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NONLINEAR PERTURBATION OF A NOISY HAMILTONIAN
LATTICE FIELD MODEL: UNIVERSALITY PERSISTENCE

CÉDRIC BERNARDIN, PATRÍCIA GONÇALVES, MILTON JARA,
AND MARIELLE SIMON

Abstract. In [2] it has been proved that a linear Hamiltonian lattice field
perturbed by a conservative stochastic noise belongs to the 3/2-Lévy/Diffusive

universality class in the nonlinear fluctuating theory terminology [15], i.e. en-
ergy superdiffuses like an asymmetric stable 3/2-Lévy process and volume like

a Brownian motion. According to this theory this should remain valid at zero

tension if the harmonic potential is replaced by an even potential. In this work
we consider a quartic anharmonicity and show that the result obtained in the

harmonic case persists up to some small critical value of the anharmonicity.

1. Introduction

During the two last decades there has been a strong regain of interest in the
understanding of anomalous diffusion in asymmetric one dimensional systems with
several conservation laws, whose typical examples are given by chains of coupled
oscillators [10]. During several years contradictory numerical simulations have been
performed and their accuracy has been strongly debated without a clear consensus
between specialists. Recently important progresses have been obtained with the
development of the so-called nonlinear fluctuating hydrodynamics theory developed
by Spohn [15]. The theory identifies precisely the universality classes describing the
form of the anomalous diffusion in terms of macroscopic thermodynamical quanti-
ties associated to the microscopic system and also explains why so many numerics
provided so different conclusions. Roughly Spohn’s approach consists to start with
the hyperbolic system of conservation laws governing the macroscopic evolution of
the empirical conserved quantities, then add diffusion and dissipation to this system
of coupled PDEs and linearize the system at second order w.r.t. equilibrium values
of the conserved quantities. In the calculations a fundamental role is played by the
normal modes, i.e. the eigenvectors of the linearized equation, called heat mode and
sound modes in [15]. These modes evolve with different velocities in different time
scales and may be described by different forms of anomalous superdiffusion or by
a standard diffusion.

On the other hand a rigorous justification of Spohn’s predictions is lacking and
some of them are in contradiction1 with kinetic theory [11, 12]. Until now the
nonlinear fluctuating hydrodynamics predictions have been fully justified only for
linear Hamiltonian lattice field models perturbed by a noise conserving the energy
and one or two extra quantities [2, 8]. The universality classes identified in these
works are described by a skew or symmetric 3/4-fractional diffusion equation for

1The contradiction exists in particular because the kinetic predictions are done by using the
kinetic equations outside the time scale where they are expected to be valid.
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the heat mode (i.e. the energy, with zero velocity) and a normal diffusion for the
sound modes (with non-zero velocity; volume in [2]; stretch and momentum in [?]).

In the Hamiltonian lattice field model, if linear interactions are replaced by
nonlinear interactions, some new universality classes, such as the famous Kardar-
Parisi-Zhang (KPZ) universality class, may appear. Proving any result confirming
this picture is of course a highly challenging problem, even in the case of systems
with a single conservation law. For the latter only two universality classes are
possible: the KPZ universality class and the Edwards-Wilkinson (diffusive) class.
Only few one dimensional stochastic asymmetric models (e.g. the exclusion process)
with one conserved quantity have been proved to belong to the KPZ universality
class (see e.g. [7, 13] and references therein). For models with several conserved
quantities the question is completely open and even more interesting. Indeed, a
special feature of models with several conservation laws is the fact that different
time scales coexist in the same model, which never occurs for systems with only
one conserved field.

In this work we consider a small quartic nonlinear perturbation of the linear
Hamiltonian lattice field model with conservative noise considered in [2]. In the
absence of nonlinearities, as mentioned above, the model belongs to the universality
class described by a skew 3/4-fractional diffusion equation for the energy and a
normal diffusion for the volume. According to Spohn’s theory (see [16]) if the
nonlinear perturbation is driven by an even potential and if the tension is null, the
model still belongs to the same universality class. The purpose of this work is to
show rigorously that it is the case for very small nonlinear perturbations. Despite
our results remain quite limited, they are the first results of this type for nonlinear
interactions.

