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Abstract—In this paper, we consider the problem of robustly estimating
a structured covariance matrix (CM). Specifically, we focus on CM
structures that involve Kronecker products of low rank matrices, which
often arise in the context of array processing (e.g. in MIMO-Radar, COLD
array, and STAP). To tackle this problem, we derive a new Constrained
Tyler’s Estimators (CTE), which is defined as the minimizer of the
cost function associated to Tyler’s estimator under Kronecker structural
constraint. Algorithms to compute these new CTEs are derived based on
the Majorization-Minimization algorithmic framework.

Index Terms—Adaptive signal processing, covariance matrix estima-
tion, robust estimation, Majorization-Minimization, Kronecker product,
low rank.

I. INTRODUCTION

Covariance matrix (CM) estimation is a fundamental problem in
adaptive signal processing. In terms of applications purposes, the
accuracy of the CM estimate directly impacts the performance of
the processes that rely on it. The most common estimator of the
CM is the traditional Sample Covariance Matrix (SCM), which is
the Maximum Likelihood Estimator (MLE) of the CM in a Gaussian
context. Nevertheless, when the samples are heavy-tailed distributed
or corrupted by outliers, the SCM fails to provide an accurate
estimator [1].

To overcome this issue, non-Gaussian distributions and the robust
estimation framework have lately attracted considerable interest [2].
Under this framework, a robust estimation of the CM can be
performed using the M -estimators [3], such as Tyler’s estimator
[4, 5]. These estimators have been extensively studied and used in
the modern detection/estimation literature due to their desirable robust
properties (see [2] and the references therein).

Nevertheless, traditional M -estimators are not adapted to high
dimensional CM estimation with low sample support. For instance,
when number of samples K is less than the dimension of the data
M , Tyler’s M -estimator [4] is undefined. To solve this problem,
the current approaches consider either regularize the M -estimator by
shrinking it towards some given target, such as the identity matrix
[6–9], or constraining the CM to have some structure known in a
priori to reduce the numbers of parameters to be estimated [10–12].

In this paper, we follow the second approach and specifically focus
on robustly estimating CM that can be expressed as the Kronecker
product of (structured) low rank matrices. Indeed, this structure
often arise in the context of array processing, such as in MIMO-
Radar, COLD array and STAP: the Kronecker product structure
generally comes from a redundancy induced by the multiplication of
sensors and/or signal emissions [13, 14], while the low rank structure
is induced by signals (or interference) being contained in a low
dimensional subspace [15].
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Contribution: To force the rank-constrained Kronecker structure,
we derive new Constrained Tyler’s Estimators (CTE) as the minimizer
of the cost function associated to Tyler’s estimator under structural
constraint. We consider two specific structure sets:
• SKPS : Matrices given as the Kronecker product of two structured
(i.e. low rank plus identity) matrices.
• SKPLR : Matrices given as the sum of the Kronecker product of
two low rank matrices and the identity matrix.
The problem is hard to solve since both the objective function and
the constraint set are nonconvex. Following the lines of [11, 12],
we derive iterative algorithms to compute these new CTE using
the (block) Majorization-Minimization (MM) algorithmic framework
[16]. The updates have closed-form expression, thus can be computed
efficiently, and monotonically decrease the objective value.

Related works: Several MM algorithms have been proposed in [11]
to compute CTEs for various structures, e.g., convex, low-rank plus
identity, and Kronecker product structure. CTEs with group symmetry
structure has been studied in [10], where the associated problem was
shown to be geodesically convex and fixed-point iterative algorithms
has been derived to compute the solution. In [12], the authors
proposed MM algorithms to compute the CM estimator with a low
rank Compound Gaussian plus white Gaussian noise structure (note
these estimators are not CTE). Recently, structure set SKPLR has
been consider in [14], where an estimator was derived by projecting
the SCM onto the set. As regard to this brief state of the art, CTEs
were derived under either the Kronecker or low rank structure, but
not under the set SKPS which imposes them simultaneously. The
set SKPLR has been considered, but the derived estimator in [14]
is not robust since SCM is known vulnerable to abnormal samples.
This paper aims therefore at filling this gap and proposes algorithms
that can exploit both structure priors SKPS and SKPLR in a robust
estimation process.

