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ON THE LINEAR BOUNDS ON GENERA OF POINTLESS

HYPERELLIPTIC CURVES

IVAN POGILDIAKOV

Abstract. An irreducible smooth projective curve over Fq is called pointless

if it has no Fq-rational points. In this paper we study the lower existence bound
on the genus of such a curve over a fixed finite field Fq. Using some explicit

constructions of hyperelliptic curves, we establish two new bounds that depend

linearly on the number q. In the case of odd characteristic this improves upon
a result of R. Becker and D. Glass. We also provide a similar new bound when

q is even.

1. Introduction

Given a prime power q = pn it is natural to ask whether a non-singular curve
over the finite field Fq having no rational points exists. For example, if p > 3, then
the Fermat curve Xq−1 + Y q−1 +Zq−1 = 0 serves an example of such a curve, since
αq−1 ∈ {0, 1} for every α in Fq. A positive answer to this question in the case of
arbitrary characteristic follows from a result due to N. Anbar and H. Stichtenoth
[1, Theorem 1.2]. They show that, given q and a non-negative number N , there
is a suitable function field defining a smooth curve over Fq of large genus having
exactly N rational points. Thus, given q, it is natural to ask what genus a pointless
curve over Fq may have.

Let C be an irreducible non-singular projective (we will omit these words further)
genus g curve defined over Fq. Denote by Nk(C) the number of rational points of
C ⊗Fq

Fqk . The curve C can not have too many or too few rational points. More
precisely, the Hasse–Weil–Serre bound on Nk(C) holds :

qk + 1− g
⌊
2qk/2

⌋
≤ Nk(C) ≤ qk + 1 + g

⌊
2qk/2

⌋
.

Therefore, if a curve C has no points over Fqk , i.e. Nk(C) = 0, then the lower bound
implies a restriction on the genus:

(1.1) g ≥ (qk + 1)/
⌊
2qk/2

⌋
.

Hence the following question arises.

Question 1.1. Given a prime power q and an integer g satisfying (1.1), does there
exist a non-singular genus g curve over Fq having no Fqk -points?

A complete answer to this question seems to be very difficult to obtain. It is
directly related to the question about the attainability of the lower Hasse–Weil–Serre
bound, becoming especially difficult, when the lower bound is non-positive but close
to zero.

In this paper we study the following special version of Question 1.1.
1
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Question 1.2. Given a prime power q, what is the minimal number gminq such that

for any g ≥ gminq there is a non-singular pointless genus g curve over Fq?

We restrict our consideration of these questions to hyperelliptic curves. Note
that for these curves there are several known improvements of the Hasse–Weil–Serre
bounds. They are mostly based on Stepanov’s method. One of these improvements
belongs to H. M. Stark. Applying one of his estimates on the number of rational
points on a hyperelliptic curve to the case g = 2 and q = 13, he showed that every
genus two curve C over F13 has N1(C) ≥ 2 [7, p. 288] (note that if a genus 2 curve
over Fq has no rational points, then the inequality (1.1) implies that q ≤ 13). This
fact probably initiated the study of Question 1.1.

There are several known approaches to Question 1.1. Each of them involves
different methods and constructions. One can identify three main directions : when
q is fixed, when g is fixed, and when q and g both vary.

The asymptotic behavior of the minimal degree of smooth plane curves over Fq
having no rational points when q →∞ was studied by S. Yekhanin in [10]. For a
field Fq of characteristic p > 3 a sequence of pointless non-singular plane curves
over F

q4k+1 of genus gk such that log
q4k+1 gk tends to 2/3 was constructed. Namely,

he showed that the Fermat curves

Xdk + Y dk + Zdk = 1,

where dk = 2k+1(q2 − 1)
∏k
i=1 (q4

i

+ 1), have no points over Fq4k+1 .

Aside from the trivial case of genus one, the question is completely resolved
only in the genus two, three and four cases. As we mentioned above, the genus
two case was treated by H. M. Stark in [7], where he modified Stepanov’s method
to estimate the number of rational points on hyperelliptic curves over Fp. Later
on, as a by-product of their research concerning abelian surfaces, D. Maisner and
E. Nart listed in [6, Table 4] all the pointless genus two curves over Fq, q < 13, up
to isomorphism over Fq. The genus three and four cases were investigated in detail
by E. W. Howe, K. E. Lauter and J. Top in [4]. For g equal to 3 or 4 and every q,
they either provide an example of a pointless genus g curve over Fq, or prove by
various methods that such a curve does not exist. Question 1.1 still remains open if
the genus is greater than 4.

The case when q is fixed has been studied more extensively. It can be subdivided
into at least two problems.

The first one is to estimate the minimal genus of a curve over Fq having no points
of degree n > 0 or less. It was proven by P. Clark and N. Elkies (a citation can be
found in [4, p. 127]), that for every prime p there is a constant Cp such that for
every integer n > 0 there is a curve over Fp of genus at most Cpnp

n that has no
points of degree n or less.

This unpublished result was reproven by C. Stirpe in her PhD thesis [9] by means
of the class field theory. She showed [9, Corollary 4.3] that, given a degree n > n0

place m of the rational function field Fq(x), there is a ray class field extension of
Fq(x) with conductor m and constant field Fq of genus

(n− 2)(qn − q)
2(q − 1)

,
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having no places of degree smaller than n. Note, the constant n0 can be specified
by [9, Remark 4.5] as n0 = b6 logq (9/4)c < 14. Furthermore, by taking a place m
of a special form, she refined this result as follows.

