
HAL Id: hal-01497087
https://hal.science/hal-01497087

Submitted on 28 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using big steps in coordinate descent primal-dual
algorithms

Pascal Bianchi, Olivier Fercoq

To cite this version:
Pascal Bianchi, Olivier Fercoq. Using big steps in coordinate descent primal-dual algorithms. IEEE
55th Conference on Decision and Control (CDC), Dec 2016, Las Vegas, NV, United States. pp.1895-
1899, �10.1109/CDC.2016.7798541�. �hal-01497087�

https://hal.science/hal-01497087
https://hal.archives-ouvertes.fr

Using Big Steps in Coordinate Descent Primal-Dual Algorithms

Pascal Bianchi and Olivier Fercoq

Abstract— The Vũ-Condat algorithm is a standard method
for finding a saddle point of a Lagrangian involving a dif-
ferentiable function. Recent works have tried to adapt the
idea of random coordinate descent to this algorithm, with
the aim to efficiently solve some regularized or distributed
optimization problems. A drawback of these approaches is
that the admissible step sizes can be small, leading to slow
convergence. In this paper, we introduce a coordinate descent
primal-dual algorithm which is provably convergent for a wider
range of step size values than previous methods. In particular,
the condition on the step-sizes depends on the coordinate-wise
Lipschitz constant of the differentiable function’s gradient. We
discuss the application of our method to distributed optimiza-
tion and large scale support vector machine problems.

I. INTRODUCTION

In applications such as machine learning or multiagent
systems, one is often faced with the issue of solving large
scale optimization problems containing both differentiable
and non-differentiable terms. In this context, random co-
ordinate descent (CD) algorithms are amongst the most
popular approaches. They consist in updating only a subset
of the components of the estimate at each iteration, the other
coordinates being maintained to their past value. Not only it
is often computationally easier to evaluate a single coordinate
of the gradient vector rather than the whole vector, but the
conditions under which the CD version of the algorithm is
provably convergent are generally weaker than in the case
of their deterministic counterpart. For instance, in the CD
version of the gradient descent [1] (or its proximal variant
[2]), the step size used in the algorithm when updating a
given coordinate i can be chosen to be inversely proportional
to the coordinate-wise Lipschitz constant of the differentiable
function along its ith coordinate, rather than the global
Lipschitz constant (as would be the case in a standard
gradient descent). Hence, the introduction of coordinate
descent allows to use longer step sizes which results in a
more attractive performance.

There is a rich literature on CD version of primal methods.
Richtárik and Takáč [2] apply CD to the minimization of a
sum of two convex functions f + g. The algorithm of [2]
is analyzed under the additional assumption that function
g is separable in the sense that for each x ∈ X , g(x) =∑n
i=1 gi(x

(i)) for some functions gi : Xi →] − ∞,+∞],
where x(i) stands for the ith coordinate of x.

Comparatively, less work has been done regarding the ap-
plication of CD to primal dual methods i.e., when one seeks

LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay, 75013, Paris,
France. E-mails: forename.name@telecom-paristech.fr.

This work has been supported by the Orange/Telecom ParisTech think
tank Phi-TAB and the ANR project ODISSEE

to find a saddle point of the Lagrangian. In the case where
the optimization problem contains a separable and a strongly
convex function, Zhang and Xiao [3] introduce a stochastic
CD primal-dual algorithm and analyze its convergence rate.
In 2013, Iutzeler et al. [4] proved that random coordinate
descent can be successfully applied to fixed point iterations
of firmly non-expansive (FNE) operators. It is known that the
ADMM can be written as a fixed point algorithm of a FNE
operator, which led the authors of [4] to propose a coordinate
descent version of ADMM with application to distributed
optimization. The key idea behind the convergence proof of
[4] is to establish the so-called stochastic Fejér monotonicity
of the sequence of iterates as noted by [5]. In a more general
setting than [4], Combettes et al. in [5] and Bianchi et al. [6]
extend the proof to the so-called α-averaged operators, which
include FNE operators as a special case. This generalization
allows to apply the coordinate descent principle to a broader
class of primal-dual algorithms which is no longer restricted
to the ADMM or the Douglas Rachford algorithm. For
instance, Forward-Backward splitting is considered in [5] and
a particular case of the Vũ-Condat algorithm is considered
in [6].

