0)

)2]
(84)

one obtains

eB2

e(...)∆x2 = exp

{
3

2
(−1 + 2α)u′(x̄0)u′′(x̄0)∆x

+ dt

[
− 3D(1− 2α)2u′′(x̄0)2

4b2(x̄0)
+

3D(1− 2α)2u′(x̄0)2u′′(x̄0)2

2b2(x̄0)
(85)

+ u′(x̄0)

(
3D(−1 + α)αb′2(x̄0)u′′(x̄0)

2b2(x̄0)2

− D(1 + 3(−1 + α)α)u(3)(x̄0)

b2(x̄0)

)]}
.

This result is completely different from the naive result (81), obtained from the use of
the chain rule (7) in the exponential, that can be recast as

eB2

e(...)∆x2

wrong!
= exp

{
1

2
(−1 + 2α)u′(x̄0)u′′(x̄0)∆x− D(1− 2α)2u′′(x̄0)2

4b2(x̄0)
dt

}
. (86)

(They coincide for linear transformations such that u′′ = 0.)
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The result (85) allows one to identify the correct (but complicated) form of the
chain rule to be used in the exponential for terms of the form (80). Instead of the
chain rule (7) that would lead to (86), one has that

−1

2

dt

2D
B2(U)

(
dtU

)2
in exp.7→ − 1

2

dt

2D
b2(x) (dtx)2(u′(x))2

+
3

2
(−1 + 2α)u′(x)u′′(x)dtdtx (87)

+ dt

[
− 3D(1− 2α)2u′′(x)2

4b2(x)
+

3D(1− 2α)2u′(x)2u′′(x)2

2b2(x)

+ u′(x)

(
3D(−1 + α)αb′2(x)u′′(x)

2b2(x)2
− D(1 + 3(−1 + α)α)u(3)(x)

b2(x)

)]
.

(We took the dt→ 0 limit, with the r.h.s. being α-discretised.) In order to apprehend
better the difference with the naive application of the chain rule (7), one can rewrite
this result as

−1

2

dt

2D
B2(U)

(
dtU

)2
in exp.7→ − 1

2

dt

2D
b2(x)

[ chain rule (7)︷ ︸︸ ︷
u′(x)dtx+ (1− 2α)Dg(x)2u′′(x)

]2
+ (−1 + 2α)u′(x)u′′(x) dtdtx (88)

+ dt

[
3D(−1 + α)αu′(x)b′2(x)u′′(x)

2b2(x)2

+
D((1− 2α)2(−1 + 3u′(x)2)u′′(x)2 − 2(1 + 3(−1 + α)α)u′(x)u(3)(x))

2b2(x)

]
,

the three last lines being the terms one misses if one merely applies (7).

Special cases – One notes that this modified chain rule remains non-trivial in the
three following simplified cases:

• Stratonovich discretisation (α = 1/2):

−1

2

dt

2D
B2(U)

(
dtU

)2
in exp.7→ − 1

2

dt

2D
b2(x)

[
u′(x)dtx

]2 −Ddt

[
3u′(x)b′2(x)u′′(x)

8b2(x)2
+
u′(x)u(3)(x)

4b2(x)

]
. (89)

• Additive noise (B2(U) = B2 = b2(x) = b2 = 1/g2(x) = 1/g2):

−1

2

dt

2D
b2
(
dtU

)2
in exp.7→ − 1

2

dt

2D
b2

[
u′(x)dtx+ (1− 2α)Dg2u′′(x)

]2
(90)

+ (−1 + 2α)u′(x)u′′(x) dtdtx

+
Ddt

2b2

[
(1− 2α)2(−1 + 3u′(x)2)u′′(x)2 − 2(1 + 3(−1 + α)α)u′(x)u(3)(x)

]
.
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• Additive noise and Stratonovich discretisation:

−1

2

dt

2D
b2
(
dtU

)2 in exp.7→ − 1

2

dt

2D
b2
[
u′(x)dtx

]2 −Ddt
u′(x)u(3)(x)

4b2
. (91)

This last case is peculiarly striking, because one could have expected the standard
chain rule of differentiable calculus to be valid in the dynamical action of an
additive-noise Stratonovich-discretised Langevin equation (as it is valid at the
Langevin equation level). Surprisingly, this is not the case as soon as u(3)(x) 6= 0.

