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Abstract: The function solution to the functional scheme derived from
the Binomial tree financial model with local volatility converges to the

solution of a diffusion equation of type ht(t, x)+ x2σ2(t,x)
2 hxx(t, x) = 0 as

the number of discrete dates n → ∞. Contrarily to classical numerical
methods, in particular finite difference methods, the principle is only
based on a discretization in time. We establish the uniform convergence
in time of the scheme and provide the rate of convergence when the
payoff function is not necessarily smooth as in finance. We illustrate the
convergence result and compare its performance to the finite difference
and finite element methods by numerical examples.
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1. Introduction

There are three major methods to simulate a diffusion equation of type

ht(t, x) +
x2σ2(t, x)

2
hxx(t, x) = 0, t ∈ [0, T ), (1.1)

with the boundary condition h(T, x) = g(x). The first one is to use the Monte
Carlo methods as the solution h admits a probabilistic representation, see [8].
The second one is to numerically compute the solution directly from the PDE.
In particular, the very well known finite difference (FD) technique is based
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on approximations of the successive derivatives. It requires a discretization,
both in time and in the space variable, of some compact subset [0, T ]× [a, b],
a ≤ b. Moreover, as we need to fix extra boundary conditions, when x = a or
x = b, that are a priori approximations of h, a second type of approximation
errors may appear. For instance, if b is large enough, we generally set the
condition h(t, b) = limx→∞ h(t, x) if the latter may be estimated while the
condition h(t, 0) = g(0) is chosen if a = 0 under some mild conditions on σ.
There is a lot of articles in the literature focusing on this technique, see for
example [2] and [16]. The finite element (FE) method is more sophisticated,
see [3], but it is based on a discretization of the space variable as well as
other techniques as finite volume [14] or spectral methods [13], [1].

The third one is based on binomial trees. Such a scheme is proposed by
Milstein [11] where a convergence theorem is proven when the terminal condi-
tion, i.e. the payoff function in finance, is smooth. In particular, it is supposed
that the successive derivatives of the solution h of the P.D.E. are uniformly
bounded. In finance, e.g. for the Call payoff function g(x) = (x−K)+, this is
not the case. On the contrary the successive derivatives of the P.D.E. solution
explode at the horizon date [10]. Motivated by pricing in finance, we con-
sider non smooth payoff functions and we study the convergence of this very
simple alternative scheme derived on the binomial tree with local volatility
financial model, which is only based on a discretization in time of the inter-
val [0, T ] and allows to simulate t 7→ h(t, x) for a fixed x. The advantage of
this method is the ease of implementation of the functional scheme which is
basically defined. The numerical scheme we study is defined by two functions
depending on the number n of discretization dates. We focus here on a partic-
ular choice of such functions which leads to a uniform approximation in time
of the diffusion equation under some mild conditions. A convergence theo-
rem which generalizes [11] to non smooth terminal conditions is proved. We
present some examples where the functional scheme appears to outperform
the finite difference method and, moreover, it is well adapted to parallel com-
puting. An open problem is to study the suggested functional scheme more
generally.

Motivation and interpretation in finance. Let us consider a binomial model
in finance with T steps defined as follows: we consider on a stochastic basis
(Ω, (Ft)t=0,··· ,T ,P) a price process (St)t=0,··· ,T where S0 is given at time 0.
Moreover, we suppose that P(St+1 = Stk

u
t (St)|Ft) = P(St+1 = Stk

d
t (St)|Ft) =

1/2 where 0 ≤ kdt < 1 < kut are two function-valued processes such that
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kd + ku = 2. By the assumptions, we easily deduce that (St)t=0,··· ,T is a
P-martingale.

Let us define a portfolio process V as an adapted process satisfying ∆Vt :=
Vt − Vt−1 = θt−1∆St for all t = 1, · · · , T , where θt is Ft-measurable for all
t = 0, · · · , T − 1. Moreover, we say that it replicates the contingent claim
g(ST ), for some function g, if VT = g(ST ). If g(ST ) is integrable, we easily
deduce that V is a martingale and, by induction, we get that Vt = C(t, St) for
some measurable function C. Using the martingale property Vt−1 = E(Vt|Ft),
we finally deduce that

C(t− 1, St−1) =
1

2
C(t, St−1k

d
t−1) +

1

2
C(t, St−1k

u
t−1), t = 1, · · · , T. (1.2)

The natural idea is then to consider this scheme as the number n+1 of dates
(Ti/n)i=0,··· ,n tends to ∞ when we discretize the continuous-time interval
[0, T ]. This leads to the scheme we propose to study in the next section
when kdt (x) = 1− σ(t, x)

√
T/n and kdt (x) = 1 + σ(t, x)

√
T/n. Actually, the

asymptotic behaviour of such binomial model is well known, at least for the
price process. Indeed, let us consider the continuous-time price process Sn

of the binomial model defined by Snt = SnT (i−1)/n if t ∈ [T (i − 1)/n, T i/n)

where SnT (i−1)/n is defined from kd and ku when starting from S0 at t = 0 as

explained above. Then, by [12, Proposition 3.2.1] under mild conditions on
σ, the sequence Sn weakly converges to the diffusion process S satisfying the
stochastic differential equation

dSt = Stσ(t, St)dWt, (1.3)

where W is a standard Brownian motion. We also deduce the convergence
of the price functions (Cn)n≥1 given by (1.2 ) towards the limit price C of
the continuous-time model given by (1.3), i.e. the solution to the diffusion
equation (1.1). This is indeed the case when σ is constant for a large class of
payoff functions g as proven in [2, Chapter 4] where it is also proven that the
best rate we can get in general is 1√

n
, see also [18] and the papers [4], [15],

[7], and [17] among others and, finally, [11] for smooth terminal conditions
and local volatility function. Actually, our main contribution is to show that
the result is still valid for local diffusion coefficients even if the solution h of
the diffusion equation admits unbounded derivatives, e.g. when the terminal
condition is not smooth. Moreover, the numerical experiments we present
confirm the accuracy of the functional scheme in comparison to the (FD)
and (FE) methods.
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2. Functional scheme for diffusion equations