Theorem 1.3 (Theorem 1.1 in [9]). For any prime p there is a constant Cp such
that for any n > 0 and for any power q of p there is a projective curve over Fq of
genus g ≤ Cpqn without points of degree strictly smaller than n.

However, a sharper bound is proven in the general case. She obtained that, given
a prime p, there is a large integer n1 such that for any n > n1 there is a function
field over Fp of genus g ≤ 1

2(p−1)p
n without places of degree smaller than n. This

bound was replaced by g ≤ Cpqn, Cp = 1
2(p−1)p

n1 , for arbitrary n.

The second problem is to provide a number gq such that for any g ≥ gq there is a
pointless genus g curve over Fq. Using Artin–Schreier extensions of function fields,
N. Anbar and H. Stichtenoth showed in [1, Theorem 1.2] that for any q there are
positive constants aq, defined implicitly, and bq = (p− 1)(q + 2(p− 1)

√
q + 3p− 1)

such that for any g ≥ gq,N = aqN + bq there is a genus g curve over Fq having
exactly N rational points. In particular, for any g ≥ gq = gq,0 there is a pointless
genus g curve over Fq. In the case when q is a square the constant can be slightly
improved, namely gq = 2q(p− 1) + 3p2 − 2, which follows from [1, Remark 4.4].

We also remark that a more general result is implied by [1, Theorem 1.4]. Given
a prime power q and a positive integer n, there is a constant g0 such that for every
g ≥ g0 there is a curve over Fq having no points of degree n or less. This differs
from the results of C. Stirpe, since the bound on the genus is worse, however, the
existence is valid for any g ≥ g0.

Finally, in the case of odd characteristic there are results due to R. Becker and
D. Glass [2] that inspired our own research in this direction. In their work an explicit
construction of pointless hyperelliptic curves of a certain form defined over a finite
field Fq was provided. Let us discuss some of their results.

Let q be a power of an odd prime p. There are two types of existence bounds on
the genus of a pointless curve over Fq. The first one is implied by [2, Theorem 1.2],
which can be reformulated in terms of pointless curves in the following manner.

Theorem 1.4 (Reformulation of [2, Theorem 1.2]). Let a be the least residue of g
mod p. Suppose that g ≥ (p−a−1)(q−1), if a < p−1, or g ≥ (p−2a−2)(q−1)/2,
if 0 ≥ a ≥ (p− 3)/2. Then there exists a non-singular hyperelliptic pointless curve
of genus g defined over Fq.

These bounds depend on the congruence class of the genus modulo p and, in
general, are non-linear. Furthermore, they showed [2, Lemma 2.2] that if a = p− 1
and g ≥ (q − 1)/2, then such a curve also exists. Putting the above together, one
obtains the bound gminq ≤ (p − 1)(q − 1), which holds without any restriction on
the genus.

R. Becker and D. Glass also established several results of another type, providing
linear existence bounds. These bounds require imposing certain restrictive conditions
on the genus. For example, they proved:

Theorem 1.5 ([2, Corollary 2.5]). Let q be a power of a prime p > 2. For a given
g ≥ q−1

2 , set d = gcd(2g + 2, q − 1). If (2g + 2)d 6≡ (2g + 3)d mod p, then there
exists a hyperelliptic curve over Fq of genus g with no rational points.
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Moreover, in the case of prime q this theorem can be simplified as follows. Suppose
g is an integer such that g ≥ (p− 3)/2 and g + 1 is prime to (p− 1)/2. It results
from [2, Theorem 1.3] that there is a non-singular pointless genus g curve over Fp.

However, no linear bound without any restriction on g was previously known,
unless q is a Sophie Germain prime.

In this paper we provide a linear existence bound on the genus of a non-singular
pointless curve defined over a fixed finite field Fq with no additional assumptions.
Our main result is the following theorem:

Theorem 1.6. Let q be a prime power. Set

gq =

{
max

{
q−3
2 , 2

}
, q is odd,

max {q − 1, 2}, q is even.

Suppose that g ≥ gq. Then there is a smooth genus g hyperelliptic curve over Fq
having no Fq-points.

This result is stronger than that of R. Becker and D. Glass [2], since it provides
unconditional bounds, which depend linearly on q. Furthermore, it covers the case
of even characteristic.

We finish this introduction with a brief discussion of Question 1.2. It can be
completely answered for small values of q. We know that a pointless genus 2 curve
over Fq exists if and only if q < 13. It is also known that for q ≤ 13 there are
pointless curves over Fq of genus 3 and of genus 4. As a corollary of Theorem 1.6,
for an arbitrary q we have the bound

gminq ≤ gq =


2, q = 2, 3, 5, 7,

q − 1, q is even, q ≥ 4,

(q − 3)/2, q is odd, q ≥ 9.

Thus, collecting all this together, we get gminq = 2 when q < 13 and q 6= 8, and

gmin13 = 3.
However, if q = 8 or q > 13, then we can obtain only the upper and the lower

bounds on gminq . For example, there is a curve over F2 of genus 4 having no points
of degree 3 or less (see the table in the end of [9, Chapter 5]). Therefore, we have
4 ≤ gmin8 ≤ 7 and we do not know, whether a pointless curve over F8 of genus 5 or
6 exists. In general, one can estimate the quantity gminq by means of the inequality
(1.1) and the bound above.