4. Outlook

The trajectory probability of Langevin processes is well described by a path-
integral weight, through either the MSRJD [24, 25] or the Onsager–Machlup [20, 21]
formulations. In this article we studied the behaviour of the Langevin equation and its
corresponding Onsager–Machlup action under two generic transformations: a change
of α-discretisation and a non-linear change of variables. The correct rules to perform
these transformations at the level of the Langevin equations are well-known, they have
been recalled in this article, and we verified, once again, that they are reversible.

Consistency requires that the trajectory probability constructed from the
Langevin equation of a variable u(t) = u(x(t)) in a discretisation scheme ᾱ be
the same as the trajectory probability of the Langevin process of the variable x(t)
in another discretisation scheme α, after applying to the latter the corresponding
discretisation and non-linear transformations. Figures 1 and 2 provide sketches
of this statement for the discretisation scheme transformation and the non-linear
transformation, respectively. However, it was observed in the literature that their
use in the action could yield inconsistencies, both in the stochastic field-theory
context [31, 7] and in the quantum-mechanical one [15, 16, 17, 14, 18, 19]. The aim
of the present article was to identify the generalisation of the Itō rule and the correct
rules of calculus that ensure the reversibility of the construction.

By carefully analysing the discrete-time behaviour of the propagator correspond-
ing to the infinitesimal evolution during a time step dt → 0, we identified the source
of inconsistencies and we provided procedures that allow one to perform the transfor-
mations in the action in a correct manner.

To summarise them, we now list the possible sources of issues. At the infinitesimal
level, we denote the trajectory increment by ∆x = xt+dt−xt which is typically of order
dt1/2. The main source of problems is that terms of the form ∆x3dt−1, ∆x4dt−1

and ∆x6dt−2 are generated in the infinitesimal propagator upon the mentioned
transformations, while they are not generated at the Langevin level. First, they have
to be correctly identified, and second, one has to understand their behaviour in the
dt→ 0 limit. We have provided generalised substitution rules (54)-(57) that allow one
to do so (they generalise the usual Itō prescription dB2

t = dt for the Brownian motion).
An important point is that these relatively simple rules have to be used in the prefactor
of the Gaussian weight of the infinitesimal propagator (after a dt→ 0 expansion), and
not inside the exponential of this propagator. We have provided a simple explanation
of this condition in subsec. 3.3.1. If one insisted upon applying the transformations in
the exponential, the modified substitution rules become significantly more complicated
and are given in Eqs. (74)-(76).
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In the continuous-time path integral, an important consequence of the previous
observations is that one cannot use the stochastic chain rule (7) to perform changes of
variables. One has, instead, to rely on a time-discrete expansion or on a modified
chain rule, described in subsec. 3.3.2. We emphasise that the application of the
invalid chain rule (7) in the action yields wrong results even for an additive-noise
Stratonovich-discretised Langevin equation. The reason for this is that under a non-
linear transformation of variables the equation becomes one with multiplicative noise.

For future perspectives, we can list a number of interesting questions to address:

(i) It would be helpful to identify similar rules that would solve inconsistencies
observed when manipulating the MSRJD action [7], because many field theories
(including quantum ones) are better written in this formalism or in similar ones
that also involve a response field.

(ii) The generalisation to more than one degree of freedom could be tricky [6] but
should be very interesting and useful.

(iii) Langevin equations with inertia (a second time derivative) and/or coloured noise
approach in the overdamped and/or white noise limit the equation that we studied
here in the Stratonovich scheme (see, e.g. [2, 32]). It would be interesting to
understand how the issues discussed in the present article arise and are solved in
these regularised and better behaved cases since, as we showed, even the action
in the Stratonovich discretisation scheme has to be treated attentively.