Let us consider a bounded diffusion function σ : [0, T ]×R+ and the associated
backward parabolic equation

ht(t, x) +
x2σ2(t, x)

2
hxx(t, x) = 0, t ∈ [0, T ), h(T, x) = g(x), (2.4)

where the terminal condition is defined by a Lipschitz function g with Lip-
schitz constant  Lg and ht and hxx are respectively the first and the sec-
ond derivatives of h with respect to time t and space variable x ∈ R. This
equation is very well known in physics but also in mathematical finance
for models without friction when the risky asset S is driven by a standard
Brownian motion W so that it satisfies the stochastic differential equation
dSt = σ(t, St)StdWt under a risk neutral probability measure P 1. In that
case, h(t, St) is the value at time t of the unique self-financing portfolio pro-
cess V composed of a fraction of the risk-less bond B = 1 and the risky asset
S such that it replicates the European option payoff g(ST ), i.e. VT = g(ST ).
The quantity σ(t, St) is then interpreted as a local volatility coefficient.

In the following, we consider the uniform grid on [0, T ] given by tni =
(T/n)i, i = 0, · · · , n where n ≥ 1. We then define the following functions:

kn+t (x) := 1 + σ(t, x)

√
T

n
, kn−t (x) := 1− σ(t, x)

√
T

n
, (2.5)

λnt (x) :=
1− kn−t (x)

kn+t (x)− kn−t (x)
=

1

2
, µnt (x) := 1− λnt (x) =

1

2
.

Let hn be the piecewise constant function defined on [0, T ] by hn(t, x) =
hn(ti−1, x) if t ∈ [tni−1, t

n
i [, i ≤ n, where the sequence (hn(ti, x))i≤n is defined

recursively by the following functional scheme:

hn(ti−1, x) = λnti−1
(x)hn

(
ti, k

n−
t (x)x

)
+ µnti−1

(x)hn
(
ti, k

n+
t (x)x

)
,

hn(T, x) = g(x), i ≤ n. (2.6)

Our main result states that the sequence of functions (hn)n∈N uniformly
converges to h as n → ∞ under some mild conditions (called Condition

1If we suppose that the risk-free interest rate is r = 0
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D below) satisfied by the successive derivatives of h, solution to (2.4). Of
course, the functional scheme (2.6) may also be considered for other choices
of functions kn− and kn+. In this paper, we restrict ourselves to the functions
defined by (2.5), i.e. when the coefficients defining the binomial model are
symmetric, but it is an interesting problem to study such a scheme in its full
generality, i.e. for more general coefficients kn− and kn+.

Recall that h(t, x) = Eg(Sx,t(T )) where, for t ≤ T , Sx,t is the unique
solution to the stochastic differential equation (6.14) on the interval [t, T ] with
initial condition Sx,t(t) = x. We deduce that h(t, 0) = g(0). In the following,
we suppose that σ is locally Lipschitz and bounded so that existence and
uniqueness holds for (6.14), see for instance [8, Theorem 2.2, p104]. The
conditions below hold in particular when the payoff function g is continuous
with linear growth at infinity, e.g. g(x) = (x−K)+, K ∈ R, and the diffusion
coefficient σ is smooth enough and positive as proven in [10, Theorem 4.1]
for a more general case 2, see also [6, Section 5]. Observe that we do not
suppose that the successive derivates are bounded contrarily to [11].

Condition D:

There exists a constant C > 0 independent of n such that:

|hx(t, x)| ≤ C, |hxx(t, x)| ≤ C

|x|
√
T − t

,

|hxxx(t, x)| ≤ C

x2(T − t)
, |hxt(t, x)| ≤ C

T − t
,

|hxxt(t, x)| ≤ C

|x|(T − t)3/2
, |htt(t, x)| ≤ C | x |

(T − t) 3
2

,

|httt(t, x)| ≤ C | x |
(T − t) 5

2

, |hxtt(t, x)| ≤ C

(T − t)2
,

Theorem 2.1. Suppose that σ is a bounded Lipschitz function and assume
that the solution to Equation (2.4) satisfies Condition (D). Then, there exists
a constant C(x) > 0 depending on x, g and σ such that

sup
t∈[0,T ]

|hn(t, x)− h(t, x)| ≤ C|x|√
n
, n > 0.

2Here, the coefficient γn of [10] appears to be a constant independent of n.



/ 6

The proof is deduced from the lemmas and the corollary of Section 5. Note
that, by choosing specific discretization dates, see [5], we should improve the
convergence rate of the functional scheme. This is left for future research.

3. Numerical examples

In the following, we compare the performance of the functional scheme to
the Crank-Nicolson finite difference method one on some examples.

3.1. The case where the diffusion coefficient only depends on
time.

Suppose that σ(t, x) = σ(t), t ∈ [0, T ], only depends on time. In that case,
we may show (see [9]) that

h(t, x) =

∫ ∞
−∞

g

(
xeρty−

ρ2t
2

)
1√
2π
e−

y2

2 dy,

where ρt ≥ 0 is defined by ρ2t =
∫ T
t
σ2
udu. Moreover, for some particular

functions g, e.g. g(x) = (x−K)+, it is trivial to derive an explicit formula of
h(t, x). As kn− and kn+ do not depend on the space variable, we also deduce
an explicit expression of hn, solution to (2.6):

h(tnn−i, x) =
1

2i

∑
z∈En−i

g(xz), i = 0, · · · , n, (3.7)

where the sets (Ei)i=0,··· ,n does not depend on x and are recursively defined as

En = {1} and En−i−1 =
(
kn−tnn−i−1

En−i
)
∪
(
kn+tnn−i−1

En−i
)

for all i = 0, · · · , n−1.

Regarding the implementation, we may see each Ei as a vector with 2n−i

components. Once these vectors computed for all, we may simulate the
scheme (2.6) for any x and any arbitrary terminal condition g. Indeed,
just compute the vectors Gi whose components are (g(xz))z∈Ei and deduce
h(tnn−i, x) as the scalar product of Gi with 1 = (1, · · · , 1) ∈ R2n−i .