II. CONSTRAINED TYLER’S ESTIMATOR (CTE)

Consider a set of K complex-valued M -dimensional i.i.d. samples
{zk}. Tyler’s CM estimator [4], also referred to as fixed point
estimator [5], is the unique (up to a positive scaling factor) minimizer
of the following negative log-likelihood function:

L (Σ) =
M

K

K∑
k=1

ln
(
zH
k Σ−1zk

)
+ ln |Σ|. (1)

Tyler’s estimator can be computed using a fixed point algorithm that
requires the number of samples K satisfying K > M [4, 5]. This
estimator has the desirable properties of being distribution-free over
the class of CES distributions and robust to sample contamination by
outliers [2]. However it requires a number of samples K > M , and
the typical rule of thumb suggest that K ' 2M is required in order
to reach good estimation performance.



To overcome this issue, prior considerations on the model/system
can provide some information about the CM structure. Such prior
information can be exploited in the estimation process in order to
improve performance at low sample support. A natural approach is
to seek an estimator in the structural set that minimizes the cost
function L (Σ). This leads to the CTE defined as the solution of the
following problem:

min
Σ∈S

L (Σ) (2)

where S is a set of matrices possessing some prior structure (e.g.
Toeplitz, persymmetric). While for some specific structures such as
group symmetry, the existence and uniqueness of their CTE can
be guaranteed [10], solving Problem (2) under a majority of the
structures of practical interest remains a challenging task due to the
nonconvexity of L and the possibly nonconvexity of S. Therefore,
instead of attempting to find the global optimal of (2), we focus on
deriving efficient algorithms in computing at least its local solution
or the two aforementioned structural sets SKPS and SKPLR.

III. BLOCK MAJORIZATION-MINIMIZATION FRAMEWORK

To solve further-coming optimization problems, we rely on
the block majorization-minimization (MM) algorithmic framework,
which is briefly stated below. For more complete information, we
refer the reader to [16]. Consider the following optimization problem:

minimize
x

f (x)

subject to x ∈ X ,
(3)

where the optimization variable x can be partitioned into m blocks
as x =

(
x(1), . . . ,x(m)

)
, with each ni-dimensional block x(i) ∈ Xi

and X =
∏m

i=1 Xi. At the (t+ 1)-th iteration, the i-th block x(i) is
updated by solving the following problem:

minimize
x(i)

gi
(
x(i)|xt

)
subject to x(i) ∈ Xi,

(4)

with i = (t mod m)+1 (so blocks are updated in cyclic order) and
the continuous surrogate function gi (·|xt) satisfying the following
properties:

f (xt) = gi
(
x
(i)
t |xt

)
,

f
(
x
(1)
t , . . . ,x(i), . . . ,x

(m)
t

)
≤ gi

(
x(i)|xt

)
∀x(i) ∈ Xi,

f ′
(
xt;d

0
i

)
= g′i

(
x
(i)
t ;di|xt

)
∀x(i)

t + di ∈ Xi,

d0
i , (0; . . . ;di; . . . ;0) ,

where f ′(x;d) stands for the directional derivative at x along d. In
short, at each iteration, the block MM algorithm updates the variables
in one block by minimizing a tight upperbound of the function while
keeping the other blocks fixed.

IV. LOW RANK PLUS IDENTITY KRONECKER PRODUCT

A. Problem statement

We consider the set of matrices that can be expressed as the
Kronecker product of two structured (i.e. low rank plus identity)
matrices, defined as:

SKPS =

Σ ∈ CM2

∣∣∣∣∣∣∣∣∣∣
Σ =

(
A + σ2I

)
⊗
(
B + σ2I

)
,

A ∈ CP2

, B ∈ CQ2

,

A � 0, B � 0 ,

rank (A) ≤ RA, rank (B) ≤ RB



Algorithm 1 “KPS - MM”: Block MM algorithm for Robust
estimation of KPS structured covariance matrix

1: Form a starting point
{
Σt=0

A ,Σt=0
B

}
.

2: repeat
3: t← t+ 1
4: Update Σt

A with (16).
5: Update Σt

B with (17).
6: until Some convergence criterion is met.