However, in the approach of [4], [5], [6] the convergence
conditions are identical to the ones of the brute method, the
one without coordinate descent. These conditions involve the
global Lipschitz constant of the gradient the differentiable
term instead than its coordinate-wise Lipschitz constants. In
practice, it means that the application of coordinate descent
to primal-dual algorithm as suggested by [5] and [6] is
restricted to the use of potentially small step sizes. One of
the major benefits of coordinate descent is lost.

In this paper, we provide a CD primal-dual algorithm
with a broader range of admissible step sizes. Our numerical
experiments show that remarkable performance gains can be
obtained when using larger step sizes. We review applica-
tions to asynchronous distributed optimization and machine
learning.

The paper is organized as follows. In Section II, we formu-
late the problem. In Section III we review some applications
to distributed optimization and to support vector machines
(SVM). The main algorithm is introduced in SectionIV. The
algorithm is instantiated in the case of distributed optimiza-
tion in Section V. Numerical experiments are provided in
Section VI in the case of SVM.

II. OPTIMIZATION FRAMEWORK

We consider the optimization problem

inf
x∈X

f(x) + g(x) + h(Mx) (1)

where X is a Euclidean space, M : X → Y is a linear
operator onto a second Euclidean space Y; functions f :
X → R, g : X → (−∞,+∞] and h : Y →] − ∞,+∞]
are assumed proper, closed and convex; the function f is
moreover assumed differentiable. We assume that X and Y
are product spaces of the form X = X1 × · · · × Xn and
Y = Y1×· · ·×Yp for some integers n, p. For any x ∈ X , we
use the notation x = (x(1), . . . , x(n)) to represent the (block
of) coordinates of x (similarly for y = (y(1), . . . , y(p)) in Y).
Under the standard qualification condition 0 ∈ ri(Mdomg−
domh) (where dom and ri stand for domain and relative
interior, respectively), a point x ∈ X is a minimizer of (1)
if and only if there exists y ∈ Y such that (x, y) is a saddle
point of the Lagrangian function

L(x, y) = f(x) + g(x) + 〈y,Mx〉 − h?(y)

where 〈 . , . 〉 is the inner product and h? : y 7→
supz∈Y〈y, z〉−h(z) is the Fenchel-Legendre transform of h.

Vũ [7] and Condat [8] separately proposed a primal-dual
algorithm allowing to handle f explicitly, and requiring one
evaluation of the gradient of f at each iteration. The algo-
rithm can be also be casted into a more general formalism
[9], [10].

III. APPLICATIONS

A. Distributed Optimization
Consider a set of n > 1 computing agents that cooperate

to solve the minimization problem

inf
u∈Rd

n∑
i=1

(fi(u) + gi(u)) (2)

where d ≥ 1 is an integer and where fi, gi are two private
cost functions available at Agent i. Typically, fi represents
a differentiable data fitting term corresponding to the data
locally accessible at node i, while gi represents a regulariza-
tion term. Here, the purpose is to design a distributed iterative
algorithm where at a each iteration, each active agent updates
a local estimate in the parameter space X based on the
sole knowledge of this agent’s private cost functions and on
an information it received from its neighbors through some
communication network. Eventually, the local estimates will
converge to a common value (or consensus) which is a
minimizer (assumed to exist) of the aggregate cost function
of Problem (2). In practice, it is assumed that the agents are
able to exchange information over a certain communication
graph G = (V,E) where V = {1, . . . , n} represents the set
of agents and where E is a set of undirected edges such
that {i, j} ∈ E if and only if the agents i and j are likely to
communicate. As noted by [6], the problem (2) is an instance
of the general problem (1) by setting X = (Rd)⊗N and for
every x ∈ X , f(x) =

∑n
i=1 fi(x

(i)), g(x) =
∑n
i=1 gi(x

(i))
and finally h(Mx) is chosen as an indicator function equal to
zero if x(1) = · · · = x(n) and to +∞ otherwise. We briefly
recall the specific choice h and M leading to a distributed
algorithm (see [6] for more details).