Let us now consider the case σ(t) = σ(2 + cos(t)). Then,

ρ2t = 4σ2 [(T + sinT )− (t+ sin t)] +
σ2

2

[
(T +

1

2
sin(2T )− (t+

1

2
sin 2t)

]
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and for g(x) = (x−K)+, h(t, x) is given explicitily by

h(t, x) =

∫ ∞
−∞

g

(
xeρty−

ρ2t
2

)
1√
2π
e−

y2

2 dy

=

∫ ∞
−∞

(
xeρty−

ρ2t
2 −K

)+
1√
2π
e−

y2

2 dy

=

∫ ∞
ρ−1
t

(
ln(K

x
)+

ρ2t
2

)
(
xeρty−

ρ2t
2 −K

)
1√
2π
e−

y2

2 dy

=

∫ ∞
ρ−1
t

(
ln(K

x
)+

ρ2t
2

) xe−
(y−ρt)

2

2

√
2π

dy −K

(
1− Φ

(
ln(K

x
) +

ρ2t
2

ρt

))

= x

(
1− Φ

(
ln(K

x
) +

ρ2t
2

ρt
− ρt

))
−KΦ

(
ln( x

K
)− ρ2t

2

ρt

)

= xΦ

(
ln( x

K
) +

ρ2t
2

ρt

)
−KΦ

(
ln( x

K
)− ρ2t

2

ρt

)
.

Therefore, we are in position to numerically compare the convergence error
between the explicit solution given above and the functional scheme as well as
the finite difference approximations. We first consider the parameters σ = 0.5,
T = 10, K = 100, x = 120 and 30 discrete dates. As we may observe in Figure
1, with a space discretization of 400 points, the finite difference method does
not provide a good approximation and, moreover, the monotonicity we expect
to is not satisfied.

With the parameters σ = 1.5, T = 1, K = 115, x = 95 and the same dis-
cretization in time and in space (see Figure 22), the finite difference method
provides an approximating function which explodes as time tends to 0.

At last, with the parameters σ = 0.1, T = 5, K = 115, we consider 25
discrete dates and 400 points for the discretization in time. We observe that
the approximating function given by the finite difference method is not very
efficient as well.

In order to better compare the two methods, we have computed the needed
time for several strikes to obtain a reasonable convergence error for the value
of h(0, x) with respect to the analytic expression of the later. Initially, the
time discretization is done with 10 dates while the space is discretized in
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Fig 1. Numerical example with σ = 0.5, T = 10, K = 100, x = 120.

400 points. If the error is larger than 5%, we add as many discrete dates as
necessary (see Tables 4, 5, 6 and 6).

Strike Result Error Time Discretization Computation time (s)
50 117.74 4.78% 23 2.36
60 117.04 4.91% 24 4.90
70 116.18 4.83% 26 19.62
80 115.66 4.99% 27 76.45
90 115.00 4.99% 28 152.14
100 114.19 4.80% 30 323.16
110 113.76 4.93% 31 1273.74

Fig 4. Values at t = 0 by the functional scheme with parameters σ = 0.5, T = 10, x = 120.

Clearly, the results are bad for the finite difference method, see Table 5.

Strike Result Error Time Discretization Computation time (s)
50 105.34 -6.26% 4000 > 1400
60 103.84 -6.93% 4000 > 1400
70 102.63 -7.40% 4000 > 1400
80 101.59 -7.78% 4000 > 1400
90 100.81 -7.97% 4000 > 1400
100 100.12 -8.11% 4000 > 1400
110 99.60 -8.12% 4000 > 1400

Fig 5. Values at t = 0 by finite differences with parameters σ = 0.5, T = 10, x = 120.



/ 9

Fig 2. Numerical example with σ = 1.5, T = 1, K = 115, x = 95.

Fig 3. Numerical example with σ = 0.1, T = 5, K = 115, x = 115.

With the parameters σ = 1.5, T = 1, x = 95, we get the following:

Strike Result Error Time Discretization Computation time (s)
50 95.84 3.34% 20 0.29
60 95.84 3.58% 20 0.29
70 95.83 3.80% 20 0.29
80 95.83 4.01% 20 0.29
90 95.82 4.20% 20 0.29
100 95.81 4.38% 20 0.29
110 95.81 4.54% 20 0.29

Fig 6. Values at t = 0 by the functional scheme with parameters σ = 1.5, T = 1, x = 95.

Notice that the results given by the finite difference method are not ac-
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ceptable, e.g. when K is too large:

Strike Result Error Time Discretization Computation time (s)
50 3876.89 > 4000% 100 > 20
60 3874.93 > 4000% 100 > 20
70 3873.15 > 4000% 100 > 20
80 3871.49 > 4000% 100 > 20
90 3869.98 > 4000% 100 > 20
100 3868.58 > 4000% 100 > 20
110 3867.27 > 4000% 100 > 20

Fig 7. Values at t = 0 by the functional scheme with parameters σ = 1.5, T = 1, x = 95.

3.2. The case where the diffusion coefficient only depends on
space.

Let us consider the diffusion coefficient σ(t, x) = σ(x) = σ ∗ (1 + e−x
2
). As

h(t, x) does not admit any analytic expression, we first evaluate it by using
its probabilistic representation through a Monte-Carlo discretization of the
associated diffusion process (6.14). The discretization in time is composed of
10000 dates with 50000 samples for the Monte-Carlo method and 30 dates for
the two other methods while we discretize the space variable in 400 points.
As we may observe in Figure 8, the finite difference method does not provide
a non increasing function in time as expected and the approximation is not
accurate.

Fig 8. Numerical example with σ = 0.5, T = 10, K = 100, x = 120.
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Strike Result Error Time Discretization Computation time (s)
50 91.25 4.93% 12 < 0.01
60 87.17 4.81% 13 < 0.01
70 83.51 4.68% 12 < 0.01
80 80.47 4.91% 10 < 0.01
90 76.94 4.13% 19 0.13
100 73.96 3.73% 19 0.13
110 72.16 4.72% 19 0.13

Fig 9. Values at t = 0 by the functional scheme with parameters σ = 0.5, T = 10,
K = 100, x = 120.