(iv) The results we have presented also encourage one to revisit the validity of some
non-linear transformation used in quantum field theory [15, 16, 17, 14, 18, 19],
where the Lagrangians defining the action take forms that are similar to that of
statistical mechanics.
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Appendices

A. Determination of the infinitesimal propagator: other approaches

In this appendix, in order to shed a different light on the use of the Itō prescription
in the determination of the infinitesimal propagator, we review other less pedestrian
approaches than the one presented in Sec. 2.2.3.

A.1. À la Lau–Lubensky

To compute δ(xdt−X1(x0, η0)) in (22), it proves simpler [6] to start from the following
identity, where the argument of the first delta is the equation of motion at t = 0:

δ

( ≡F (η0,x0,xdt)︷ ︸︸ ︷
η0 −

xdt−x0

dt − f(x̄0)

g(x̄0)

)
(21)
=

1

|∂xdtF (η0, x0, xdt)|
δ
(
xdt −X1(x0, η0)

)
, (A.1)
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where one recognises F (η0, x0, xdt) = η0 −H0(x0, xdt) from Eq. (35). One thus has

|∂xdtH0(x0, xdt)| δ
(
η0 −H0(x0, xdt)

) (35)
= δ

(
xdt −X1(x0, η0)

)
, (A.2)

so that finally

P(xdt|x0)
(22)
=

∫
dη0 |∂xdtH0(x0, xdt)| δ

(
η0 −H0(x0, xdt)

)
Pnoise(η0) . (A.3)

By direct computation, one obtains

∂xdtH0(x0, xdt) =
1

dt

1

g(x̄0)

[
1− αdt f ′(x̄0)−

(
xdt − x0 − f(x̄0) dt

)
α g
′(x̄0)
g(x̄0)

]
(A.4)

that, using the Dirac delta in (A.3) to re-express xdt − x0 as a function of η0, implies

|∂xdtH0(x0, xdt)| δ
(
η0 −H0(x0, xdt)

)
(36)
=

1

dt

1

|g(x̄0)|

[
1− αdt f ′(x̄0)− η0g

′(x̄0)αdt
]

(A.5)

(33)
=

1

dt

1

|g(x̄0)|
e−αdt f

′(x̄0)−η0g
′(x̄0)αdt−D[g′(x̄0)]2α2dt . (A.6)

Inserting this expression in Eq. (A.3), one finds exactly the same propagator given in
Eq. (41). This provides a justification for the use of the Itō rule (12) in Eqs. (29), (34)
and (40), used in the derivation of the propagator presented in Sec. 2.2.3.

Last, we mention that Lau and Lubensky [6] actually follow a slightly different
route, which involves a Fourier transformation, but in the end their treatment is
equivalent to the one we presented in this paragraph.

A.2. À la Itami–Sasa

In order to calculate the Jacobian 1
|∂η0

X1(x0,H0)| arising in (24), one can proceed as

follows [10]: we write the first time step 0 y dt of the equation of motion as

X1(x0, η0) = x0 + f [

x̄0︷ ︸︸ ︷
αX1(x0, η0) + (1− α)x0]dt

+ g[αX1(x0, η0) + (1− α)x0]η0dt . (A.7)

Differentiating with respect to the noise, one obtains

∂η0
X1 = α∂η0

X1f
′(x̄0)dt+ α∂η0

X1g
′(x̄0)η0dt+ g(x̄0)dt (A.8)

that implies

1

|∂η0
X1|

=
1

|g(x̄0)|dt
(1− αf ′(x̄0)dt− αg′(x̄0)η0dt) . (A.9)

Note that so far, no expansion nor approximation has been done: this result is exact.
In order to exponentiate the numerator of this expression, one uses (33):

1

|∂η0X1|
=

1

|g(x̄0)|dt
exp[−αf ′(x̄0)dt− αg′(x̄0)η0dt−Dα2g′(x̄0)2dt] .