The idea is to ensure consensus separately over all the
edges of the graph. This way, the constraints are localized

at the edge level, but are equivalent to global consensus as
soon as G is connected. Mathematically, for any e = {i, j} ∈
E, let Me be the linear operator from X to Rd × Rd such
that Mex = (x(i), x(j)) for any x ∈ X (here we assume
some implicit ordering of the nodes). Define M as the linear
operator generated by stacking vertically the (Me)e∈E , that
is M : X → Y where Y = (Rd × Rd)|E|. For every y ∈ Y ,
decompose y as (ye)e∈E where each ye ∈ Rd × Rd is a
pair of vectors of Rd. Denote by h(y) the function equal to
zero if every pair ye has its two components equal, and to
zero otherwise. As made clear in [6], the quantity h(Mx) is
equal to zero if x has all its components equal and to +∞
otherwise, as soon as G is connected. Hence, the problem (2)
can be casted into the form (1).

By applying the Vũ-Condat algorithm on that problem,
[6] obtains a distributed proximal gradient algorithm, which
they call DADMM+. Applying on the top of that the idea
of coordinate descent, they may choose to update at each
iteration only the subset of coordinates which are physically
handled by a sole agent, chosen at random. This approach
has the advantage of making the algorithm asynchronous: at
each time n, an agent picked at random wakes up, updates
its own variables and sends the result of its computation to
its neighbors in the graph.

The drawback of the algorithm lies in its convergence
conditions. The conditions on the step size are related to
the global Lipschitz constant of the gradient of f(x) =∑n
i=1 fi(x

(i)) and the minimum node-degree in the graph.
First, these constants are by definition unknown (recall that
each function fi is only known by Agent i). Second, the step
size are limited by the Agent having the worst local Lipschitz
constant, and by the smallest node degree. In this paper, we
prove that these convergence conditions are too conservative,
and establish that each Agent might select its local step size
as a function of its own local Lipschitz constant and its own
degree.

B. Support Vector Machines

We consider a set of n observations gathered into a data
matrix A ∈ Rm×n and labels b ∈ Rn and we intend to solve
the following Support Vector Machine (SVM) problem:

min
w∈Rm,w0∈R

n∑
i=1

Ci max
(
0, 1− bi((A>w)i +w0)

)
+
λ

2
‖w‖22

where C1, . . . , Cn are positive weights typically allowing
to cope with potentially unbalanced classes. As is common
practice for this problem, we solve instead the Dual Support
Vector Machine problem:

max
x∈Rn

− 1

2λ
‖AD(b)x‖22 + eTx−

n∑
i=1

I[0,Ci](xi)− Ib⊥(x)

where D(b) is the diagonal matrix containing the labels, e
is the vector whose components are all equal to one, IS
is the indicator function of a set S (equal to zero on that
set, to +∞ outside) and b⊥ is the orthogonal space to the
linear span of the vector b. Some authors proposed to fix the

bias w0 to 0 in order to make the problem easier to solve
[11]. Here, we intend to solve the initial problem with a
non-zero bias. Setting f(x) = 1

2 ‖AD(b)x‖22 − eTx, g(x) =∑n
i=1 I[0,Ci](xi), h(y) = Ib⊥(y) and M = I , the problem

falls again into the formulation (1).
Other application examples are provided in [12].

IV. MAIN ALGORITHM

A. Notation

We note M = (Mj,i : i ∈ {1, . . . , n}, j ∈ {1, . . . , p})
where Mj,i : Xi → Yj are the block components of M . For
each j ∈ {1, . . . , p}, we introduce the set

I(j) :=
{
i ∈ {1, . . . , n} : Mj,i 6= 0

}
.

Otherwise stated, the jth component of vector Mx only
depends on x through the coordinates x(i) such that i ∈ I(j).
We denote by

mj := card(I(j))

the number of such coordinates. Without loss of generality,
we assume that mj 6= 0 for all j. For all i ∈ {1, . . . , n}, we
define

J(i) :=
{
j ∈ {1, . . . , p} : Mj,i 6= 0

}
.

Note that for every pair (i, j), the statements i ∈ I(j) and
j ∈ J(i) are equivalent.

