Nonlinear Perturbation of a Noisy Hamiltonian Lattice Field Model: Universality Persistence
Résumé
In [2] it has been proved that a linear Hamiltonian lattice field perturbed by a conservative stochastic noise belongs to the 3/2-Lévy/Diffusive universality class in the nonlinear fluctuating theory terminology [15], i.e. energy superdiffuses like an asymmetric stable 3/2-Lévy process and volume like a Brownian motion. According to this theory this should remain valid at zero tension if the harmonic potential is replaced by an even potential. In this work we consider a quartic anharmonicity and show that the result obtained in the harmonic case persists up to some small critical value of the anharmonicity.
Origine | Fichiers produits par l'(les) auteur(s) |
---|