This is the same expression as the one in Eq. (A.6) obtained following the Lau–
Lubensky approach, and the one that we obtained in Sec. 2.2.3.
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A.3. A continuous-time derivation of the Jacobian

In the quantum-mechanical context a continuous-time formalism is used and the
subtleties linked to the discretisation scheme are usually encoded in the choice of
the value of the Heaviside theta function at zero, Θ(0) = α [29]. In this field,
the Jacobian |∂η0

X1(x0, H0(x0, xdt))| is computed with the help of the identity
det(1 +Cη0) = exp Tr ln(1 +Cη0) where Cη0 is the part of the Jacobian that depends
on the noise. The expression ln(1 + Cη0) is further expanded in powers of Cη0 to
quadratic order (so as to keep terms that are quadratic in the noise and contribute
to the trace involving a time integral when the noise is delta correlated) [33]. The
explicit calculation of the Jacobian along these lines was explained in App. D in [8]
and constitutes another way of arriving at the expression in Eq. (A.6). It is less useful
for our purposes in this article since it works in continuous time and does not allow
to make immediate contact with the (generalised) substitution rules in discrete time.

B. Justifying the generalised substitution rules

B.1. The usual ∆x2 = 2Dg(x)2 dt substitution

Stochastic calculus tells us that, when expanding infinitesimals, for a standard
Brownian motion Bt, one has:

dB2
t = dt . (B.1)

For our time-discrete noise, η2
t = 2D/dt. For a more complex variable such as x, the

solution of the Langevin equation (6), the substitution rule (9) implies

∆x2 = 2Dg(x)2dt (+O(dt3/2) as dt→ 0) (B.2)

where on the r.h.s., the argument x of g(x) can be taken at any discretisation point,
at minimal order in dt. As discussed in Sec. 2.2.1, there is no direct argument on
the distribution of ∆x which allows one to use (B.2) point-wise. The meaning of
this relation is to be found in an integral way. Following Øksendal [4], one uses the
following ingredients:

• Two functions A1 and A2 of the process x are equivalent if the L2 norm of the
temporal integral of their difference is zero:

A1[dtx(t), x(t)] = A2[dtx(t), x(t)]

⇔
〈(∫ tf

0

dt
{
A1[dtx(t), x(t)]−A2[dtx(t), x(t)]

})2
〉

= 0 (B.3)

⇔
〈(∑

t

dt
{
A1

[
∆x
dt , xt

]
−A2

[
∆x
dt , xt

]})2
〉
dt→0−→ 0 . (B.4)

• Two Brownian increments Bt+dt − Bt and Bt′+dt − Bt′ at different times t 6= t′

are independent:〈
(Bt+dt −Bt)(Bt′+dt −Bt′)

〉
=
〈
(Bt+dt −Bt)

〉〈
(Bt′+dt −Bt′)

〉
if t 6= t′ . (B.5)

• The following averages are computed (e.g. à la Wick) using the Gaussian nature
of Bt:〈
(Bt+dt −Bt)2

〉
= dt , (B.6)〈

(Bt+dt −Bt)4
〉

= 3 dt2 . (B.7)
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Let us thus show that in the sense of (B.3)-(B.4), one has ∆x2 = 2Dg(x)2 dt. For
this, one computes〈(∑

t

{
∆x2 − 2Dg(xt)

2 dt
})2

〉
(6)
=

〈(∑
t

{(
dtf(xt) + g(xt)ηtdt

)2 − 2Dg(xt)
2 dt
})2

〉
=

〈(∑
t

{(
g(xt)ηtdt

)2 − 2Dg(xt)
2 dt
})2

〉
+O(dt) (B.8)

=

〈(∑
t

[
(Bt+dt −Bt

)2 − dt]2Dg(xt)
2
)2
〉

+O(dt) (B.9)

(B.5)
=
∑
t

〈([
(Bt+dt −Bt

)2 − dt]2Dg(xt)
2
)2
〉

+O(dt)

+
∑
t6=t′

〈[
(Bt+dt −Bt

)2 − dt]2Dg(xt)
2

〉
(B.10)

×
〈[

(Bt′+dt −Bt′
)2 − dt]2Dg(xt′)

2

〉
(B.6)
=
∑
t

〈[
(Bt+dt −Bt

)2 − dt]2〉︸ ︷︷ ︸
(B.6)-(B.7)

= 3dt2−2dt2+dt2

〈(
2Dg(xt)

2
)2〉

+O(dt) (B.11)

= dt
∑
t

2dt
〈(

2Dg(xt)
2
)2〉

+O(dt) (B.12)

= O(dt) (B.13)

which goes to zero as dt→ 0, hence finishing the proof of (B.2).