Recall that Y = Y1 × · · · × Yp. For every j ∈ {1, . . . , p},
we use the notation Yj := YI(j)j . An arbitrary element u
in Yj will be represented by u = (u(i) : i ∈ I(j)). We
define Y := Y1 × · · · × Yp. An arbitrary element y in Y
will be represented as y = (y(1), . . . ,y(p)). This notation is
recalled in Table I below.

TABLE I
STANDING NOTATION.

Space Element
X = X1 × · · · × Xn x = (x(i) : i ∈ {1, . . . , n})
Y = Y1 × · · · × Yp y = (y(j) : j ∈ {1, . . . , p})

Yj = YI(j)
j u = (u(i) : i ∈ I(j))

Y = Y1 × · · · ×Yp y = (y(j) : j ∈ {1, . . . , p})
where y(j) = (y(j)(i) : i ∈ I(j)) ∀j

If ` is an integer, γ = (γ1, . . . , γ`) is a collection
of positive real numbers and A = A1 × · · · × A` is a
product of Euclidean spaces, we introduce the weighted
norm ‖ . ‖γ on A given by ‖u‖2γ =

∑`
i=1 γi‖u(i)‖2Ai

for
every u = (u(1), . . . , u(`)) where ‖ . ‖Ai stand for the norm
on Ai. If F : A →] − ∞,+∞] denotes a convex proper
lower-semicontinuous function, we introduce the proximity
operator proxγ,F : A → A defined for any u ∈ A by

proxγ,F (u) := arg min
w∈A

[
F (w) +

1

2
‖w − u‖2γ−1

]
where we use the notation γ−1 = (γ−11 , . . . , γ−1`). We denote
by prox

(i)
γ,F : A → Ai the ith coordinate mapping of proxγ,F

that is, proxγ,F (u) = (prox
(1)
γ,F (u), . . . ,prox

(`)
γ,F (u)) for

any u ∈ A. The notation DA(γ) (or simply D(γ) when
no ambiguity occurs) stands for the diagonal operator on
A → A given by DA(γ)(u) = (γ1u

(1), . . . , γ`u
(`)) for every

u = (u(1), . . . , u(`)).
Finally, the adjoint of a linear operator B is denoted B?.

The spectral radius of a square matrix A is denoted by ρ(A).

B. Algorithm

Consider Problem (1). Let σ = (σ1, . . . , σp) and τ =
(τ1, . . . , τn) be two tuples of positive real numbers. Consider
an independent and identically distributed sequence (ik :
k ∈ N∗) with uniform distribution on {1, . . . , n}. The
proposed primal-dual CD algorithm consists in updating four
sequences xk ∈ X , wk ∈ X , zk ∈ Y and yk ∈ Y . It is
provided in Algorithm 1 below.

Algorithm 1 Coordinate-descent primal-dual algorithm
Initialization: Choose x0 ∈ X , y0 ∈ Y .
For all i ∈ {1, . . . , n}, set w(i)

0 =
∑
j∈J(i)M

?
j,i y

(j)
0 (i).

For all j ∈ {1, . . . , p}, set z(j)0 = 1
mj

∑
i∈I(j) y

(j)
0 (i).

Iteration k: Define:

yk+1 = proxσ,h?

(
zk +D(σ)Mxk

)
xk+1 = proxτ,g

(
xk −D(τ)

(
∇f(xk) + 2M?yk+1 − wk

))
.

For i = ik+1 and for each j ∈ J(ik+1), update:

x
(i)
k+1 = x

(i)
k+1

y
(j)
k+1(i) = y

(j)
k+1

w
(i)
k+1 = w

(i)
k +

∑
j∈J(i)

M?
j,i (y

(j)
k+1(i)− y

(j)
k (i))

z
(j)
k+1 = z

(j)
k +

1

mj
(y

(j)
k+1(i)− y

(j)
k (i)) .

Otherwise, set x(i)k+1 = x
(i)
k , w(i)

k+1 = w
(i)
k , z(j)k+1 = z

(j)
k and

y
(j)
k+1(i) = y

(j)
k (i).