In Section 2 we give some necessary preliminaries. In section 3 we prove our
result in the case of odd characterictic in several steps by explicit constructions of
suitable smooth hyperelliptic curves. In this case the idea of finding such curves is
similar to the one used in [2]. However, we prove their smoothness by an alternative
method, which leads to an improvement of the results in [2]. In section 4 we finish
the proof of Theorem 1.6 providing an explicit construction of pointless curves over
a finite field of even characteristic.

Acknowledgments. I would like to thank Prof. Alexey Zykin, my supervisor,
for the support motivating me in this research, for careful reading of the earlier
drafts of the paper and many helpful comments.
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2. Preliminaries

In this section we introduce the notation and the definitions, that will be used in
the rest of the paper. All necessary general information on hyperelliptic curves over
finite fields can be found in [5] (we will use Proposition 4.24 and Remark 4.25).

Let p be a prime and let q be a power of p. A genus g hyperelliptic curve C over
the finite field Fq can be defined by

y2 +Q(x)y = P (x),

where Q(x) and P (x) are polynomials in Fq[x] satisfying

2g + 1 ≤ max{2 degQ(x),degP (x)} ≤ 2g + 2.

If p is odd, then one can take Q(x) = 0. In this case C is a smooth projective curve
if and only if P (x) has no repeated roots in Fq. In the case of even characteristic
the smoothness of C is determined by a condition that Q′(x)2P (x) + P ′(x)2 and
Q(x) are coprime.

The curve C is the union of two affine curves

y2 +Q(x)y = P (x) and y2 + xg+1Q(1/x)y = x2g+2P (1/x).

The set of its rational points is the disjoint union of the set of rational points of the
first affine curve and the set of rational points of the second one having x = 0.

A hyperelliptic curve over Fq is said to be Fqk -maximal, if it has precisely 2qk + 2
points over Fqk . This definition is reasonable, since a hyperelliptic curve is a degree
2 branched covering of the projective line, so that it has at most 2 different points
over each point of P1.

We start with the following auxiliary lemma allowing us, in the case of odd
characteristic, to search for Fq-maximal non-singular hyperelliptic curves over Fq
rather than pointless ones.

Lemma 2.1. A smooth Fq-maximal genus g hyperelliptic curve over Fq exists if
and only if a smooth pointless hyperelliptic genus g curve over Fq does.

Proof. Let C be a smooth Fq-maximal genus g hyperelliptic curve over Fq. The Weil
theorem implies that

Tr (FrC) = 1 + q −N1(C) = −1− q,
where Tr (FrC) stands for the trace of the Frobenuis endomorphism of H1(C,Ql).

Let C′ be the Fq-quadratic twist of the curve C, then Tr (FrC′) = −Tr (FrC) and

N1(C′) = 1 + q − Tr (FrC′) = 0.

Since the Fq-quadratic twist of C′ is isomorphic over Fq to C, the lemma is proven. �

Let q be an odd prime power. In this case the method of finding pointless curves
we use is similar to the one used in [2] and is as follows. We denote by χq(x) the
quadratic character of Fq. Let F (x) be a polynomial over Fq such that

(1) F (x) is monic and square free of degree 2g + 2, g > 1,
(2) χq(F (x)) = 1 for any x ∈ Fq.

Denote by C the hyperelliptic curve over Fq with an affine model y2 = F (x). It
follows from (1) that C is a non-singular curve of genus g. Since F (x) satisfies (2),
we see that the number of affine Fq-points of the curve is 2q. Since all the points
of C at infinity satisfy y2 = x2g+2F (x−1) with x = 0 and F (x) is monic, C has two
points at infinity. Thus the curve C is Fq-maximal, and by Lemma 2.1 there exists
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a non-singular hyperellptic curve of genus g over Fq having no rational points. The
main obstacle to applying the method is finding a polynomial over Fq satisfying the
conditions (1) and (2).

We begin with the study of the family of hyperelliptic curves y2 = fg,l,a(x), where

(2.1) fg,l,a(x) = x2g+2 − x2g+2−l(q−1) + a2.

We denote by L(q, g) the quantity b(2g + 2)/(q − 1)c. Given an integer g and a
an element of Fq, the number of all the polynomials of the form (2.1) is precisely
L(q, g). We will also need the parameter D(q, g) = gcd(2g + 2, q − 1) in the next
section.

This family includes most of the curves considered in [2]. The polynomial fg,l,a(x),
obviously, satisfies (2) when a 6= 0. In order to check (1), we use the following
lemma as a central tool :

Lemma 2.2. A polynomial xn − xn−m + a has multiple roots if and only if

nNaM −mM (n−m)N−M = 0,

where d = gcd(n,m), N = n/d, M = m/d.

This lemma can be regarded as a direct application of [3, Theorem 4], for example.
It claims that one can compute the discriminant of a trinomial xn + axk + b as

(−1)n(n−1)/2bk−1
[
nNbN−K − (−1)N (n− k)N−KkKaN

]d
,

where d = gcd(n, k), N = n/d, K = k/d.
According to Lemma 2.2, the polynomial fg,l,a(x) satisfies (1) if and only if g > 1

and the quantity

(2.2) sg,l,a = (2g + 2)Na2M − (−l)M (2g + 2 + l)N−M

is different from zero. Here d = gcd(2g + 2, l(q − 1)), N = n/d and M = l(q − 1)/d.