Note that when going from (B.10) to (B.11), one cancels the sum over different
time indices t 6= t′ using that xt is independent of Bt+dt −Bt:〈[

(Bt+dt −Bt
)2 − dt]2Dg(xt)

2

〉
=

〈
(Bt+dt −Bt

)2 − dt〉〈2Dg(xt)
2

〉
(B.6)
= 0 . (B.14)

In particular, the factor 2 in ∆x2 = 2Dg(x)2 dt is essential, because it allows one to
factorise by 2Dg(x)2 between (B.8) and (B.9), and to obtain in fine the cancellation
in (B.14) which makes that (B.13) is of order dt.

B.2. The generalised substitution rule ∆x4dt−1 = 3
(
2Dg(x)2

)2
dt

One follows the same path, using
〈
(Bt+dt −Bt)8

〉
= 105 dt4 , one computes〈(∑

t

{
∆x4

dt
− 3

(
2Dg(xt)

2
)2

dt

})2
〉

(6)
=

〈(∑
t

{(dtf(xt) + g(xt)ηtdt
)4

dt
− 3

(
2Dg(xt)

2
)2

dt

})2〉
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=

〈(∑
t

{(g(xt)ηtdt
)4

dt
− 3

(
2Dg(xt)

2
)2

dt

})2〉
+O(dt) (B.15)

=

〈(∑
t

[
(Bt+dt −Bt

)4

− 3dt2
](

2Dg(xt)
2
)2

dt−1

)2
〉

+O(dt) (B.16)

= . . . as in (B.10), using (B.5) and the average (B.7)

=
∑
t

〈[
(Bt+dt −Bt

)4

− 3dt2
]2〉

︸ ︷︷ ︸
=105 dt4−2×3×3 dt4+9 dt4

〈(
2Dg(xt)

2
)4

dt−2

〉
+O(dt) (B.17)

= dt
∑
t

96 dt

〈(
2Dg(xt)

2
)4
〉

+O(dt)

= O(dt) (B.18)

which goes to zero as dt→ 0, hence finishing the proof of (56). The derivations of (55)
and (57) follow in the same way.

Note that in passing from (B.16) to (B.17) we have used (i) the same independence
as in (B.14) and (ii) the fact that in the double sum term∑

t 6=t′

〈[
(Bt+dt −Bt

)4 − 3dt2
](

2Dg(xt)
2
)2
dt−1

〉

×
〈[

(Bt′+dt −Bt′
)4 − 3dt2

](
2Dg(xt′)

2
)2
dt−1

〉
, (B.19)

which is similar to (B.10), one again has the important cancellation∑
t

〈[
(Bt+dt −Bt

)4 − 3dt2
](

2Dg(xt)
2
)2
dt−1

〉
=

〈∑
t

[
(Bt+dt −Bt

)4 − 3dt2
]〉〈(

2Dg(xt)
2
)2
dt−1

〉
(B.20)

(B.7)
= 0 . (B.21)

In particular, the factor 3 in the substitution rule ∆x4dt−1 = 3
(
2Dg(x)2

)2
dt one

wants to show is essential, because it allows one to factorise by 2Dg(x)2 between (B.15)
and (B.16), and to obtain in fine the cancellation in (B.21) which makes that (B.18)

is of order dt. The factor 3 in ∆x4dt−1 = 3
(
2Dg(x)2

)2
dt is thus exactly the same as

the one, obtained e.g. à la Wick in (B.7).

