Robust rank constrained kronecker covariance matrix estimation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Robust rank constrained kronecker covariance matrix estimation

Résumé

In this paper, we consider the problem of robustly estimating a structured covariance matrix (CM). Specifically, we focus on CM structures that involve Kronecker products of low rank matrices, which often arise in the context of array processing (e.g. in MIMO-Radar, COLD array, and STAP). To tackle this problem, we derive a new Constrained Tyler's Estimators (CTE), which is defined as the minimizer of the cost function associated to Tyler's estimator under Kronecker structural constraint. Algorithms to compute these new CTEs are derived based on the Majorization-Minimization algorithmic framework.
Fichier principal
Vignette du fichier
robust structured kronecker sun.pdf (285.56 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01503788 , version 1 (07-04-2017)

Identifiants

Citer

Arnaud Breloy, Ying Sun, P Babu, Guillaume Ginolhac, Daniel P. Palomar. Robust rank constrained kronecker covariance matrix estimation. 2016 50th Asilomar Conference on Signals, Systems and Computers, Nov 2016, Pacific Grove, United States. pp.810 - 814, ⟨10.1109/ACSSC.2016.7869159⟩. ⟨hal-01503788⟩
56 Consultations
313 Téléchargements

Altmetric

Partager

More