Remark. In Algorithm 1, it is worth noting that quantities
(xk+1, yk+1) do not need to be explicitly calculated. At
iteration k, only the coordinates

x
(ik+1)
k+1 and y

(j)
k+1, ∀j ∈ J(ik+1)

are needed to perform the update. When g is separable, it
can be easily checked that other coordinates do not need to
be computed. From a computational point of view, it is often
the case that the evaluation of the above coordinates is less
demanding than the computation of the whole vectors xk+1,
yk+1. Practical examples are provided in Section VI.

For every i ∈ {1, . . . , n}, we denote by Ui : Xi → X the
linear operator such that all coordinates of Ui(u) are zero
except the ith coordinate which coincides with u: Ui(u) =
(0, · · · , 0, u, 0, · · · , 0). Our convergence result holds under
the following assumptions.

Assumption 4.1: a) The functions f , g, h are closed
proper and convex.

b) The function f is differentiable on X .
c) For every i ∈ {1, . . . , n}, there exists βi ≥ 0 such that

for any x ∈ X , any u ∈ Xi,

f(x+ Uiu) ≤ f(x) + 〈∇f(x), Uiu〉+
βi
2
‖u‖2Xi

.

d) The random sequence (ik)k∈N∗ is independent with uni-
form distribution on {1, . . . , n}.

e) For every i ∈ {1, . . . , n},

τi <
1

βi + ρ
(∑

j∈J(i)mjσjM?
j,iMj,i

) .
We denote by S the set of saddle points of the Lagrangian
function L. Otherwise stated, a couple (x∗, y∗) ∈ X ×Y lies
in S if and only if it satisfies the following inclusions

0 ∈ ∇f(x∗) + ∂g(x∗) +M?y∗ (3)
0 ∈ −Mx∗ + ∂h?(y∗) . (4)

We shall also refer to elements of S as primal-dual solutions.

Theorem 4.2: Let Assumption 4.1 hold true and suppose
that S 6= ∅. Let (xk,yk) be a sequence generated by
Algorithm 1. Almost surely, there exists (x∗, y∗) ∈ S s.t.

lim
k→∞

xk = x∗

lim
k→∞

y
(j)
k (i) = y

(j)
∗ (∀j ∈ {1, . . . , p}, ∀i ∈ I(j)) .

The proof of the following Theorem is found in [12]. It is
worth noting that, under the stated assumption on the step-
size, the stochastic Fejér monotonicity of the sequence of
iterates, which is the key idea in [4], [5], [6], does not
hold (a counter-example is provided in [12]). Our proof
is different and relies on the introduction of an adequate
Lyapunov function.

Remark. A quite similar algorithm was proposed by [13],
unfortunately we have not been able to understand the
convergence proof. Moreover, the algorithm of [13] uses
small step sizes which yields potentially slow convergence
phenomena as discussed in [12].

C. Special Cases

1) The Case m1 = · · · = mp = 1: We consider the
special case m1 = · · · = mp = 1. Otherwise stated, the
linear operator M has a single nonzero component Mj,i per
row j ∈ {1, . . . , p}.

For each j ∈ {1, . . . , p}, the vector y
(j)
k is reduced to

a single value y
(j)
k (i) ∈ Yj where i is the unique index

such that Mj,i 6= 0. We simply denote this value by y
(j)
k .

Algorithm 1 simplifies to Algorithm 2 below.
2) The Case h = 0: Instanciating Algorithm 1 in the

special case h = 0, it boils down to the following CD
forward-backward algorithm:

x
(i)
k+1 =

{
prox

(i)
τ,g

(
xk −D(τ)∇f(xk)

)
, if i = ik+1,

x
(i)
k , otherwise.

(5)

Algorithm 2 Coordinate-descent primal-dual algorithm -
Case m1 = · · · = mp = 1.
Initialization: Choose x0 ∈ X , y0 ∈ Y .
Iteration k: Define:

yk+1 = proxσ,h?

(
yk +D(σ)Mxk

)
xk+1 = proxτ,g

(
xk −D(τ)

(
∇f(xk) +M?(2yk+1 − yk)

))
.

For i = ik+1 and for each j ∈ J(ik+1), update:

x
(i)
k+1 = x

(i)
k+1

y
(j)
k+1 = y

(j)
k+1 .

Otherwise, set x(i)k+1 = x
(i)
k ,y(j)k+1 = y

(j)
k .