C. An inconsistency arising when applying the standard chain rule inside
the dynamical action

We detail in this appendix how an invalid use of the standard stochastic chain
rule (7) can lead to an inconsistency when changing variables in the dynamical action
corresponding to the Langevin equation (6). This appendix is the translation to the
Onsager–Machlup action of the App. E of [7] (version v1 of the arXiv preprint)
where the same inconsistency was observed in the Martin–Siggia–Rose–Janssen–
De Dominicis formulation of the dynamical action.
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We compare the direct path (downwards, on the left) of the commutative diagram
represented on Fig. 2, and the indirect path where one first (top arrow) changes
variables from x(t) to U(t) = u(x(t)) in the Langevin equation, then (right arrow
downwards) constructs the action, and finally (down arrow leftwards) tries to come
back to the Onsager–Machlup action by applying the standard stochastic chain
rule (7). On the way, one should not forget to handle correctly the change of variables
in the normalisation prefactor of the action.

The direct path leads to the expression (42) of the dynamical action, together with
its associated normalisation prefactor (43). The indirect path starts by obtaining the
Langevin equation (60) on U(t) = u(x(t)) and continues by writing the corresponding
the Onsager–Machlup weight (77). The last step consists in attempting to come back
to the Onsager–Machlup weight for the process x(t) by a change of variables in the
action and in the Jacobian.

C.1. The normalisation prefactor

One can focus on the first time step 0 y dt without loss of generality. The change of
variables in the normalisation prefactor involves two stages: (i) taking into account
the factor u′(xdt) of (67) that comes from the change of measure and (ii) actually
passing from the variable Ū0 [given by Eq. (64)] to the variable x̄0 in the prefactor
N/|G(Ū0)| of the Onsager–Machlup weight (77). Denoting by JU (x̄0) the elementary
normalisation prefactor coming from this procedure, one has

JU (x̄0) =
N

|G(Ū0)|
u′(xdt) (C.1)

=
N
|g(x̄0)|

(
u′(xdt)

|g(x̄0)|
|G(Ū0)|

)
, (C.2)

where on the second line we have put in prefactor the expected contribution N/|g(x̄0)|
of the first time step in the total path-integral normalisation prefactor (43) on
x(t). The other factor u′(xdt) |g(x̄0)|/|G(Ū0)| gives a contribution that has to be
incorporated into the exponential part of the infinitesimal propagator (i.e. into the
action of the path integral in the dt → 0 limit). To do so, one expresses Ū0 and xdt
in terms of x̄0 and ∆x by means of Eqs. (64)-(66) and one expands the result up to
order dt, keeping in mind that ∆x = O(dt1/2). One obtains from (C.2) that

JU (x̄0) =
N
|g(x̄0)|

[
1− (−1 + α)u′′(x̄0)

u′(x̄0)
∆x+ (C.3)

(−1 + α)

(
αg′(x̄0)u′′(x̄0)

2g(x̄0)u′(x̄0)
+
αu′′(x̄0)2

2u′(x̄0)2
+

(−1 + α)u(3)(x̄0)

2u′(x̄0)

)
∆x2

]
.

Then using the substitution rule (9) for ∆x2 and reexponentiating the result
through (33) one gets

JU (x̄0) =
N
|g(x̄0)| exp

{
− (−1 + α)u′′(x̄0)

u′(x̄0)
∆x

+

[
D(−1 + α)g(x̄0)2u′′(x̄0)2

u′(x̄0)2
+ (C.4)

D(−1 + α)g(x̄0)[αg′(x̄0)u′′(x̄0) + (−1 + α)g(x̄0)u(3)(x̄0)]

u′(x̄0)

]
dt

}
.
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Taking finally the continuous-time limit, we see that the change of variables from U(t)
to x(t) brings a contribution ∆SU [x(t)] to the action equal to

∆SU [x(t)]
α
=

∫ tf

0

dt

{
(−1 + α)u′′(x)

u′(x)
dtx−

D(−1 + α)g(x)2u′′(x)2

u′(x)2

−
D(−1 + α)g(x)

[
αg′(x)u′′(x) + (−1 + α)g(x)u(3)(x)

]
u′(x)

}
. (C.5)

We note that it vanishes for a linear transformation such that u′′ = 0, or for α = 1
and any function u. This last case is understood from (C.2), where for α = 1 one has
x̄0 = xdt and Ū0 = Udt = u(xdt) which implies, using (60) for the expression of G,
that G(Ū0) = u′(xdt)g

(
u(xdt)

)
from which the factor in parenthesis in (C.2) is equal

to 1.

