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INTRODUCTION

Phenotypic plasticity is the ability of an organism to change its phenotype in response to changes
in the environment. Such an ability varies with genotypes (Pigliucci, 2005; El-Soda et al., 2014)
and thus the environment and genotypes can interact to shape phenotypic traits (Via et al., 1995;
Pigliucci and Hayden, 2001; Nussey et al., 2007). These interactions are at the basis of evolutionary
processes that can, for example, drive natural populations to maladaptive evolution, when the
environment is altered by anthropogenic pressures, or select for phenotypic plasticity, when the
environment is unstable (Gotthard and Nylin, 1995; Pigliucci, 2005; Postma and van Noordwijk,
2005; Dunlop et al., 2009; Ingleby et al., 2010; Kuparinen and Hutchings, 2012).

Genotype by environment interactions (GEI) can also alter community structures and dynamics
(Miner et al., 2005). For instance, roots forming a symbiosis with different genotypes of arbuscular
mycorrhizal fungi are not affected in the same way by phosphorus availability (Ehinger et al.,
2009). On the other hand, the stability of ectomycorrhizal fungal communities can be altered as a
consequence of the interactions of plant genotypes with drought conditions (Gehring et al., 2014).

Assessing and modeling GEI is a key objective in evolutionary science (Gillespie and Turelli,
1989; Higginson and Reader, 2009; Ingleby et al., 2010), and in agricultural science to assist breeding
in a context of global and local environmental changes (Falconer, 1952; Hammer et al., 2006).
Multi-environment trials are the regular basis for the study of GEI, and the additive main effects
and multiplicative interaction model is one of the most widely used analysis tools (Rodrigues
et al., 2016). This has led to a widespread statistical conception of GEI, but there is a need to
understand the origin of GEI when it is expressed at the level of a global performance (e.g., crop
yield; Chapman, 2008). As applied ecological models, crop models have been widely designed and
used by crop physiologists to decipher GEI (Yin et al., 2004; Boote et al., 2013). Paradoxically, GEI
are rarely specified in genotype-dependencemodeling approaches, and their occurrence is generally
considered as an emerging property of simulation models, i.e., GEI reflects unexpected properties
generated by complex interconnections between subsystem components and biological processes
(Bertin et al., 2010).

In this paper, we specifically aim at challenging such a conception by showing that GEI can
arise from simple mathematical formulations in ecological models that consider both different
genotypes and environmental variation. First, we exemplify the occurrence of GEI in a model
linking population dynamics with bioenergetics in passerine birds (Wiens and Innis, 1974). Then,
we identify the three following basic situations that can generate GEI in ecological models,
regardless of their complexity: (1) a product or quotient of a function of environment by a function
of genotype, (2) a product or quotient of functions of environment and genotype, without any GEI
in any of these functions; and (3) a composition of a non-linear function with a function of both
environment and genotype in which there is no GEI.
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AN EXAMPLE OF GEI OCCURRENCE IN
AN ECOLOGICAL MODEL

The Wiens and Innis’s (1974) bioenergetics model estimates
daily densities of birds at different life stages (eggs, nestlings,
fledglings, juveniles, and adults) in a population when initial
adult population size, vital rates, and the timings of molting
and breeding are known. The consequent demographic model
permits to calculate the expected daily energy demand of a
population from both seasonal temperature inputs and estimates
of mass- and life stage-specific metabolic rates based on existence
energy requirement and seasonal costs of activity, reproduction
and molting (Wiens and Innis, 1974). In this model, genotypic
variation can be simulated by assuming for each genotype
a different mass at the adult stage, which eventually drives
the value of any mass dependent vital rate. This allows to
illustrate an approach of GEI occurring at the interspecific
level by considering five virtual bird species of varying adult
masses in the range of 5–45 g. This was intended to generate
a gradient in size in passerine species ranging from that of
the Goldcrest (Regulus regulus) to that of the Red Crossbill
(Loxia curvirostra). Environmental variation was simulated
using five different scenarios of temperature variation obtained
by translating realistic temperature series experienced by Red
crossbills (Benkman et al., 2012) into a temperature delta of −2
to +2◦C. The model was run for 5 × 5 combinations of bird
species and temperature values. The parameter values were taken
from Benkman et al. (2012), except hatching success HS that
was assumed to vary with temperature whatever the species as
follows: HS = HScst + 0.1 × 1θ , where 1θ is the temperature
delta mentioned above and HScst is the value used by Benkman
et al. (2012).

