Using big steps in coordinate descent primal-dual algorithms - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Using big steps in coordinate descent primal-dual algorithms

Résumé

The Vu-Condat algorithm is a standard method for finding a saddle point of a Lagrangian involving a differentiable function. Recent works have tried to adapt the idea of random coordinate descent to this algorithm, with the aim to efficiently solve some regularized or distributed optimization problems. A drawback of these approaches is that the admissible step sizes can be small, leading to slow convergence. In this paper, we introduce a coordinate descent primal-dual algorithm which is provably convergent for a wider range of step size values than previous methods. In particular, the condition on the step-sizes depends on the coordinate-wise Lipschitz constant of the differentiable function's gradient. We discuss the application of our method to distributed optimization and large scale support vector machine problems.
Fichier principal
Vignette du fichier
cdc.pdf (347.43 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01497087 , version 1 (28-03-2017)

Identifiants

Citer

Pascal Bianchi, Olivier Fercoq. Using big steps in coordinate descent primal-dual algorithms. IEEE 55th Conference on Decision and Control (CDC), Dec 2016, Las Vegas, NV, United States. pp.1895-1899, ⟨10.1109/CDC.2016.7798541⟩. ⟨hal-01497087⟩
90 Consultations
126 Téléchargements

Altmetric

Partager

More