Note that an element of SKPS is structured as a low rank plus identity
matrix, but that the rank of its low rank component can not be inferred
from RA and RB . The CTE corresponding to SKPS is solution of
the problem:

min.
Σ∈SKPS

L (Σ) . (5)

Substituting 
ΣA = A + σ2I

ΣB = B + σ2I

Σ = ΣA ⊗ΣB

Zk = uvec (zk) ∈ Q× P

(6)

into the objective function and applying the identity
zH
k (ΣA ⊗ΣB)

−1 zk = Tr
(
Σ−1

A ZH
k Σ−1

B Zk

)
leads to

L (Σ) = L (ΣA,ΣB) =
pq

K

K∑
k=1

ln
(

Tr
(
Σ−1

A ZH
k Σ−1

B Zk

))
+ q ln |ΣA|+ p ln |ΣB |.

(7)

Hence to obtain the CTE, we aim at solving:

min
ΣA�0,ΣB�0

L (ΣA,ΣB)

s.t. ΣA = A + σ2I , ΣB = B + σ2I

A � 0 , B � 0

rank (A) ≤ RA , rank (B) ≤ RB

(8)

Following the block MM methodology, we partition the variables as
{ΣA,ΣB} and derive an algorithm that updates these two blocks in
cyclic order, by minimizing surrogates functions (upperbounds of the
objective). This estimation procedure is referred to as “KPS - MM”
with corresponding algorithm summed up in table Algorithm 1.

Note that this algorithm falls, as a special case, into the constrained
iterations proposed in (64) of [11]. However we provide here some
details since our case allows for obtaining closed form updates and
that some of the results/methods are useful for the next sections.

B. Derivation of KPS - MM

1) Step 1: Update ΣA for fixed Σt
B:

For fixed parameter Σt
B , we have the following objective function:

L (ΣA) =
pq

K

K∑
k=1

ln
(

Tr
(
Σ−1

A ZH
k Σ−t

B Zk

))
+ q ln |ΣA|+ const.

(9)

with shortened notation Σ−t
B =

(
Σt

B

)−1 (the same convention
applies hereafter). To obtain the update Σt+1

A , we need to solve the
problem

min
ΣA�0

L (ΣA)

s.t. ΣA = A + σ2I

A � 0 , rank (A) ≤ RA

(10)



This problem is nonconvex and has no closed form solution. We
therefore minimize instead the surrogate function g

(
ΣA|Σt

A,Σ
t
B

)
given in the following proposition.

Proposition 1 (Eq. 20 of [16]) The objective function L (ΣA) can
be upperbounded at Σt

A by the following surrogate function:

g
(
ΣA|Σt

A,Σ
t
B

)
=
pq

K

K∑
k=1

Tr
(
Σ−1

A ZH
k Σ−t

B Zk

)
Tr
(
Σ−t

A ZH
k Σ−t

B Zk

)
+ q ln |ΣA|+ const.

(11)

Equality is achieved at ΣA = Σt
A. •

Denote the matrix

Mt
A =

P

K

K∑
k=1

ZH
k Σ−t

B Zk

Tr
(
Σ−t

A ZH
k Σ−t

B Zk

) (12)

To obtain the update Σt+1
A , one has now to solve the following

problem:
min

ΣA�0
ln |ΣA|+ Tr

(
Σ−1

A Mt
A

)
s.t. ΣA = A + σ2I

rank (A) ≤ RA,

(13)

which is still nonconvex but admits an unique solution, as given in
the following proposition.

Proposition 2 ([17, Section III.B.1.]) Define the SVD of the matrix
Mt

A as:

Mt
A =

P∑
p=1

λA
p vA

p (vA
p )

H (14)

and threshold λ̃A
p as

λ̃A
p =

{
max(λA

p , σ
2) for p ∈ [[1, Ra]]
σ2 for p ∈ [[Ra + 1, P ]],

(15)

the unique solution of (13) yields the update Σt+1
A as:

Σt+1
A =

P∑
p=1

λ̃A
p vA

p (vA
p )

H . (16)

2) Step 2: Update ΣB for fixed Σt+1
A : One can observe that

ΣB plays a similar role as ΣA in the objective function (7). Apply
Propositions 1 and 2 we obtain the update Σt+1

B as:

ΣB =

Q∑
q=1

λ̃B
q vB

q (vB
q )H (17)

where we define matrix Mt
B and its SVD as:

Mt
B =

Q

K

K∑
k=1

ZkΣ
−(t+1)
A ZH

k

Tr
(
Σ
−(t+1)
A ZH

k Σ−t
B Zk

)
SV D
=

Q∑
q=1

λB
q vB

q (vB
q )H

, (18)

and the threshold λ̃B
q as

λ̃B
q =

{
max(λB

q , σ
2) for q ∈ [[1, Rb]]
σ2 for q ∈ [[Rb + 1, Q]].

