On stochastic modified 3D Navier-Stokes equations with anisotropic viscosity - Archive ouverte HAL
Article Dans Une Revue Journal of Mathematical Analysis and Applications Année : 2018

On stochastic modified 3D Navier-Stokes equations with anisotropic viscosity

Résumé

Navier-Stokes equations in the whole space R^3 subject to an anisotropic viscosity and a random perturbation of multiplicative type is described. By adding a term of Brinkman-Forchheimer type to the model, existence and uniqueness of global weak solutions in the PDE sense are proved. These are strong solutions in the probability sense. The convective term given in terms of the Brinkman-Forchheirmer provides some extra regularity in the space L^{2α+2} (R^3), with α > 1. As a consequence, the nonlinear term has better properties which allows to prove uniqueness. The proof of existence is performed through a control method. A Large Deviations Principle is given and proven at the end of the paper.
Fichier principal
Vignette du fichier
Stoc_3D_anisotropic_HB-AM.pdf (474.39 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01502048 , version 1 (05-04-2017)
hal-01502048 , version 2 (20-11-2017)

Identifiants

Citer

Hakima Bessaih, Annie Millet. On stochastic modified 3D Navier-Stokes equations with anisotropic viscosity. Journal of Mathematical Analysis and Applications, 2018, 462 (1), pp.915-956. ⟨10.1016/j.jmaa.2017.12.053⟩. ⟨hal-01502048v2⟩
279 Consultations
237 Téléchargements

Altmetric

Partager

More