As a consequence, Algorithm 1 allows to recover the CD
proximal gradient algorithm of [2] with the notable differ-
ence that we do not assume the separability of g. On the
other hand, Assumption 4.1(e) becomes τi < 1/βi whereas
in the separable case, [2] assumes τi = 1/βi.

V. APPLICATION TO DISTRIBUTED OPTIMIZATION

We apply our algorithm to the special instance described
in Section III-A. Here our approach is identical to the one of
[6] (the difference with [6] lies in the convergence condition).
We will therefore skip the technical details behind the
instanciation of the random coordinate descent and directly
provide the algorithm, we refer the interested reader to [12].

The Distributed Asynchronous Primal Dual Algorithm
(DAPD) method is described in Algorithm 3. The notation
Ni stands for the neighborhood of a node i in the graph and
di is the degree of node i.

Algorithm 3 DAPD.

Initialization: Each node i ∈ {1, . . . , n} chooses x(i)0 and
(λ

(i,j)
0 : j ∈ Ni)

Iteration k: A node i = ik+1 wakes up uniformly at random

λ
(i,j)
k+1 =

λ
(i,j)
k − λ(j,i)k

2
+
x
(i)
k − x

(j)
k

2ρ

x
(i)
k+1 = proxτigi/di

(
x
(i)
k −

τi
di
∇fi(x(i)k) + τi∆

(i)
k

)
where ∆

(i)
k = d−1i

∑
j∈Ni

(λ
(j,i)
k + ρ−1(x

(j)
k − x

(i)
k)).

Node i communicates x(i)k+1 and λ(i,j)k+1 to each neighbor j
All nodes ` 6= i do not modify their iterates x(`)k+1 = x

(`)
k

and λ(`,j)k+1 = λ
(`,j)
k for all j ∈ N`.

Theorem 5.1: Assume that G is connected and that (2)
has a minimizer. Assume that the sequence of active nodes
(ik)k∈N∗ is iid and uniformly distributed. Assume that for
every i = 1, . . . , n, ∇fi is Li-Lipschitz continuous and

τi
−1 − ρ−1 > Li

di
(6)

where di is the degree of node i. Then, almost surely and
for any initial value, there exists a minimizer x? of (2) such
that for every i = 1, . . . , n, the sequence x(i)k generated by
the DAPD converges almost surely to a x?.
We now compare this result with [6]. In [6], the same step
τ1 = · · · = τn = τ was used for all Agents and the
convergence condition was τ−1 − ρ−1 > maxi Li

2mini di
. Apart

from the factor 2, the condition (6) on the step size is
generally milder and allows for larger step sizes. In addition,
the conditions only involve parameters that are local.

VI. NUMERICAL EXPERIMENT

We used one processor of a computer with Intel Xeon
CPUs at 2.80GHz. In the experiment1, we consider the SVM
problem discussed in Section III-B. We consider the the
RCV1 dataset where A is a sparse m × n matrix with
m = 20,242, n = 47,236 and 0.157 % of nonzero entries
and we take Ci = 1

n for all i and λ = 1
4n . For this dataset,

‖A‖2 ≈ 40 maxi ‖Aei‖2, which means that using small step
sizes would lead to a roughly 40 times slower algorithm.
This situation is not uncommon and is one of the reasons
why coordinate descent methods are attractive. We compare
our method with
• SCDA [11]: note that SDCA simply forgets Ib⊥(x) in

order to be able to apply the classical coordinate descent
method a thus will not converge to an optimal solution.

• RCD [14]: at each iteration, the algorithm selects two
coordinates randomly and performs a coordinate descent
step according to these two variables. Updating two
variables at a times allows us to satisfy the linear
constraint at each iteration.

We can see on Figure 1 the decrease of the SVM duality gap
for each algorithm. SDCA is very efficient in the beginning
and converges quickly. However, as the method does not
take into account the intercept, it does not converge to the
optimal solution and stagnates after a few passes on the data.
Algorithm 1 allows step sizes nearly as long as SDCA’s
and taking into account the coupling constraint represents
only marginal additional work. Hence, the objective value
decreases nearly as fast for SDCA in the beginning without
sacrificing the intercept, leading to a smaller objective value
in the end. The RCD method of [14] does work but is not
competitive in terms of speed of convergence. We also tried
the C implementation of LIBSVM but it needed 175s to solve
the (medium-size) RCV1 problem.