(19)

Algorithm 2 “KPLR - MM”: Block MM algorithm for Robust
estimation of KPLR structured covariance matrix

1: Form a starting point
{
Σt=0

A ,Σt=0
B

}
.

2: repeat
3: t← t+ 1
4: Update Dt

A with (31).
5: Update Dt

B with (32).
6: Update Ut

B with (37).
7: Update Ut

A with (39).
8: until Some convergence criterion is met.

V. LOW RANK KRONECKER PRODUCT PLUS IDENTITY

In this section, we consider the set of matrices that are expressed
as the sum of the Kronecker product of two low rank matrices and
the identity matrix, defined as:

SKPLR =

Σ ∈ CM2

∣∣∣∣∣∣∣∣∣∣
Σ = A⊗B + σ2I,

A ∈ CP2

, B ∈ CQ2

,

A � 0, B � 0 ,

rank (A) ≤ RA, rank (B) ≤ RB

 .

The CTE corresponding to SKPLR is solution of the problem

min
Σ∈SKPLR

L (Σ) . (20)

To solve this problem, we parameterize the matrices A and B by their
SVD, i.e., their unitary eigenvectors basis U and diagonal matrix of
eigenvalues D as:{

A = UADAUH
A , UH

AUA = IP , DA = diag{ap}
B = UBDBUH

B , UH
BUB = IQ , DB = diag{bq}

Note that the low rank structure of both A and B impose ap =
0 ∀p ∈ [[RA + 1, P ]] and bq = 0 ∀q ∈ [[RB + 1, Q]].

SubstitutingΣ = (UA ⊗UB)
(
DA ⊗DB + σ2I

) (
UH

A ⊗UH
B

)
Σ−1 = (UA ⊗UB)

(
DA ⊗DB + σ2I

)−1
(
UH

A ⊗UH
B

)
into the objective function leads to

L (Σ) = L (DA,DB ,UA,UB) = ln | DA ⊗DB + σ2I | +

M

K

K∑
k=1

ln
(
zH
k (UA ⊗UB)

(
DA ⊗DB + σ2I

)−1
(
UH

A ⊗UH
B

)
zk

)
(21)

Therefore, to obtain the CTE, we aim at solving:

min
DA,DB ,UA,UB

L (DA,DB ,UA,UB)

s.t. DA = diag{ap} � 0,

ap = 0 ∀p ∈ [[RA + 1, P ]],

DB = diag{bq} � 0,

bq = 0 ∀q ∈ [[RB + 1, Q]],

UH
AUA = IP ,UH

BUB = IQ.

(22)

Following the block MM methodology, we derive an algorithm
that updates the variables DA, DB , UA and UB in cyclic order,
by minimizing surrogate functions (upperbounds) of the objective.
This estimation procedure is referred to as “KPLR - MM” with
corresponding algorithm summed up in table Algorithm 2.



A. Derivation of KPLR - MM

To lighten notation, we omit the reference on t for variables that
are fixed in the considered block. For example, in the update of DA,
we denote UA = Ut

A, UB = Ut
B and DB = Dt

B . Due to lack of
space, the proof of some propositions is postponed to a forthcoming
full length publication.