Strike Result Error Time Discretization Computation time (s)
50 60.40 -30.56% 30 12.46
60 57.21 -31.22% 30 12.10
70 54.39 -31.82% 30 12.34
80 51.80 -32.46% 30 12.27
90 49.57 -32.92% 30 12.19
100 47.46 -33.44% 30 11.99
110 45.62 -33.80% 30 12.24

Fig 10. Values at t = 0 by the finite differences with parameters σ = 0.5, T = 10, x = 120.

In Table 11, we see that refining more the space variable grid does not
significantly improve the results while the computation time increases.

Number of points Result Error Time discretization Computation time (s)
400 93.45 -13.78% 30 11.58
600 94.57 -12.75% 20 112.23
800 94.96 -12.39% 30 305.76
1000 95.12 -12.24% 30 573.46
1200 95.23 -12.14% 30 1071.47
1400 95.23 -12.10% 30 1913.85
1600 95.32 -12.05% 30 2938.44

Fig 11. Values at t = 0 by the finite differences with parameters σ = 0.5, T = 10, x = 120
and K = 100 when refining the space variable grid.

With the parameters σ = 1.5, T = 1, K = 115, x = 95 and only 25 discrete
dates, the function scheme provides a rather good approximation contrarily
to the finite difference method:
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Fig 12. Numerical example with σ = 1.5, T = 1, K = 115, x = 95.

Strike Result Error Time Discretization Computation time (s)
50 66.41 4.36% 11 < 0.01
60 62.89 4.52% 12 < 0.01
70 59.20 3.66% 12 < 0.01
80 56.66 4.24% 17 0.03
90 53.64 3.41% 17 0.03
100 51.98 4.77% 17 0.03
110 49.47 4.04% 20 0.26

Fig 13. Values at t = 0 by the functional scheme with parameters σ = 1.5, T = 1, x = 95.

At last, we consider the parameters σ = 2, T = 5, K = 10, x = 95
with only 20 discrete dates for the functional scheme. We get satisfactory
results in less that 0.26 seconds while with 30 discrete dates for the finite
difference methods, the computation time is large. In particular, even if the
finite difference method provides acceptable results with only 10 discrete
dates with an error less than 5% it takes more than 3.60 secondes to computes
them.

3.3. The case where the diffusion coefficient depends on time
and space.

We consider the volatility function σ(t, x) = σ(1 + 0.01x2

1+0.01x2
+ t). The number

of discrete dates is 25 for the functional scheme as well as the finite difference
method and 400 points for the space variable. The Monte Carlo discretization
is based on 10000 discrete dates and 50000 trajectories. When the parameters
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Fig 14. Numerical example with σ = 2, T = 5, K = 10, x = 95

are σ = 0.5, T = 10, K = 100, x = 120, the finite difference method provides
bad results and it takes a long time to compute them as shown below.

Fig 15. Numerical example with σ = 0.5, T = 10, K = 100, x = 120.

Strike Result Error Time Discretization Computation time (s)
50 83.21 4.36% 11 < 0.01
60 78.26 4.52% 11 < 0.01
70 73.64 3.66% 11 < 0.01
80 69.61 4.24% 11 < 0.01
90 66.18 3.41% 11 < 0.01
100 63.15 4.77% 11 < 0.01
110 60.32 4.04% 11 < 0.01

Fig 16. Values at t = 0 by the functional scheme with parameters σ = 0.5, T = 1, x = 120.
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Strike Result Error Time Discretization Computation time (s)
50 0.02 -99.98% 30 11.42
60 0.01 -99.99% 30 13.00
70 0.00 -100.00% 30 11.82
80 0.00 -100.00% 30 12.23
90 0.00 -100.00% 30 11.77
100 0.00 -100.00% 30 12.42
110 0.00 -100.00% 30 11.77

Fig 17. Values at t = 0 by finite differences with parameters σ = 0.5, T = 1, x = 120.

For the parameters σ = 0.1, T = 5, K = 110, x = 95, the functional
scheme over evaluates the Monte Carlo method while monotonicity is not
satisfied for the finite difference method.

Fig 18. Numerical example with σ = 0.1, T = 5, K = 110, x = 95.

Strike Result Error Time Discretization Computation time (s)
50 56.13 4.36% 10 < 0.01
60 51.10 4.52% 10 < 0.01
70 46.69 3.66% 10 < 0.01
80 42.79 4.24% 10 < 0.01
90 39.33 3.41% 10 < 0.01
100 36.23 4.77% 10 < 0.01
110 33.46 4.04% 10 < 0.01

Fig 19. Values at t = 0 by the functional scheme with parameters σ = 0.1, T = 5, x = 95.
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Strike Result Error Time Discretization Computation time (s)
50 27.21 -50.66% 30 11.69
60 22.88 -54.42% 30 11.58
70 19.37 -57.79% 30 11.55
80 16.38 -61.11% 30 11.56
90 14.03 -63.83% 30 11.66
100 12.04 -66.40% 30 11.60
110 10.41 -68.65% 30 11.59

Fig 20. Values at t = 0 for finite differences with parameters σ = 0.1, T = 5, x = 95.

Notice that it is possible to execute parallel computations by means of pro-
gramming interfaces (e.g. OpenMP or MPI) i.e. we may use several calculus
units simultaneously and reduce computation time. Using n ≥ 1 processors,
we should theoretically divide the needed time by n. In practice, that de-
pends on how the executed parallel calculus are interconnected. In the finite
difference method, when computing the value function at some point of the
grid, we need to estimate some expressions depending on the adjacent nodes
that may be calculated and used by other processors. This should increase
the computation time, as it is necessary to wait for some computations to
be executed before starting new ones. On the contrary, for the functional
scheme, we do not face this problem as the nodes of the binomial tree at the
same level are independent. This is confirmed by the realized time savings we
observe to be very closed to the theoretical ones (e.g. 50% with two cores and
75% with 4 cores), see Table 21 with the example of the current subsection
and the parameters σ = 0.5, T = 10, K = 100, S0 = 120. Therefore, even
with parallel computing, the functional scheme should outperform the finite
difference method in the examples we have presented.