Remark 2.3. The last lemma immediately implies that, if q is odd, then, given an
integer g ≥ g1q = p(q− 1)/2− 1, there is a non-singular genus g curve over Fp having
no Fq-points. This estimate is of the same order as the one in Theorem 1.4. Let us
prove it now.

We want to show that there are a ∈ F∗q and 1 ≤ l ≤ L(q, g) such that the curve

y2 = fg,l,a(x) is an Fq-maximal smooth hyperelliptic curve over Fp of genus g.
Choose an element of F∗p, say a. If p | 2g + 2, then sg,l0,a 6= 0, when l0 = 1.

Assume that p does not divide 2g + 2. Since g ≥ g1q , we obtain L(q, g) ≥ p. Hence
we can choose 1 ≤ l0 ≤ L(q, g) such that l0 ≡ −(2g + 2) mod p. It follows that
sg,l0,a 6= 0. Thus, for any g ≥ g1q there is a number l0 such that 1 ≤ l0 ≤ L(q, g) and
the polynomial fg,l0,a(x) is square free by Lemma 2.2.

It remains to apply Lemma 2.1.

We also note that this construction and some of those from the next section are
related to the question of the existence of curves having no points of degree greater
than one.

3. Proof of Theorem 1.6, the case of odd characteristic

Along the section q stands for a power of an odd prime p. For such q the proof
of Theorem 1.6 consists of several parts depending on the values of the parameters
p, q, g, D(q, g), and L(q, g). We first treat the easy case, when D(q, g) > 2.
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Proposition 3.1. Let g be such that g ≥ q−1
2 and D(q, g) > 2. Then there is a

smooth Fq-maximal hyperelliptic curve over Fq of genus g of the form y2 = fg,l,a(x).

Proof. Let us take l = 1 and suppose that for any a ∈ F∗q the quantity sg,l,a is equal
to zero. Then the value of

a
2(q−1)
D(q,g) = (−1)

q−1
D(q,g) (2g + 3)

2g+2−(q−1)
D(q,g) (2g + 2)−

2g+2
D(q,g)

does not depend on the choice of a. Since this identity holds for a = 1, we see
that a2(q−1)/D(q,g) is equal to 1 for every a ∈ F∗q . It means that the order of every
element of F∗q divides 2(q − 1)/D(q, g) < q − 1, which is a contradiction.

Hence there is some a ∈ F∗q such that the polynomial fg,1,a(x) has no multiple

roots and the curve y2 = fg,1,a(x) is the desired one. �

We would like to draw attention to the similarity between the following technical
lemma and Theorem 1.5.

Lemma 3.2. Let a ∈ F∗q. Suppose that for some g ≥ max
{
q−1
2 , 2

}
the quantities

sg,l,a are equal to 0 for all 1 ≤ l ≤ L(q, g); then the equations (1 + lx)D(q,g) ≡ 1
mod p, 1 ≤ l ≤ L(q, g), have a common non-zero solution in F∗p.

Proof. Since sg,l,a = 0 for all l’s, it follows from (2.2) that 2g + 2 6≡ 0 mod p, and
for each l there is an identity

(2g + 2)
2g+2

d a2
l(q−1)

d ≡ (−l)
l(q−1)

d (2g + 2 + l)
2g+2−l(q−1)

d mod p,

where d = gcd(2g + 2, l(q − 1)). After rising to power d both of its sides and some
evident transformation, we get

(1 + (2g + 2)−1l)2g+2 ≡ 1 mod p,

for each l, and since 1 + (2g + 2)−1l is an element of F∗q , it is equivalent to

(1 + (2g + 2)−1l)gcd(2g+2,q−1) = (1 + (2g + 2)−1l)D(g,q) ≡ 1 mod p,

for every 1 ≤ l ≤ L(q, g). �

In the case of odd p we show below that if g ≥ max {(q − 1)/2, 2}, D(q, g) = 2 or
g = (q − 3)/2, p > 5, then there is a non-singular Fq-maximal hyperelliptic genus
g curve defined over the prime field Fp. The proposition below shows that if the
parameter D(q, g) takes the minimal possible value and L(q, g) ≥ 2, then one can
choose a suitable 1 ≤ l ≤ 2.

Proposition 3.3. Let g be an integer such that g ≥ max
{
q−1
2 , 2

}
, let D(q, g) = 2

and L(q, g) ≥ 2. Then there is a smooth Fq-maximal hyperelliptic curve over Fp of
genus g of the form y2 = fg,l,a(x).

Proof. Chose any a ∈ F∗p. Suppose that sg,l,a = 0 for all 1 ≤ l ≤ L(q, g). According
to Lemma 3.2, there is a system of at least two equations :

(1 + x)2 = 1, (1 + 2x)2 = 1, . . .

which has a solution in F∗p, say x0. It is obvious that x0 ≡ −2 mod p is the unique
solution of the first equation, but x0 does not satisfy the second equation. It means
that the system has no solutions in F∗p, and sg,l,a 6= 0 for some l. It is clear that one
can let either l = 1 or l = 2. Hence it is possible to construct a curve with desired
properties, using either fg,1,a(x) or fg,2,a(x). �
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Remark 3.4. As a direct corollary of Propositions 3.1, 3.3 and Lemma 2.1 we obtain
a linear bound on the genus as follows. Suppose g ≥ max {q − 2, 2}; then L(q, g) ≥ 2,
so there is a smooth pointless genus g curve over Fq. This refines [2, Corollary 2.9].
However, our goal is to prove a stronger bound.

