Diffusion equations: convergence of the functional scheme derived from the Binomial tree with local volatility for non smooth payoff functions. - Archive ouverte HAL
Article Dans Une Revue Applied Mathematical Finance Année : 2018

Diffusion equations: convergence of the functional scheme derived from the Binomial tree with local volatility for non smooth payoff functions.

Résumé

The function solution to the functional scheme derived from the Binomial tree financial model with local volatility converges to the solution of a diffusion equation of type ht(t, x)+ x2σ2(t,x) hxx(t, x) = 0 as the number of discrete dates n → ∞. Contrarily to classical numerical methods, in particular finite difference methods, the principle is only based on a discretization in time. We establish the uniform convergence in time of the scheme and provide the rate of convergence when the payoff function is not necessarily smooth as in finance. We illustrate the convergence result and compare its performance to the finite difference and finite element methods by numerical examples.
Fichier principal
Vignette du fichier
EDP-diffusion-29-12-17.pdf (519.07 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01507267 , version 1 (12-04-2017)
hal-01507267 , version 2 (14-12-2017)
hal-01507267 , version 3 (29-12-2017)

Identifiants

Citer

Julien Baptiste, Emmanuel Lépinette. Diffusion equations: convergence of the functional scheme derived from the Binomial tree with local volatility for non smooth payoff functions.. Applied Mathematical Finance, 2018, 25 (5-6), ⟨10.1080/1350486X.2018.1513806⟩. ⟨hal-01507267v3⟩
309 Consultations
341 Téléchargements

Altmetric

Partager

More