1) Step 1: Update DA with other variables fixed:
In addition, we denote the rotated samples

z̃k =
(
UH

A ⊗UH
B

)
zk. (23)

The objective function then can be re-expressed as

L ({αw}) =
M

K

K∑
k=1

ln
(
z̃H
k diag

(
{α−1

(p,q)}
)

z̃k

)
+ ln |diag

(
{α(p,q)}

)
|

(24)

with shortened notation α(p,q) referring to:

α(p,q) = α(p−1)×Q+q , apbq + σ2

for p ∈ [[1, P ]] and q ∈ [[1, Q]]
(25)

This objective is expanded as ([ ]2 stands for “squared norm of”):

L ({ap}) =
M

K

K∑
k=1

ln

(
P∑

p=1

Q∑
q=1

[z̃k]
2
(p−1)×Q+q

apbq + σ2

)

+

P∑
p=1

Q∑
q=1

ln
(
apbq + σ2) . (26)

The objective is separable in the ap’s and yields, for a given index
w ∈ [[1, RA]], L ({ap}) =

∑RA
w=1 L (aw) with

L (aw) =
M

K

K∑
k=1

ln

(
Q∑

q=1

[z̃w,q
k ]2

awbq + σ2
+ γw

)

+

Q∑
q=1

ln
(
awbq + σ2)+ const.

(27)

where γw is a constant term, not depending on aw, defined as

γw =

P∑
p=1,p 6=w

Q∑
q=1

[z̃k]
2
(p−1)×Q+q

apbq + σ2
(28)

and where we used the shortened notation

[z̃w,q
k ]2 = [z̃k]

2
(w−1)×Q+q (29)

Optimizing L (aw) w.r.t. aw is a nonconvex problem that has no
closed form solution. To obtain an update for these parameters, we
build an upperbound of L (aw) as follows.

Proposition 3 The objective L (aw) can be upperbounded by the
surrogate function

g
(
aw|atw

)
= Aw ln (ωwaw + βw)−Kw ln (aw) + const. (30)

where Aw, ωw, βw and Kq are functions of atw defined in Appendix
A. Equality is achieved at aw = atw. •

The update for the parameter aw can be obtained thanks to the
following proposition.

Proposition 4 ([12, Prop. 2]) The surrogate function g
(
aw|atw

)
is

quasiconvex and has a unique minimizer that provides the update

at+1
w =

Kwβw
(Aw −Kw)ωw

(31)

•

2) Step 2 : Update DB with other variables fixed:
Note the variables {ap} and {bq} play a similar role in the objective

function. Let w ∈ [[1, RB ]], we can therefore adapt Proposition 3 and
4 to obtain the update of bw as:

bt+1
w =

K′wβ′w
(A′w −K′w)ω′w

(32)

The constants K′w, A′w, β′w and ω′w are defined in Appendix A.
3) Update UB with other variables fixed:

To lighten notation, we omit the reference on t for fixed variables
in this part. Hence we denote UA = Ut

A, DA = Dt+1
A and DB =

Dt+1
B . SubstitutingZk = uvec (zk) ∈ Q× P(

UH
A ⊗UH

B

)
zk = vec

(
UH

BZkUA

) (33)

into (21) gives the following objective:

L (UB) = const.+

M

K

K∑
k=1

ln

(
vec
(
UH

BZkUA

)H (
DA ⊗DB + σ2I

)−1 vec
(
UH

BZkUA

))
(34)

Once again, this objective can not be easily minimized directly w.r.t.
UB under unitary constraint. Following the block-MM methodology,
we upperbound it using the following proposition.

Proposition 5 The objective function L(UB) can be upperbounded
at Ut

B by the surrogate function

g
(
UB |Ut

B

)
= Tr

[
(Wt

B)
HUB

]
+ Tr

[
UH

BWt
B

]
+ const. (35)

Wt
B is defined in Appendix A. Equality is achieved at UB = Ut

B . •

The update for the parameter UB is the solution of

min
UB

g
(
UB |Ut

B

)
s.t. UH

BUB = IQ,
(36)

and is provided in following Proposition.

Proposition 6 ([18, Prop. 7]) The problem of minimizing the surro-
gate function g

(
UB |Ut

B

)
under constraint UH

BUB = IQ has an
optimal solution, that lead to the update

Ut+1
B = VLVH

R (37)

where VL and VH
R are the left and right singular vectors of the

matrix −Wt
B defined in Appendix A. •

4) Update UA with other variables fixed:

The update of UA is obtained in a similar way as the one of UB ,
thanks to the following propositions.