The only possibility that remains to be treated is L(q, g) = 1, D(q, g) = 2.

Proposition 3.5. Let g be such that g ≥ max {(q − 1)/2, 2}, D(q, g) = 2, and
L(q, g) = 1. Assume that at least one of the following conditions holds :

(1) q is a square,
(2) q = p2n+1 and p ≡ 1 mod 8,

(3) g is not of the form p(2k+1)−5
4 , k ≥ 0.

Then there is a non-singular Fq-maximal hyperelliptic curve over Fp of genus g of
the form y2 = fg,l,a(x).

Proof. We want to show that under these assumptions sg,1,a 6≡ 0 mod p for some
a ∈ F∗p. If g is such that p divides 2g + 2, then sg,1,a 6≡ 0 mod p by its definition.
We can therefore assume that 2g + 2 6≡ 0 mod p. In this case it follows from (2.2)
that

sg,1,a = (2g + 2)Na2M − (−1)M ((2g + 2) + 1)N−M

= (2g + 2)N − (−1)M (2g + 2)N−M
(
1 + (2g + 2)−1

)N−M
,

where N = g + 1 and M = (q − 1)/2. Thus the value of a does not affect sg,1,a, i.e.
sg,1,a coincides with sg,1,1 for any a ∈ F∗q .

Suppose that sg,1,1 is zero; then (1 + (2g + 2)−1)2 ≡ 1 mod p by Lemma 3.2.

This implies 2g+ 2 ≡ (−2)−1 mod p. Hence, if g 6= p(2k+1)−5
4 for any integer k ≥ 0,

then sg,1,1 6= 0.
Let us assume that (1 + (2g + 2)−1)2 ≡ 1 mod p. We put

S = (−1)M+12Nsg,1,1 = (−1)M+12N
(
(−1)N2−N − (−1)M2M−N

)
= (−1)N+M+1 + 2M .

It equals zero simultaneously with sg,1,1. Also, note that N and M can not be even
at the same time, since

gcd(N,M) = gcd(g + 1, (q − 1)/2) = D(q, g)/2 = 1.

Consider several cases. If q is a square, then every element of Fp is a quadratic
residue in Fq. Since M = (q − 1)/2 is even, we see that N +M + 1 is even. Thus
S = 2 is not equal to zero, since p > 2. Therefore, sg,1,1 6= 0.

Suppose q is not a square, then S depends on the congruence class of p modulo 8.
It is well known that every quadratic (non) residue in Fp remains one in Fq. Using
this fact and the fact that if M is even, then N must be odd, we find that

S = 2(q−1)/2 − (−1)(q−1)/2(−1)g+1 =


2, p ≡ 1 mod 8,

−1 + (−1)g+1, p ≡ 3 mod 8,

0, p ≡ 5 mod 8,

1 + (−1)g+1, p ≡ 7 mod 8.

This formula immediately implies that sg,1,1 6= 0 when p ≡ 1 mod 8. �
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Further study of curves of type (2.1) is not fruitful. We finish our proof of
Theorem 1.6 in the case of odd characteristic taking into account hyperelliptic
curves of different forms.

However, let us first assume that q is prime. This assumption allows to consider a
special type of curves which is easier to work with. In particular, applying Lemma 2.1
to the following result, one can omit the restriction in [2, Theorem 1.3].

Theorem 3.6. Let g be an integer such that g ≥ max
{
p−1
2 , 2

}
. Then there exists a

non-singular Fp-maximal hyperelliptic genus g curve over Fp of one of the following
forms :

y2 = fg,l,a(x) or y2 = xp+(p−1)/2 + xp−1 + x(p−3)/2 + 1.

Proof. If D(p, g) > 2 or L(q, g) > 1, then Propositions 3.1 and 3.3 can be applied.
Assume that D(p, g) = 2 and L(q, g) = 1. Then

(3.1)
p− 1

2
≤ g < p− 2.

Let g be an integer such that g = (p(2k + 1)− 5)/4 for some k ≥ 0. It follows from
the formula (3.1) that k = 1, i.e. g = (3p− 5)/4. Note that degF (x) = 2g + 2.

Suppose that p ≡ 5 mod 8; then the number g is not integer. Thus Proposi-
tion 3.5 can be applied.

We are left with the case p ≡ −1 mod 4. We can assume that p > 3. Consider
a curve y2 = F (x) over Fp, where F (x) = xp+(p−1)/2 + xp−1 + x(p−3)/2 + 1. Let

us show that F (x) has no multiple roots in Fp. We first note that the following
identities hold:

F (x) + 2xF ′(x) = r1(x) = −xp−1 − 2x(p−3)/2 + 1,

2F ′(x)− x(p−1)/2r1(x) = r2(x) = −x(p−5)/2(x2 + 3).

Now, suppose that F (x) has a multiple root, say α. Then we see that α2 = −3,
since r2(α) = 0 and α 6= 0. We also obtain

−α2r1(α) =
(
α(p+1)/2

)2
+ 2α(p+1)/2 + 3 = 0.