The model simulations suggest a greater increase in adult
food intake in bigger than in smaller species when temperature
rises (Figure 1A). We will show further that this interaction
between temperature and genotype is not concerned with the
model complexity.

GEI ARISING FROM A PRODUCT OR
QUOTIENT OF A FUNCTION OF
ENVIRONMENT BY A FUNCTION OF
GENOTYPE

Let us consider two functions f(E) and g(G), where E and G
denote an environmental factor and the genotype, respectively.
Functions f and g represent a given process of an organism,
population, community, or ecosystem. They can be linear or non-
linear. The most straightforward GEI arises from the product or
quotient of f(E) by g(G), knowing that such products or quotients
of functions are very common in ecological models. A very simple
case shown in Figure 1Ba is f(E) × g(G), with f(E) = aE and
where a is a parameter independent of the genotype that indicates
the sensitivity of the process to the environment, and g(G) = bG
where bG is a parameter whose value depends on the genotype G.

A more realistic example, with f and g non-linear, can be
provided by theMetabolic Theory of Ecology (MTE; Brown et al.,
2004). This theory predicts that the individual metabolic rate (I)

can be described as a function of temperature (T) and individual
mass (M) as follows:

I= f(T)× g(M)= io e
−AF/kT M3/4, where io is a normalization

constant, AF is the activation energy, k is the Boltzmann’s
constant, and T is the absolute temperature in Kelvin. Assuming
for the sake of demonstration that M depends only on the
genotype, a strong interaction emerges between genotype and
temperature for the individual metabolic rate I (Figure 1Bb).
Such a type of interaction typically explains the GEI pattern
observed in Figure 1A. In the bioenergetics model of Wiens and
Innis (1974), clutch size is indeed a demographic parameter that
depends on adult mass and therefore on genotype, and that is
multiplied by hatching success (HS) to calculate the number
of nestlings. When HS is a linear function of temperature, a
GEI occurs and propagates to the final output of the model
(Figure 1A).

GEI ARISING FROM A PRODUCT OR
QUOTIENT OF ENVIRONMENT AND
GENOTYPE FUNCTIONS THAT DO NOT
INITIALLY IMPLY GEI

Let us consider two functions f(E, G) and g(E, G). As previously,
f and g are linear or non-linear and represent any process in an
organism, a population, a community, or an ecosystem. E and G
denote an environmental factor and the genotype, respectively.
We deal with the case when there is no interaction between E and
G (such interactions arising from a product or a quotient as noted
previously), neither in f nor in g. A simple case is the product
of f(E, G) by g(E, G) with f(E, G) = af E + bf (G) and g(E, G)
= agE + bg(G), and where ai is independent of the genotype
and indicates the sensitivity of the process to the environment
while bi(G) varies with different genotypes. These conditions are
likely to generate a significant GEI, as shown on Figure 1Ca. For
example, demographic parameters such as survival probabilities
of different age classes used in the Wiens and Innis’s (1974)
bioenergetics model are multiplied to assess global fecundity in
population dynamics models, and they may be formalized as
functions of temperature and species (e.g., Ramos-Jiliberto and
Aranguiz-Acuna, 2007; Ullah et al., 2011).

