On the linear bounds on genera of pointless hyperelliptic curves
Résumé
An irreducible smooth projective curve over $\mathbb{F}_q$ is called \textit{pointless} if it has no $\mathbb{F}_q$-rational points. In this paper we study the lower existence bound on the genus of such a curve over a fixed finite field $\mathbb{F}_q$. Using some explicit constructions of hyperelliptic curves, we establish two new bounds that depend linearly on the number $q$. In the case of odd characteristic this improves upon a result of R. Becker and D. Glass. We also provide a similar new bound when $q$ is even.
Fichier principal
Pogildiakov - On the linear bounds on genera of pointless hyperelliptic curves.pdf (314 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...