Number of cores Computation time (s) Theoretical time saving Realized time saving
1 388.203 0% 0%
2 194.492 50% 49.90%
4 102.717 75% 73.54%

Fig 21. Time savings with the parallel functional scheme when σ = 0.5, T = 10, K = 100,
S0 = 120.
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4. Comparison to the Finite Element method.

4.1. The case of a bounded payoff function.

Let us consider the payoff function h(x) = (K − x)+. The case when h(x) =
(x−K)+ may be deduced by the Call-Put parity (x−K)+−(K−x)+ = x−K.

When the volatility function only depends on time (see Section 3.1), we
obtain very good approximations, see Figure 22 and Table 23, when the
space variable interval is [0, 104] discretised in 2000 points. This is confirmed
by other sets of parameters.

Fig 22. Numerical example with σ = 1.5, T = 1, K = 115, x = 95.

Strike Result Error Time Discretization Computation time (s)
50 90.94 -1.95% 10 0.005
60 90.62 -2.06% 10 0.005
70 90.32 -2.17% 10 0.005
80 90.04 -2.27% 10 0.005
90 89.78 -2.37% 10 0.005
100 89.53 -2.47% 10 0.004
110 89.29 -2.57% 10 0.005

Fig 23. Values at t = 0 by the FEM with parameters σ = 1.5, T = 1, K = 115, x = 95.
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4.2. The case of an unbounded payoff function.

Let us consider the payoff function h(x) = (x−K)8 and let us fix the following
parameters: σ = 0.25, T = 1 and K = 0.5. We then compute t 7→ h(t, x)
for x = 1. We compare the obtained results to the approach based on the
probabilistic representation of h(t, x), i.e. by implementing the Monte Carlo
(MC) technique with a time discretization of 50000 dates and a sample of
100000 trajectories.

First, we observe that the (FE) method is very performant when σ(t, x) =
σ is a constant function and the interval space [0, 10] is discretised in 500
points. To see it, we estimate the relative error of the (FE) approximation
with respect to the (MC) method, see Table 24.

number of dates (FE) method Time (s) Error
5 1.1201 0.001 215.32%
10 0.5969 0.001 68.02%
20 0.4508 0.002 26.91%
50 0.3855 0.005 8.52%
100 0.3666 0.009 3.19%
200 0.3576 0.017 0.66%
300 0.3547 0.025 0.16%

Fig 24. Approximation of h(0, x) with the (FE) method.

In this example, the functional scheme seems to be more unstable even if
it only takes 3 m.s. to get an error less than 5%. Nevertheless it takes too
much time to obtain an error less than 1%, see Table 4.2.

We now consider the volatility function

σ(t, x) = σ

(
1 +

x2

100
(
1 + x2

100

) + t

)
.

In that case, it is difficult to obtain the desired convergence as the result
is very sensitive to the chosen space variable and its discretization as well. It
appears that we reduce the error by increasing the discretization in time but
it is not possible to lower the error as much as desired, see Table 26.

Surprisingly, if we reduce the number of discrete points of the space variable
to 100 points, the error is smaller as observed in Table 27. Nevertheless, even
by increasing the number of discrete dates to 107 and more, it is not possible
to reduce as much as desired the convergence error. If we enlarge the space
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Number of dates Functional Scheme Time (s) Error
5 0.1831 0.000 93.96%
6 0.3331 0.000 6.66%
7 0.3344 0.000 6.23%
8 0.2280 0.000 55.81%
9 0.2382 0.000 49.15%
10 0.3378 0.001 5.16%
11 0.2543 0.001 39.70%
12 0.2608 0.001 36.23%
13 0.3402 0.003 4.41%
14 0.3409 0.006 4.21%
15 0.3415 0.013 4.03%
16 0.2799 0.012 26.91%
17 0.2835 0.024 25.29%
18 0.2868 0.049 23.87%
19 0.3433 0.197 3.48%
20 0.2925 0.196 21.47%
21 0.2949 0.400 20.44%
22 0.3443 1.571 3.17%
23 0.3446 3.135 3.08%
24 0.3449 6.285 3.00%
25 0.3031 6.237 17.20%
26 0.3454 24.917 2.86%
27 0.3456 51.146 2.80%
28 0.3458 107.718 2.74%
29 0.3460 213.635 2.68%

Fig 25. Approximation of h(0, x) with the (FS) method and constant volatility.

nbIterations Finite Elements Method Time (s) Error
5 110,8036 0.001 644.37%
10 63.7537 0.001 328.29%
20 39.5068 0.003 165.40%
50 26.7455 0.006 79.67%
100 23.0440 0.011 54.81%
200 21.3239 0.022 43.25%
300 20.7713 0.034 39.54%

Fig 26. Approximation of h(0, x) with the (FE) method and non constant volatility

variable to [0, 25] the error is 837% for 2000 discrete dates so that we need
to increase more the number of discrete dates.

On the contrary, the functional scheme appears to be efficient, see Table
28. In particular, it is possible to reduce as much as desired the convergence
error. It takes about 145 seconds to obtain an error less that 5%. Moreover, a
code parallelisation should significantly reduce the needed computation time.

5. Proof

From a line to the next one, we shall use the same notation C for some
distinct constants independent of n. Also, notice that there is a constant
M > 0 such that |kn−t | + |kn+t | ≤ M for all n and t ∈ [0, T ]. We also use
the notation ∆tni = tni − tn−1i = T/n, i ≤ n. At last, observe that the results
below are trivial when x = 0 hence we only provide the proofs when x 6= 0.
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nbIterations Finite Elements Method Time (s) Error
5 103,3949 0,000 594,60%
10 56,7661 0,000 281,35%
20 33,6140 0,001 125,81%
50 21,9113 0,001 47,20%
100 18,6310 0,002 25,16%
200 17,1327 0,005 15,10%
300 16,6556 0,008 11,89%
500 16,2822 0,012 9,38%
1000 16,0070 0,03 7,53%
2000 15,8710 0,049 6,62%

1000000 15,7363 25,581 5,71%
10000000 15,7360 254,609 5,71%

Fig 27. Approximation of h(0, x) with the (FE) method and non constant volatility for
100 discrete points.