C.2. The change of variables in the action

We can now combine the contribution ∆SU [x(t)] obtained in the previous subsection
and the change of variables from U(t) = u(x(t)) to x(t) in the action S[U(t)] of the
process U(t). The expression of S[U(t)] is read from (77). The correct procedure to
follow is discussed in subsec. 3.2 following a discrete-time approach. One can also apply
the continuous-time modified chain-rule discussed in subsec. 3.3.2. Both approaches
yield back the correct action (42) for the process x(t).

If one improperly applies the chain rule (7) to determine dtU = dt
[
u(x(t))

]
in (77),

one finds a result for the action SU
[
x(t)], in which there are supplementary terms

compared do the correct result S[x(t)] given by (42); that is

SU
[
x(t)]

α
= ∆SU [x(t)] + S

[
U(t)

]∣∣∣
U(t)=u(x(t))

(C.6)

α
= S[x(t)] +

∫ tf

0

dt

{
(−1 + 2α)u′′(x)

u′(x)
dtx−

3D(−1 + α)αg(x)g′(x)u′′(x)

u′(x)

+
D(1 + (−1 + α)α)g(x)2u′′(x)2

u′(x)2

+
D(−1− 3(−1 + α)α)g(x)2u(3)(x)

u′(x)

}
. (C.7)

The terms in the time integral should be absent if the procedure had been correct.
(At the very least, the result should not depend on the function u.) These terms are
equivalent to the terms in Eq. (E.18) of the App. E in [7]. Their presence is due to
the fact that, when using the chain rule (7) as we did, one discards terms proportional
to ∆x3dt−1, ∆x4dt−1 and ∆x6dt−2 that are present in Eq. (50) when following the
correct procedure. The supplementary terms vanish when a linear change of variables
is applied, i.e. when u′′ = 0.

Special cases – One notes that these supplementary terms still remain present in
the three following simplified cases:

(i) Stratonovich discretisation (α = 1/2):

SU
[
x(t)]

S
= S[x(t)] +

∫ tf

0

dt

{
3Dg(x)g′(x)u′′(x)

4u′(x)
+

3Dg(x)2u′′(x)2

4u′(x)2

− Dg(x)2u(3)(x)

4u′(x)

}
(C.8)
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(ii) Additive noise (g(x) = g is a constant):

SU
[
x(t)]

α
= S[x(t)] +

∫ tf

0

dt

{
(−1 + 2α)u′′(x)

u′(x)
dtx+

Dg2(1 + (−1 + α)α)u′′(x)2

u′(x)2

+
Dg2(−1− 3(−1 + α)α)u(3)(x)

u′(x)

}
(C.9)

(iii) Additive noise and Stratonovich discretisation:

SU
[
x(t)]

S
= S[x(t)] +

∫ tf

0

dt Dg2

{
3u′′(x)2

4u′(x)2
− u(3)(x)

4u′(x)

}
(C.10)

This last case is surprising because, as often described, the additive-noise
Stratonovich-discretised Langevin equation is the better behaved in terms of the
rules of differential calculus. But in spite of this fact, as we have shown, the
standard chain rule of differential calculus cannot be used inside the corresponding
Onsager–Machlup action (although this rule is valid at the Langevin equation
level).

D. An inconsistency arising when applying the Langevin rule for changing
discretisation inside the dynamical action

In this appendix, we study how the α-discretised Langevin equation (6) can be
described by a path-integral probability written in a different ᾱ-discretisation. The
direct procedure to follow is to change the discretization in the Langevin equation
first [this yields (16) with a modified force fα→ᾱ(x) given by (17)], and to write the
corresponding trajectory weight. One reads its action from (42) as

Sαᾱ[x(t)]
ᾱ
=

∫ tf

0

dt

{
1

2

1

2D

[
dtx− fα→ᾱ(x) + 2ᾱD g(x)g′(x)

g(x)

]2

+ ᾱf ′α→ᾱ(x)

}
, (D.1)

where the arguments of the functions f and g are taken in ᾱ-discretisation. The
associated normalisation prefactor reads, from (43)

J [x(t)]
ᾱ
=
∏
t

{√
dt−1

4πD

1

|g(x̄t)|

}
. (D.2)

The correct way of performing the change in discretisation in the original α-
discretized action (42) [together with the prefactor (43)] was described in subsec. 3.1.2,
going through the infinitesimal propagator in discrete time and using the generalised
substitution rules (54)-(57). The computation is done in the special case ᾱ = 1/2 but
also works for any value of ᾱ.