REFERENCES

[1] Yurii Nesterov, “Efficiency of coordinate descent methods on huge-
scale optimization problems,” SIAM Journal on Optimization, vol. 22,
no. 2, pp. 341–362, 2012.

[2] Peter Richtárik and Martin Takáč, “Iteration complexity of random-
ized block-coordinate descent methods for minimizing a composite
function,” Mathematical Programming, vol. 144, no. 1-2, pp. 1–38,
2014.

[3] Yuchen Zhang and Lin Xiao, “Stochastic primal-dual coordinate
method for regularized empirical risk minimization,” arXiv preprint
arXiv:1409.3257, 2014.

1Code available on https://github.com/ofercoq/lightning

Fig. 1. Comparison of dual algorithms for the resolution of linear SVM
on the RCV1 dataset. We report the value of the duality gap after a post-
processing to recover feasible primal and dual variables. Primal variables
are recovered as suggested in [11] and the intercept is recovered by exact
minimization of the primal objective given the other primal variables. When
dual iterates are not feasible, we project them onto the dual feasible set
before computing the dual objective. We stopped each algorithm after 100
passes through the data.

[4] Franck Iutzeler, Pascal Bianchi, Philippe Ciblat, and Walid Hachem,
“Asynchronous distributed optimization using a randomized alternat-
ing direction method of multipliers,” in Decision and Control (CDC),
2013 IEEE 52nd Annual Conference on. IEEE, 2013, pp. 3671–3676.

[5] Patrick L Combettes and Jean-Christophe Pesquet, “Stochastic quasi-
Fejér block-coordinate fixed point iterations with random sweeping,”
SIAM Journal on Optimization, vol. 25, no. 2, pp. 1221–1248, 2015.

[6] Pascal Bianchi, Walid Hachem, and Franck Iutzeler, “A stochastic
coordinate descent primal-dual algorithm and applications to large-
scale composite optimization,” arXiv preprint arXiv:1407.0898, 2014.

[7] Bang Công Vũ, “A splitting algorithm for dual monotone inclusions
involving cocoercive operators,” Advances in Computational Mathe-
matics, vol. 38, no. 3, pp. 667–681, 2013.

[8] Laurent Condat, “A primal–dual splitting method for convex optimiza-
tion involving Lipschitzian, proximable and linear composite terms,”
Journal of Optimization Theory and Applications, vol. 158, no. 2, pp.
460–479, 2013.

[9] Damek Davis and Wotao Yin, “A three-operator splitting scheme and
its optimization applications,” arXiv preprint arXiv:1504.01032, 2015.

[10] Puya Latafat and Panagiotis Patrinos, “Asymmetric forward-backward-
adjoint splitting for solving monotone inclusions involving three
operators,” arXiv preprint arXiv:1602.08729, 2016.

[11] Shai Shalev-Shwartz and Tong Zhang, “Stochastic dual coordinate
ascent methods for regularized loss minimization,” Journal of Machine
Learning Research, vol. 14, pp. 567–599, 2013.

[12] Olivier Fercoq and Pascal Bianchi, “A coordinate descent primal-dual
algorithm with large step size and possibly non separable functions,”
arXiv preprint arXiv:1508.04625, 2015.

[13] Jean-Christophe Pesquet and Audrey Repetti, “A class of randomized
primal-dual algorithms for distributed optimization,” Journal of
Nonlinear Convex Analysis, vol. 16, no. 12, 2015.

[14] Ion Necoara and Andrei Patrascu, “A random coordinate descent
algorithm for optimization problems with composite objective function
and linear coupled constraints,” Tech. Rep., Politehnica University of
Bucharest, 2012.

https://github.com/ofercoq/lightning

	Introduction
	Optimization Framework
	Applications
	Distributed Optimization
	Support Vector Machines

	Main Algorithm
	Notation
	Algorithm
	Special Cases
	The Case m1=…=mp=1
	The Case h=0

	Application to Distributed Optimization
	Numerical Experiment
	References