nbIterations Functional Scheme Time (s) Error
5 1,4608 0,000 919,00%
6 6,9680 0,000 113,63%
7 7,6439 0,000 94,74%
8 3,0234 0,000 392,35%
9 3,5389 0,001 320,63%
10 9,3410 0,001 59,36%
11 4,5235 0,000 229,07%
12 4,9881 0,001 198,43%
13 10,6514 0,01 39,75%
14 11,0229 0,008 35,04%
15 11,3674 0,017 30,95%
16 6,6509 0,017 123,81%
17 7,0200 0,032 112,04%
18 7,3720 0,066 101,92%
19 12,5264 0,261 18,83%
20 8,0281 0,261 85,42%
21 8,3339 0,527 78,61%
22 13,2189 2,098 12,61%
23 13,4236 4,167 10,89%
24 13,6171 8,331 9,32%
25 9,4280 8,436 57,89%
26 13,9739 34,286 6,52%
27 14,1387 71,794 5,28%
28 14,2953 144,877 4,13%
29 14,4445 291,819 3,05%

Fig 28. Approximation of h(0, x) with the (FS) method and non constant volatility.

Lemma 5.1. Suppose that the conditions of Theorem (2.1) hold. Then, there
exists a constant C > 0 which does not depend on x such that

sup
t∈[tnn−1,T ]

|hn(t, x)− h(t, x)| ≤ C|x|√
n
.
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Proof. Let us define δnt =| h(t, x)−hn(t, x) |. Recall that h(t, x) = Eg (Sx,t(T ))
where Sx,t is the solution to (6.14). We have:

δnt = | h(t, x)− 1

2
g(kn−tnn−1

x)− 1

2
g(kn+tnn−1

x) |

≤| h(t, x)− g(x) | +1

2
| g(kn−tnn−1

x)− g(x) | +1

2
| g(kn+tnn−1

x)− g(x) |

≤ sup
tnn−1≤t≤T

| h(t, x)− g(x) | +  Lg
2

(1− kdtnn−1
) | x | +  Lg

2
(kutnn−1

− 1) | x |

≤  Lg sup
tnn−1≤t≤T

E | Sx,t(T )− x | +  Lg
2
σ(t, x)

√
T

n
| x | +  Lg

2
σ(t, x)

√
T

n
| x |

≤ C|x|
√
T

n
+

 Lg
2
σ∗
√
T

n
| x |,

where the last inequality is deduced from Lemma 6.1 and σ∗ = sup
t∈[0,T ],x∈R

|σ(t, x)|.
2

Lemma 5.2. Suppose that the conditions of Theorem (2.1) hold. Then, there
exists a constant C > 0 such that

|hn(tnn−2, x)− h(tnn−2, x)| ≤ C|x|√
n
.

Proof. Let us introduce δnt−2 =| hn(tnn−2, x)− h(tnn−2, x) |. We have

δnt−2 = | 1

2
hn(tnn−1, k

n−
tnn−2

x) +
1

2
hn(tnn−1, k

n+
tnn−2

x)− h(tnn−2, x) |

≤ 1

2
| hn(tnn−1, k

n−
tnn−2

x)− h(tnn−2, x) | +1

2
| hn(tnn−1, k

n+
tnn−2

x)− h(tnn−2, x) |

≤ 1

2
| hn(tnn−1, k

n−
tnn−2

x)− h(tnn−1, k
n−
tnn−2

x) | +1

2
| h(tnn−1, k

n−
tnn−2

x)− h(tnn−2, k
n−
tnn−2

x) |

+
1

2
| h(tnn−2, k

n−
tnn−2

x)− h(tnn−2, x) |) +
1

2
(| hn(tnn−1, k

n+
tnn−2

x)− h(tnn−1, k
n+
tnn−2

x) |

+
1

2
| h(tnn−1, k

n+
tnn−2

x)− h(tnn−2, k
n+
tnn−2

x) | +1

2
| h(tnn−2, k

n+
tnn−2

x)− h(tnn−2, x) |).
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Under Condition D, by the mean value theorem, we deduce that

| h(tnn−2, x)− h(tnn−2, k
n−
tnn−2

x) | ≤ C | x− kn−tnn−2
x |≤ C | x | . | 1− kn−tnn−2

|

≤ C | x |
√
T

n
,

| h(tnn−2, x)− h(tnn−2, k
n+
tnn−2

x) | ≤ C | x− kn+tnn−2
x |≤ C | x | . | 1− kn+tnn−2

|

≤ C | x |
√
T

n
.

Note that, under Condition D, we have

| ht(t, x) |= x2σ2(t, x)

2
| hxx(t, x) |≤ C | x |√

T − t
. (5.8)

Therefore, by the mean value theorem, since kn−tnn−2
, kn+tnn−2

≤M ,

| h(tnn−1, k
n−
tnn−2

x)− h(tnn−2, k
n−
tnn−2

x) | ≤ CM | x |√
T − tnn−1

∆tnn−1 ≤ CM | x |
√
T

n
,

| h(tnn−1, k
n+
tnn−2

x)− h(tnn−2, k
n+
tnn−2

x) | ≤ CM | x |√
T − tnn−1

∆tnn−1 ≤ CM | x |
√
T

n
.

At last, by Lemma 5.1,

γn−(tnn−1, x) :=| hn(tnn−1, k
n−
tnn−2

x)− h(tnn−1, k
n−
tnn−2

x) | ≤ Ckn−tnn−2
|x|
√
T

n
,

γn+(tnn−1, x) :=| hn(tnn−1, k
n+
tnn−2

x)− h(tnn−1, k
n+
tnn−2

x) | ≤ Ckn+tnn−2
|x|
√
T

n
.

As kn−tnn−2
+ kn+tnn−2

= 2, we deduce that

1

2
γn−(tnn−1, x) +

1

2
γn+(tnn−1, x) ≤ C|x|

√
T

n
.