Proposition 7 The objective function L(UA) can be upperbounded
at Ut

B by the surrogate function

g
(
UA|Ut

A

)
= Tr

[
(Wt

A)
HUA

]
+ Tr

[
UH

AWt
A

]
+ const. (38)

Wt
A is defined in Appendix A. Equality is achieved at UA = Ut

A. •

Proposition 8 ([18, Prop. 7]) The problem of minimizing the surro-
gate function g

(
UA|Ut

A

)
under constraint UH

AUA = IP has an
optimal solution, that lead to the update

Ut+1
A = VLVH

R (39)

where VL and VH
R respectively the left and right singular vectors

of the matrix −Wt
A, defined in Appendix A. •



Fig. 1. SINR-Loss versus number of samples of adaptive filters build from
various CM estimators. Σ ∈ SKPLR. A and B are constructed by truncating
the SVD of Toeplitz matrices of correlation parameter ρa = 0.9 and ρb =
0.95 with P = 10, Ra = 4, Q = 4, Rb = 2. σ2 = 1 and matrices are
scaled so that Tr [A⊗B] /RaRb = 10dB. Noise is Compound Gaussian [2],
i.e. z

d
=
√
τn where n ∼ CN (0,Σ) and τ follows a Gamma distribution

of shape parameter ν = 1 and scale parameter 1/ν.

VI. VALIDATION SIMULATION

We study the mean SINR-Loss [13]: the ratio between the output
SNR of an adaptive filter ŵlr = Σ̂−1d (build from any estimator Σ̂)
and the output SNR of the optimal non-adaptive filter w = Σ−1d.
We consider a scenario where the actual CM belongs to SKPLR

and we compare the performance of the following estimators: the
SCM, Tyler’s estimator, The projection of the SCM onto SKPLR

proposed in [14] and the two estimators proposed in this paper. Figure
1 presents the mean SINR-Loss versus the number of secondary data
K. One can observe that estimators that do not exploit the structure
prior reach the lowest performance. Tyler’s estimator still performs
better than the SCM since the simulated noise is not Gaussian. RTE-
KPLR reaches the best performances, which was to be expected since
it can both exploit the structure prior and handle non-Gaussian. The
estimator from [14] reaches good performance (close to RTE-KPLR)
in the considered context, even if it is build from the SCM. RTE-KPS
also reaches acceptable performance even if it does not account for
the actual structure prior.

APPENDIX A
DEFINITION OF CONSTANTS OF ALGORITHM KPLR - MM

A. Constants for steps 1 and 2

Σ−t denotes the inverse estimated CM at the current step.

ζk =
(
zH
k Σ−tzk

)−1

(40)

κwq =
M

K

K∑
k=1

ζk
atwbq

[
z̃w,q
k

]2
atwbq + σ2

Kw =

Q∑
q=1

κwq

Aw =

Q∑
q=1

(
κwq + 1

)
= Kw +Q

ωw =
1

Aw

Q∑
q=1

(κwq + 1)bq

(atwbq + σ2)

βw =
1

Aw

Q∑
q=1

(κwq + 1)σ2

(atwbq + σ2)



κw′p =
M

K

K∑
k=1

ζk
apbtw

[
z̃w,q
k

]2
apbtw + σ2

K′w =

P∑
p=1

κw′p

A′w =

P∑
p=1

(
κw′p + 1

)
= K′w + P

ω′w =
1

A′w

P∑
p=1

(κw′p + 1)ap

(apbtw + σ2)

β′w =
1

Aw

P∑
p=1

(κw′p + 1)σ2

(apbtw + σ2)

B. Constants for steps 3 and 4{
Z̃k =

√
ζkZk

Λp = apDB + σ2I



Z̃A
k = Z̃kUA

XA
p =

K∑
k=1

[
Z̃A
k

]
:,p

[
Z̃A
k

]H
:,p

Mq =

P∑
p=1

[
ΛA

p

]
q,q

XA
p

Wt
B =

[
G1u

B(t)
1 . . .GQu

B(t)
Q

]
Gq = Mq − λ

(Mq)
max I



Z̃B
k = UH

B Z̃k

Mp =

K∑
k=1

(Z̃B
k )HΛ−1

p Z̃B
k

Wt
A =

[
G1u

A(t)
1 . . .GP u

A(t)
P

]
Gp = Mp − λ

(Mp)
max I
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