This equation implies α(p+1)/2 = −1 ±
√
−2. Furthermore, we can compute(

α(p+1)/2
)4

in two different ways:(
α(p+1)/2

)4
= (−1±

√
−2)4 = −7± 4

√
−2

=
(
α2
)p+1

= 9.

Hence the equality
√
−2 = 4 holds for the field Fp, but this is not possible whenever

p > 3. Therefore, we have a contradiction and the polynomial F (x) satisfies (1).
The polynomial F (x) also satisfies (2). Indeed, for any x ∈ F∗p we have

F (x) = χp(x)x+ 2 + χp(x)x−1 = χp(x)x−1 (1 + χp(x)x)
2
.

Since χp(−1) = −1, it follows that χp(χp(x)x−1) = 1 for any x ∈ F∗p. Regardless of
the value of χp(x), we obtain χp(F (x)) = 1 for any x ∈ Fp.

Thus, the curve y2 = F (x) is a non-singular Fp-maximal genus g hyperelliptic
curve over Fp. �
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Remark 3.7. By the same method one can show that if q is not a prime such that
q ≡ −1 mod 4, then the curve y2 = xq+(q−1)/2 + xq−1 + x(q−3)/2 + 1 is smooth and
Fq-maximal. However, this construction does not allow to obtain the desired bound
on the genus.

In order to get the bound g ≥ max
{
q−1
2 , 2

}
for odd q, we prove that if q is

neither a square nor a prime and g is such that

(3.2) (q − 1)/2 ≤ g < q − 2, gcd(2g + 2, q − 1) = 2 and 2g + 2 ≡ −1/2 mod p,

then there exists a non-singular genus g pointless curve over Fq. Now, we concentrate
our attention only on this case.

Consider the following family of hyperelliptic curves :

(3.3) y2 = Fn,b,ξ(x) = xq−1+n + b2x2n − (2b2ξ + 1)xn + b2ξ2.

Let b, ξ ∈ F∗p, χp(ξ) = −1, and let n be an even number. Under these assumptions
the polynomial Fn,b,ξ(x) satisfies (2). Indeed, we see that χq(Fn,b,ξ(x)) = 1 for any
x ∈ Fq, since Fn,b,ξ(x) = (xq−1 − 1)xn + b2(xn − ξ)2. Suppose that (1) holds for
Fn,b,ξ(x). Then the hyperelliptic curve (3.3) over Fp is smooth Fq-maximal of genus

g =

{
(q − 3 + n)/2, n is even and 0 < n < q − 1,

n− 1, n ≥ q − 1.

Recall that g must satisfy (3.2), so we have the following restrictions on n :

(3.4) n even, 0 < n < q − 1, gcd(n, q − 1) = 2 and n ≡ 1/2 mod p.

Let us show that for such n there are b and ξ in Fp such that Fn,b,ξ(x) satisfies both
(1) and (2). Our proof of this fact splits into two steps depending on p.

Lemma 3.8. Suppose that p is either 3 or 5. Let n be such that n ≡ 1/2 mod p.
There are b, ξ ∈ F∗p, χp(ξ) = −1, such that Fn,b,ξ(x) has no multiple roots in Fp.

Proof. Case p = 3. There is just one polynomial of the desired form over Fp :

F (x) = Fn,±1,−1(x) = xq−1+n + x2n + xn + 1.

Let α ∈ Fp be a multiple root of F (x). Since n ≡ 2 mod 3, we have

xF ′(x) = xq−1+n + x2n − xn.
Note that F (α)− αF ′(α) = 2αn + 1 = 0, so αn = 1. However,

F (α) = αq−1+n + α2n + αn + 1 = αq−1 = 0,

so we get a contradiction. Thus F (x) is square free.
Case p = 5. One of the following polynomials is square free :

Fn,1,2(x) = xq−1+n + x2n − 1, Fn,2,−2(x) = xq−1+n − x2n + 1.

The Theorem 4 in [3] (see Section 2) implies that a trinomial xq−1+n ± x2n ∓ 1 is
square free if and only if

S± = (q − 1 + n)N (∓1)N−K − (−1)N (q − 1− n)N−K(2n)K(±1)N

is non-zero, where d = gcd(q − 1 + n, 2n), N = (q − 1 + n)/d and K = 2n/d. By
the assumption on n we have n ≡ −2 mod 5 and

S+ = 2N (−1)N−K − (−1)N = (−1)N−K(2N − (−1)K), S− = 2N − 1.

Suppose S− equals zero. Then, since p = 5, we see that 4 divides N . Note that
gcd(N,K) = 1, thus K is odd. Hence S+ 6= 0 and the lemma is proven. �
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Proposition 3.9. Let q be not a square. Let g be an integer satisfying (3.2). Then
there exists a non-singular Fq-maximal hyperelliptic curve over Fp of genus g of the
form y2 = Fn,b,ξ(x).

Proof. Take an integer n satisfying (3.4) such that q − 1 + n = 2g + 2. Take b,
ξ ∈ F∗p, χp(ξ) = −1. As we showed above, the polynomial Fn,b,ξ(x) satisfies (2).
Our goal is to prove that b can be chosen in a manner that Fn,b,ξ(x) is a square free
polynomial, i.e. satisfies (1). According to Lemma 3.8, we can assume that p > 5.

