Closed state model for understanding the dynamics of MOEAs - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

Closed state model for understanding the dynamics of MOEAs

Résumé

This work proposes the use of simple closed state models to capture, analyze and compare the dynamics of multi- and many-objective evolutionary algorithms. Two- and three-state models representing the composition of the instantaneous population are described and learned for representatives of the major approaches to multi-objective optimization, i.e. dominance, extensions of dominance, decomposition, and indicator algorithms. The model parameters are trained from data obtained running the algorithms with various population sizes on enumerable MNK-landscapes with 3, 4, 5 and 6 objectives. We show ways to interpret and use the model parameter values in order to analyze the population dynamics according to selected features. For example, we are interested in knowing how parameter values change for a given population size with the increase of the number of objectives. We also show a graphical representation capturing in one graph how the parameters magnitude and sign relate to the connections between states.
Fichier principal
Vignette du fichier
monzon.gecco2017.pdf (2.54 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01496329 , version 1 (10-05-2017)

Identifiants

  • HAL Id : hal-01496329 , version 1

Citer

Hugo Monzón, Hernan Aguirre, Sébastien Verel, Arnaud Liefooghe, Bilel Derbel, et al.. Closed state model for understanding the dynamics of MOEAs. Genetic and Evolutionary Computation Conference (GECCO 2017), Jul 2017, Berlin, Germany. pp.609-616. ⟨hal-01496329⟩
268 Consultations
162 Téléchargements

Partager

More