The conclusion follows.2

Lemma 5.3. Suppose that the conditions of Theorem (2.1) hold. Then, there
exists a constant C > 0 such that

|hn(tni , x)− h(tni , x)| ≤ C|x|√
n
, for all i ≤ n− 2.
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Proof. We first prove the result for i = n− 2 and, then, we generalize the
result by induction. Let us introduce the function

Fi(x) =
1

2
h(tni , k

n−
tni−1

x) +
1

2
h(tni , k

n+
tni−1

x).

By the Taylor formula, we get that

Fi(x) =
1

2

[
h(tni−1, x) +R11

i (x) +R12
i (x) +R13

i (x)
]

+
1

2

[
h(tni−1, x) +R21

i (x) +R22
i (x) +R23

i (x)
]
.

where, for some constants αi, i = 1, · · · , 4, and t̃ni−1 ∈ [tni−1, t
n
i ], x̃ = x +

θ̃x(kn−tni−1
− 1), θ̃ ∈ [0, 1], t̂ni−1 ∈ [tni−1, t

n
i ], x̂ = x + θ̂x(kn+tni−1

− 1), θ̂ ∈ [0, 1], we

have

R11
i (x) = ht(t

n
i−1, x)

T

n
− hx(tni−1, x)xσ(tni−1, x)

√
T

n
,

R12
i (x) = −htx(tni−1, x)xσ(tni−1, x)

(
T

n

) 3
2

+
1

2
hxx(t

n
i−1, x)x2σ2(tni−1, x)

T

n

+
1

2
htt(t

n
i−1, x)

(
T

n

)2

,

R13
i (x) = α1httt(t̃

n
i−1, x̃)

(
T

n

)3

− α2httx(t̃
n
i−1, x̃)σ(tni−1, x)x

(
T

n

)5/2

+α3htxx(t̃
n
i−1, x̃)σ2(tni−1, x)x2

(
T

n

)2

− α4hxxx(t̃
n
i−1, x̃)σ3(tni−1, x)x3

(
T

n

)3/2

,

R21
i (x) = ht(t

n
i−1, x)

T

n
+ hx(t

n
i−1, x)xσ(tni−1, x)

√
T

n
,

R22
i (x) = htx(t

n
i−1, x)xσ(tni−1, x)

(
T

n

) 3
2

+
1

2
hxx(t

n
i−1, x)x2σ2(tni−1, x)

T

n

+
1

2
htt(t

n
i−1, x)

(
T

n

)2

,

R13
i (x) = α1httt(t̂

n
i−1, x̂)

(
T

n

)3

+ α2httx(t̂
n
i−1, x̂)σ(tni−1, x)x

(
T

n

)5/2

+α3htxx(t̂
n
i−1, x̂)σ2(tni−1, x)x2

(
T

n

)2

+ α4hxxx(t̂
n
i−1, x̂)σ3(tni−1, x)x3

(
T

n

)3/2

.
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We deduce that Fi(x) = h(tni−1, x) + R1
i (x) + R2

i (x) + R3
i (x) where R1

i (x) =
1
2

(R11
i (x) +R21

i (x)),R2
i (x) = 1

2
(R12

i (x) +R22
i (x)) andR3

i (x) = 1
2

(R13
i (x) +R23

i (x)).
As h is the solution to (2.4), we may simplifly Fi(x) as

Fi(x) = h(tni−1, x) +
1

2
htt(t

n
i−1, x)

(
T

n

)2

+R3
i (x).

Under Condition D, there exists a constant C independant of i and n such
that

1

2

∣∣htt(tni−1, x)
∣∣ ≤ C | x |

(T − tni−1)
3
2

. (5.9)

On the other hand, since t̃ni−1, t̂
n
i−1 ∈ [tni−1, t

n
i ] and |x̂| + |x̃| ≤ C|x| where

C > 0 is independent of i and n, the residual error R3
i (x) is the sum of terms

which may be dominated under Condition D using the following inequalities:

∣∣α1httt(t̂
n
i−1, x̂)

∣∣ ≤ C | x |
(T − tni )

5
2

. (5.10)

∣∣α2hxtt(t̂
n
i−1, x̂)σ(tni−1, x)x

∣∣ ≤ C | x |
(T − tni )2

. (5.11)

∣∣α3htxx(t̂
n
i−1, x̂)σ2(tni−1, x)x2

∣∣ ≤ C | x |
(T − tni )

3
2

. (5.12)

The inequalities above are also satisfied if we replace t̂ni−1 by t̃ni−1 and x̂ by
x̃. Recall that the constant C may denote distinct constants that change for
a line to the next one but this constant does not depend on i and n. At last,
by the Taylor formula, we rewrite the last term as

εi = α4

(
hxxx(t̂

n
i−1, x̂)σ3(tni−1, x)− hxxx(t̃ni−1, x̃)σ3(tni−1, x)

)
x3
(
T

n

)3/2

,

= α4hxxxt(t̄
n
i−1, x̄)x3(t̂ni−1 − t̃ni−1)

(
T

n

)3/2

+ α4hxxxx(t̄
n
i−1, x̄)x3(x̂− x̃)

(
T

n

)3/2

,
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where t̄ni−1 ∈ [t̃ni−1, t̂
n
i−1] and x̄ = αx̃+ (1−α)x̂ for some α ∈ [0, 1]. It is easily

seen that |t̂ni−1 − t̃ni−1| ≤ CT/n for some constant C independent of i and
n. Similarly, by definition of x̃ and x̂, there exists a constant C such that
|x̂− x̃| ≤ C|x|

√
T/n. Therefore,

|εi| ≤
C | x |

(T − tni )2

(
T

n

)5/2

+
C | x |

(T − tni )3/2

(
T

n

)2

. (5.13)

Let us introduce δnti−1
(x) :=

∣∣hn(tni−1, x)− h(tni−1, x)
∣∣, i ≤ n − 2. From

above, we get that

δnti−1
(x) =

∣∣∣∣12hn(tni , k
n−
tni−1

x) +
1

2
hn(tni , k

n+
tni−1

x)− h(tni−1, x)

∣∣∣∣
=

∣∣∣∣∣12hn(tni , k
n−
tni−1

x) +
1

2
hn(tni , k

n+
tni−1

x)− Fi(x) +
1

2
htt(t

n
i−1, x)

(
T

n

)2

+R3
i (x)

∣∣∣∣∣
≤ 1

2
δnti(k

n−
tni−1

x) +
1

2
δnti(k

n+
tni−1

x) +
1

2

(
T

n

)2 ∣∣htt(tni−1, x)
∣∣+
∣∣R3

i (x)
∣∣ .