Let α ∈ Fq be a multiple root of Fn,b,ξ(x) = xq−1+n+ b2x2n− (2b2ξ+ 1)xn+ b2ξ2.
Then α is a root of the following polynomials (recall that n ≡ 1/2 mod p) :

−2xF ′n,b,ξ(x) = xq−1+n − 2b2x2n + (2b2ξ + 1)xn,

r(x) = Fn,b,ξ(x) + 2xF ′n,b,ξ(x) = 3b2x2n − 2(2b2ξ + 1)xn + b2ξ2.

By evident computations we have

αn =
2b2ξ + 1±

√
b4ξ2 + 4b2ξ + 1

3b2
,(3.5)

αq−1 = 2b2αn − (2b2ξ + 1) = −1

3
(2b2ξ + 1)± 2

3

√
b4ξ2 + 4b2ξ + 1.(3.6)

Let us show that b can be chosen inside F∗p in the way that

χp(b
4ξ2 + 4b2ξ + 1) = 1.

We need to show that there is such s in F∗p that

(3.7) s2 = b4ξ2 + 4b2ξ + 1.

Since p > 5, the equation defines an elliptic curve over Fp. It has two points at
infinity, two points with b = 0, and no more than two points with s = 0. According
to Hasse–Weil bound, the curve (3.7) has at least p + 1 −

⌊
2
√
p
⌋

rational points.
Thus, when p > 11, this curve has at least 7 points. In the cases p = 7 or 11 one
can let ξ = −1. Then the curve (3.7) has four points with b = ±1/2 and s = ±1/4.
Hence, given ξ ∈ F∗p such that χp(ξ) = −1, there is an admissible value for b in F∗p.

Let (b, s) be a rational point of the curve (3.7) such that bs 6= 0. Put t = b2ξ.
Let us remark that

(3.8) αn =
(2t+ 1)± s

3b2
, αq−1 =

−(2t+ 1)± 2s

3
.

are elements of Fp. It easily follows that αgcd(n,q−1) = αgcd(2g+2,q−1) = α2 is in F∗p,
and αq−1 = (α2)(q−1)/2 = ±1. Taking into account (3.7) and (3.8) we obtain

4s2 = ((2t+ 1) + 3αq−1)2 = ((2t+ 1)± 3)
2

= 4t2 + 4t+ 10± (12t+ 6).

By the assumption (b, s) is a solution of (3.7), so that

4s2 = 4t2 + 4t+ 10± (12t+ 6) = 4t2 + 16t+ 4.

It follows that either 12 ≡ 0 mod p or −24t ≡ 0 mod p. Thus we get a contradic-
tion, since p > 5 and b ∈ F∗p. �

The last ingredient in the case of odd q is the following result which refines [2,
Lemma 2.1].
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Proposition 3.10. Let q > 5. There is an Fq-maximal non-singular curve over Fq
of genus q−3

2 of the form

y2 = xq−1 + 2
α− β
α+ β

x
q−1
2 + 1,

where α, β ∈ F∗q such that χq(α) = χq(β) = χq(α+ β) = 1.

Proof. It is easy to see that if q > 5, then there are three non-zero quadratic residues
α, β, γ in Fq such that γ = α+ β. Indeed, let γ = δ2, δ ∈ F∗q . It is well known that

the curve x2 + y2 = γ has q+ 1 ≥ 8 rational points over Fq. In particular, it has two
points at infinity, and four affine points (±δ, 0) and (0,±δ). Therefore, the curve

has at least two affine points (a, b) such that ab 6= 0. Thus, there are α, β ∈
(
F∗q
)2

such that α+ β = γ.

Let F (x) = α
γ (x

q−1
2 + 1)2 + β

γ (x
q−1
2 − 1)2. It is easy to see that the conditions

(1) and (2) hold for this polynomial. Indeed, we have

F (x) =
(
x

q−1
2

)2
+ 2

α− β
γ

x
q−1
2 + 1.

It has a repeated root if and only if α−β
α+β = ±1. Therefore, F (x) satisfies (1), since

α and β are both non-zero. For any a ∈ F∗q we see that F (a) is either 4α/γ or 4β/γ,
which are both non-zero quadratic residues. Therefore, χq(F (a)) = 1 for any a ∈ Fq,
so that (2) holds.

As a consequence, if q > 5, then a hyperelliptic curve y2 = F (x) over Fq is a

smooth Fq-maximal curve of genus q−3
2 . Hence the result. �

Remark 3.11. Using the same arguments, one can prove that if p > 5 and q = pn,
then there are α, β, γ in F∗p such that γ = α+ β and χp(α) = χp(β) = χp(γ) = 1.

Define F (x) as in the last proposition. Then the curve y2 = F (x) is defined over Fp,
has no singular points and is Fq-maximal. This construction gives an Fq-maximal
curve defined over the prime field Fp, however, it requires the restriction p > 5 on
the characteristic of the field Fq.

Now, if q is odd, then Propositions 3.1, 3.3, 3.5, 3.9 and 3.10 imply that for any
g ≥ gq (with the constant gq defined in the statement of Theorem 1.6) there exists
a non-singular Fq-maximal genus g hyperelliptic curve over Fq. In order to finish
the proof of Theorem 1.6 in the case of odd characteristic, one applies Lemma 2.1.