Note that the product f(E, G) × g(E, G) does not necessarily
generates GEI as its occurrence primarily relies on parameter
values. Particular sets of parameters values can prevent the
occurrence of GEI in f × g in the absence of initial GEI in both
f and g (Figure 1Cb) or even though there is initial GEI in f and
in g (Figure 1Cc).

GEI ARISING FROM A FUNCTION
COMPOSITION WITH NON-LINEARITY

Let us consider a function f composed with a function g, i.e.,
f o g, where f is non-linear and g(E, G) is a function of both an
environmental factor E and the genotype G that do not interact.
The occurrence of GEI in this case can be exampled in plants
by composing the individual mass-specific metabolic rate ( I

M )

predicted by the universal law of individual mass ( I
M = f (M) =
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FIGURE 1 | Genotype-by-environment interactions in ecological models. (A) Species-by-temperature interaction for population annual energy intake predicted

by the Wiens and Innis’s (1974) bioenergetics model. The model was run for five virtual bird species of adult masses increasing arithmetically from 5 to 45 g. (B) GEI

arising from a product of functions of environment and genotype only. Variation of f(E) × g(G) with f(E) = aE where E is an environmental factor and g(G) = b1 or b2
depending on the genotype (a). Variation of individual metabolic rates predicted by MTE as a function of temperature for four species of different masses ranging from

10 to 500 g (b). (C) GEI arising or not from a product of functions of both an environmental factor E and the genotype G. Variation along E of f(E, G) = (a1E + b1), g(E,

G) = (a2E + b2) and their product for two genotypes (Geno 1 and Geno 2), where ai and bi are parameters independent and dependent on the genotype,

respectively; there is no GEI neither in f or g but a clear GEI arises from the product (a). Variation along E of the same functions and product as in (a), with a set of

parameters (a1 × b2 + a2 × b1 = cste) such that no GEI arises from the product (b). Variation along E of the same functions and product as in (a), but where ai and

bi depend on the genotype (GEI in each term of the product), with a set of parameters (chosen such as a1 × b2 + a2 × b1 = cste and a1 × a2 = cste) such that no

GEI arises from the product (c). (D) GEI arising from a function composition f o g with f non-linear and g(E, G) a function of both an environmental factor E and the

genotype G without interaction. Universal relationship between mass (M) and the mass-specific metabolic rate, according to the MTE (function f ), with temperature T

fixed (a). Variation of the mass-specific metabolic rate along a range of nitrogen supply (N supply) values for two different plant species (c), with mass being assumed

to increase linearly with N (function g) without G × N interaction (b).

α M−
1
4 , α being constant if T is fixed; Brown et al., 2004) withM

= g(N)= aN+ b.
Plant mass was assumed to vary positively (Ingestad and

Agren, 1992) and linearly with nitrogen supply N (Xia and Wan,
2008), with parameters a and b being independent and dependent
on the genotype, respectively.

Considering two different plant species (Figure 1D), a GEI
clearly arises for the mass-specific metabolic rate. Many power
functions of bird masses are used in the Wiens and Innis’s (1974)
bioenergetics model and therefore any environment-induced
variation in masses would probably have a strong impact on the
population energy intake predicted by this model.

CONCLUSIONS

We have shown that three main situations can generate
GEI in ecological models. They are based on products or
quotients or non-linearities of functions, which are commonly
encountered in such models. Based on these findings, we

challenge the conception according to which GEI would reflect
models’ unexpected properties due to interconnections between
subsystem components and biological processes (Bertin et al.,
2010). Our demonstration indicates that the complexity per
se of a model, i.e., the degree of such interconnections and
feedback regulations, is not involved in the occurrence of
GEI. A high degree of complexity may however imply many
products, quotients, or non-linearities and then favor the
occurrence and the range of GEI. As demonstrated here, GEI
may not necessarily be unexpected, but rather they can arise
from simple mathematical formulations. We are confident that
this contribution can help identifying GEI sources, and help
formalizing GEI in ecological models.
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