Using the inequalities (5.9), (5.10),· · · , (5.13), we then deduce a constant
C > 0 independent of i and n such that

δntni−1
(x) ≤ 1

2
δnti(k

n−
tni−1

x) +
1

2
δnti(k

n+
tni−1

x)

+
C|x|

(T − tni )
1
2

(
T

n

) 3
2

+
C|x|

(T − tni )
3
2

(
T

n

)2

+
C|x|

(T − tni )2

(
T

n

) 5
2

+
C|x|

(T − tni )
5
2

(
T

n

)3

.

Recall that, by Lemma 5.2,

1

2

(
δntnn−2

(kn−tnn−3
x) + δntnn−2

(kn+tnn−3
x)
)
≤ 1

2
C|x|(kn−tnn−3

+ kn+tnn−3
)

√
T

n
= C|x|

√
T

n
.
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We deduce that

|δntnn−3
(x)| ≤ C|x|

√
T

n
+

C|x|
(T − tnn−2)

1
2

(
T

n

) 3
2

+
C|x|

(T − tnn−2)
3
2

(
T

n

)2

+
C|x|

(T − tnn−2)2

(
T

n

) 5
2

+
C|x|

(T − tnn−2)
5
2

(
T

n

)3

.

Repeating the reasoning, given that 1
2
(kn−tni−1

+kn+tni−1
) = 1, we deduce by induc-

tion that, for every i ≤ n− 3,

|δntni (x)| ≤ C|x|
√
T

n
+ S1

i,n + S2
i,n + S3

i,n + S4
i,n,

where, for i ≤ n− 3,

S1
i,n :=

n−2∑
j=i+1

C|x|
(T − tnj )

1
2

(
T

n

) 3
2

, S2
i,n =

n−2∑
j=i+1

C|x|
(T − tnj )

3
2

(
T

n

)2

,

S3
i,n =

n−2∑
j=i+1

C|x|
(T − tnj )2

(
T

n

) 5
2

, S4
i,n =

n−2∑
j=i+1

C|x|
(T − tnn−2)

5
2

(
T

n

)3

.

Since (T − u)−1 ≥ (T − tnj )−1 if u ∈ [tnj , t
n
j+1], we deduce that

S1
i,n ≤ C|x|

√
T

n

∫ T

0

1√
T − t

dt ≤ C|x|
√
T

n
,

S2
i,n ≤ C|x|T

n

∫ T−T/n

0

1

(T − t)3/2
dt ≤ C|x|

√
T

n
,

S3
i,n ≤ C|x|

(
T

n

)3/2 ∫ T−T/n

0

1

(T − t)2
dt ≤ C|x|

√
T

n
,

S4
i,n ≤ C|x|

(
T

n

)2 ∫ T−T/n

0

1

(T − t)5/2
dt ≤ C|x|

√
T

n
.

Both with Lemma 5.1 and 5.2 and the inequalities above, we may conclude.2
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Corollary 5.4. Suppose that the conditions of Theorem (2.1) hold. Then,
there exists a constant C > 0 such that

sup
t∈[0,T ]

|hn(t, x)− h(t, x)| ≤ C|x|√
n
.

Proof. Let t ∈ [0, T ] be such that t ∈ [tni−1, t
n
i ) for some i ≥ 1. By Lemma

5.1, we may suppose that i ≤ n− 2. Then,

|hn(t, x)− h(t, x)| = |hn(tni−1, x)− h(t, x)|
≤ |hn(tni−1, x)− h(tni−1, x)|+ |h(tni−1, x)− h(t, x)|.

By the mean value theorem and Inequality (5.8), since T − tni ≥ T/n, we
deduce that

|h(tni−1, x)− h(t, x)| ≤ C|x|√
T − tni

∆tni ≤
C|x|√
n
.

We then conclude by Lemma 5.3.2

6. Appendix

Let us consider the unique solution Sx,t, t ∈ [0, T ], to the stochastic differen-
tial equation

dSt,x(u) = St,x(u)σ(u, St,x(u))dWu, u ∈ [t, T ], St,x(t) = x ∈ R, (6.14)

where W is a standard Brownian motion.

Lemma 6.1. Suppose that t ∈ [0, T ]. Let Sx,t be the solution to the stochastic
differential equation (6.14). If σ is bounded by a constant σ∗ > 0, there exists
a constant C such that

E sup
t≤u≤T

S2
t,x(u) ≤ Cx2, E(St,x(T )− x)2 ≤ Cx2(T − t).

Proof. By the Doob’s inequality, we obtain that for every t ≤ r ≤ T :

φ(r) := E | sup
t≤u≤r

Sx,t(u) |2≤ 4E | Sx,t(r) |2
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As Sx,t(r) = x+
∫ r
t
σ(u, Sx,t(u))Sx,t(u)dWu, using the inequality (a+ b)2 ≤

2(a2 + b2) and the Ito isometry, we get that :

φ(r) ≤ 8x2 + 8E
(∫ r

t

σ(u, Sx,t(u))Sx,t(u)dWu

)2

≤ 8x2 + 8E
(∫ r

t

σ2(u, Sx,t(u))S2
x,t(u)du

)
≤ 8x2 + 8(σ∗)2

∫ r

t

ES2
x,t(u)du

≤ 8x2 + 8(σ∗)2
∫ r

t

φ(u)du.

Applying the Gronwall lemma, we deduce that:

E | Sx,t(r) |2 ≤ 8x2 exp (8σ∗(T − t)) ≤ Cx2,

where C does not depend on x. By the Ito isometry, we then deduce that

E(Sx,t(T )− x)2 = E
∫ T

t

σ2(u, Sx,t(u))S2
x,t(u)du

Using the inequality above, we may conclude.2
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