4. Proof of Theorem 1.6, the case of even characteristic

Finally, it remains to prove the result in the case when q is even. The existence
of pointless curves over F2 is already known. It follows from the part (i) of
Proposition 4.1 in [8] that for every g ≥ 2 there is a pointless smooth genus g curve
over F2. In other cases, when q is even and q > 2, we have the following result.

Proposition 4.1. Let q = 2n, q > 2. For every g ≥ q − 1 there is a pointless
non-singular genus g curve over Fq of the form

y2 + a(xg+1 + xg+1−(q−1) + c)y = b(x2g+2 + x2g+2−2(q−1) + d)

for some a, b, c, d ∈ F∗q .
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Proof. Let C be the projective curve defined by the affine equation

y2 + af(x)y = bh(x),

where a, b ∈ F∗q and

f(x) = xg+1 + xg+1−(q−1) + c,

h(x) = x2g+2 + x2g+2−2(q−1) + d.

Recall that a curve y2 + Q(x)y = P (x) over a finite field of characteristic 2 is
non-singular (as a projective curve) if only and only if the polynomials Q(x) and
R(x) = Q′(x)2P (x) + P ′(x)2 are coprime (see Section 2).

Assume that c, d in F∗q are such that c2 6= d. Then it is easy to see that the

curve C is smooth. Indeed, we have R(x) = a2bf ′(x)2h(x) + b2h′(x)2. Note that
h′(x) = 0 and f ′(x) is a monomial, which is obviously prime to f(x). Thus we
have gcd(R(x), af(x)) = gcd(h(x), f(x)). Since h(x) = f(x)2 + c2 + d, where
c2 + d 6= 0 (by the assumption), we see that f(x) and h(x) are coprime. Hence
gcd(R(x), af(x)) = 1, so that C is a smooth curve of genus g over Fq.

Remark that the choice of a and b does not affect the smoothness of the curve C.
We can therefore use this fact to obtain a pointless curve.

As it was explained in Section 2, the curve C is the union of two affine curves

y2 + af(x)y = bh(x) and y2 + axg+1f(1/x) = bx2g+2h(1/x).

The set of rational points of the curve C is the disjoint union of the set of rational
points of the first affine curve and the set of rational points of the second one
having x = 0. Hence any rational point of C corresponds to a solution of either
y2 + acy + bd = 0 or y2 + ay + b = 0 over Fq. These equations are, obviously,
equivalent to y2 + y + bd(ac)−2 = 0 and y2 + y + ba−2 = 0 respectively. Recall that
by the Hilbert’90 theorem the equation y2 + y + α = 0 has no solutions in Fq if and
only if Tr Fq/F2

α = 1. Thus, the curve C has no rational points if and only if

(4.1) Tr Fq/F2

(
b

a2
· d
c2

)
= 1 and Tr Fq/F2

(
b

a2

)
= 1.

Since q > 2, there are two distinct elements in Fq, say α and β, such that

Tr Fq/F2
α = Tr Fq/F2

β = 1. Let b = a2α and d = c2 βα . It is clear that c2 6= d and
the conditions (4.1) hold. Thus C is a smooth curve of genus g having no rational
points. �

Now, the goal of the paper is achieved and Theorem 1.6 is proven.

Remark 4.2. As we have already written, H. Stichtenoth in [8, Section 4] considered
the case q = 2. He showed that for any g ≥ 2 a genus g curve over F2

y2 + y =
x2 + x

f(x)
+ 1,

where f(x) ∈ F2[x] is an irreducible polynomial of degree g + 1, has no rational
points. By slightly modifying this construction, N. Anbar reproved this result in [1,
Section 5]. Motivated by this, we note that a lot of examples of pointless curves
can be easily obtained by means of the Artin–Schreier curves for arbitrary q. More
precisely, their constructions can be generalized almost verbatim as follows.
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Let u(x) and v(x) be monic polynomials of degree n+ 1 having no roots in Fq.
Suppose that v(x) is irreducible. Then the Artin–Schreier curve

(4.2) yq − y =
u(x)

v(x)

is a non-singular curve over Fq. By [1, Lemma 2.1] it is has genus (q − 1)n. This

curve is pointless, since u(x)
v(x) 6= 0 and xn+1u(1/x)

xn+1v(1/x) 6= 0 for any x ∈ Fq.
This shows that for any prime power q there is a smooth pointless curve over Fq

of arbitrary large genus g divisible by q− 1. This result is weaker than Theorem 1.6
unless q = 2 (since in that case an Artin–Schereier curve is hyperelliptic). It seems
hard to obtain better results using the Artin–Schreier coverings of the projective
line.
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Oxford Graduate Texts in Mathematics, 6. Oxford Science Publications. Oxford University
Press, Oxford, 2002. xvi+576 pp.

[6] D. Maisner, E. Nart, Abelian Surfaces over Finite Fields as Jacobians, With an appendix by
Everett W. Howe. Experiment. Math. 11 (2002), no. 3, 321-337.

[7] H. M. Stark, On the Riemann Hypothesis in Hyperelliptic Function Fields, Analytic number

theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), pp.
285-302. Amer. Math. Soc., Providence, R.I., 1973.

[8] H. Stichtenoth, Curves with a Prescribed Number of Rational Points, Finite Fields Appl. 17

(2011), no. 6, 552-559.

[9] C. Stirpe, An Upper Bound for the Genus of a Curve Without
Points of Small Degree, Phd Thesis at Università di Roma ‘Sapienza’,
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