The naive procedure discussed in subsec. 3.1.2.d consists in applying the two
following steps.

• For the action: start from the (α-discretized) action (42) and assume that one
can replace the force f by the effective force fα→ᾱ appearing in the Langevin
equation (16). This would yield an exponential contribution to the action of the
form ∫ tf

0

dt

{
1

2

1

2D

[
dtx− fα→ᾱ(x) + 2αD g(x)g′(x)

g(x)

]2

+ ᾱf ′α→ᾱ(x)

}
. (D.3)



CONTENTS 34

• For the normalisation prefactor: change the discretisation from α to ᾱ by going
to discrete time (and considering the first time step) and writing, with explicit
discretisation points, that

1∣∣g(x̄
(α)
0 )

∣∣ =
1∣∣g(x̄
(ᾱ)
0 )

∣∣
∣∣g(x̄

(ᾱ)
0 )

∣∣∣∣g(x̄
(α)
0 )

∣∣ . (D.4)

Then, using x̄
(α)
0 = x̄

(ᾱ)
0 + (α− ᾱ)∆x to expand the second fraction in powers of

∆x = xdt− x0 up to order ∆x2, using the substitution rule and reexponentiating
the result gives

1∣∣g(x̄
(α)
0 )

∣∣ =
1∣∣g(x̄
(ᾱ)
0 )

∣∣e
(−α+ᾱ)g′(x̄(ᾱ)

0 )

g(x̄
(ᾱ)
0 )

∆x+D(α−ᾱ)2
[
g′(x̄

(ᾱ)
0 )2−g(x̄(ᾱ)

0 )g′′(x̄
(ᾱ)
0 )
]
dt

. (D.5)

Taking the continuous-time limit, this gives the following contribution to the
action (with x being ᾱ-discretised):∫ tf

0

dt

{
(α− ᾱ)

g′(x)

g(x)
dtx−D(α− ᾱ)2

[
g′(x)2 − g(x)g′′(x)

]}
. (D.6)

Finally, adding (D.3) and (D.6) yields a candidate S̃αᾱ[x(t)] for the ᾱ-discretised
action of the α-discretised Langevin equation. If this procedure had been correct,
one would have had recovered the same action Sαᾱ[x(t)] as in (D.1), but, by direct
inspection, one finds that

S̃αᾱ[x(t)] = Sαᾱ[x(t)]

+

∫ tf

0

dt

{
(α− ᾱ)

[
(−f(x) + 2dtx)g′(x) + g(x)(f ′(x) + 2Dᾱg′(x)2)

]
g(x)

+ 3Dg(x)(α− ᾱ)2g′′(x)

}
. (D.7)

References

[1] R. L. Stratonovich. Nonlinear Nonequilibrium Thermodynamics I. Springer Berlin 1992.
[2] C. W. Gardiner. Handbook of stochastic methods for physics, chemistry, and the natural

sciences. Number 13 in Springer series in synergetics. Springer-Verlag Berlin ; New York
2nd ed edition 1994.

[3] N. G. van Kampen. Stochastic processes in physics and chemistry. North-Holland personal
library. Elsevier Amsterdam ; Boston 3rd ed edition 2007.

[4] B. Øksendal. Stochastic differential equations: an introduction with applications. Universitext.
Springer Berlin 6. ed., 6. corrected printing edition 2013. OCLC: 935584333.
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symmetries of Markov processes with multiplicative white noise. J. Stat. Mech. 2016, 053207
(2016).

[9] C. Aron, D. G. Barci, L. F. Cugliandolo, Z. González-Arenas, and G. S. Lozano. Magnetization
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