Genotype-by-Environment Interactions Emerge from Simple Assemblages of Mathematical Functions in Ecological Models
Résumé
{début du text] Phenotypic plasticity is the ability of an organism to change its phenotype in response to changes in the environment. Such an ability varies with genotypes (Pigliucci, 2005; El-Soda et al., 2014) and thus the environment and genotypes can interact to shape phenotypic traits (Via et al., 1995; Pigliucci and Hayden, 2001; Nussey et al., 2007). These interactions are at the basis of evolutionary processes that can, for example, drive natural populations to maladaptive evolution, when the environment is altered by anthropogenic pressures, or select for phenotypic plasticity, when the environment is unstable (Gotthard and Nylin, 1995; Pigliucci, 2005; Postma and van Noordwijk, 2005; Dunlop et al., 2009; Ingleby et al., 2010; Kuparinen and Hutchings, 2012).
Genotype by environment interactions (GEI) can also alter community structures and dynamics (Miner et al., 2005). For instance, roots forming a symbiosis with different genotypes of arbuscular mycorrhizal fungi are not affected in the same way by phosphorus availability (Ehinger et al., 2009). On the other hand, the stability of ectomycorrhizal fungal communities can be altered as a consequence of the interactions of plant genotypes with drought conditions (Gehring et al., 2014).
Fichier principal
genard_{2527A04B-D025-4F94-9585-CD3EED7D84B8}.pdf (554.61 Ko)
Télécharger le fichier
Origine | Accord explicite pour ce dépôt |
---|
Loading...