The strategy of the proof follows the general scheme introduced in [2]. The
success of this strategy, in the linear case, is due to the fact that the n-point
correlation functions form a complicated but in any case, a closed system. Dealing
with nonlinear potentials the problem is much harder since this last property is
lost and we have to manage the control of a hierarchy. The paper quantifies the
intensity with which we can perturb the linear system in order to be able to cut the
hierarchy as if we considered only the linear system. The control of the error terms
produced by this cut-off requires several standard techniques of interacting particle
systems as well as some ad-hoc estimates. Observe also that we are only considering
the case of a perturbation given by an even potential with a zero tension. If one of
these conditions is not respected we expect to reach a different universality class.

The paper is organized as follows. In Section 2 we introduce the model we study
and in Section 3 we state our main results. Some technical material is introduced
in Section 4 while the proofs of the two main theorems are given in Section 5 and
6. In Appendix A we explore the nonlinear fluctuating hydrodynamics predictions.
The other three appendices contain technical computations.

Notations: Given two real-valued functions f and g depending on the variable
u ∈ Rd we will write f(u) ≈ g(u) if there exists a constant C > 0 which does not
depend on u such that for any u, C−1f(u) ≤ g(u) ≤ Cf(u) and f(u) . g(u) if for
any u, f(u) ≤ Cg(u). We write f = O(g) (resp. f = o(g)) in the neighborhood of
u0 if |f | . |g| in the neighborhood of u0 (resp. limu→u0 f(u)/g(u) = 0). Sometimes
it will be convenient to precise the dependence of the constant C on some extra
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parameters and this will be done by the standard notation C(λ) if λ is the extra
parameter. Finally, we denote by C∞c (Rd) the space of infinitely differentiable
functions f : Rd → R with compact support.

2. Model and notations

2.1. Perturbed Hamiltonian lattice field model. We consider a linear Hamil-
tonian lattice field model [6] at equilibrium perturbed by an energy conserving
noise. This is a Markov process defined on the state space Ω = RZ. A typical
configuration ω ∈ Ω is denoted by ω := {ωx ; x ∈ Z}. We then perturb it by adding
a small anharmonicity which is regulated by the small parameter γ > 0. Let us
define the infinitesimal generator Lγ of the model as Lγ := Aγ + S where for any
γ > 0 we denote

Aγ :=
∑
x∈Z

{
(ωx+1 − ωx−1) + γ(ω3

x+1 − ω3
x−1)

} ∂

∂ωx

and for all local2 functions ϕ : Ω→ R

(Sϕ)(ω) :=
∑
x∈Z

{
ϕ(ωx,x+1)− ϕ(ω)

}
.

Above we denote by ωx,x+1 the configuration that is obtained from ω by exchanging
ωx and ωx+1, keeping the other values identical, namely:

(ωx,x+1)z =


ωx+1 if z = x;
ωx if z = x+ 1;
ωz otherwise.

The Liouville operator Aγ is the usual generator associated to the Hamiltonian dy-
namics, where the one-site energy is the sum of the kinetic energy and the potential
energy, as follows: for any u ∈ R and γ > 0 let us introduce the local energy

eγ(u) :=
u2

2
+ γ

u4

4
.

For each x ∈ Z, the energy of the atom x is simply eγ(ωx). When γ = 0, the
energy is harmonic, whereas γ → 0 is the weakly anharmonic case. The operator S
is the stochastic noise that acts on configurations by exchanging nearest neighbour
variables ωx and ωx+1 at random Poissonian times.

The existence of a Markov process {ωγ(t) ; t ≥ 0} with state space Ω and
generator Lγ is provided by usual techniques (see [6] and references therein). It has
a family of invariant measures, called Gibbs equilibrium measures, given by

dνβ,τ,γ(ω) :=
∏
x∈Z

e−βeγ(ωx)−λωx

Zγ(β, λ)
dωx, λ = τβ ∈ R, β > 0,

that are associated to the two conserved quantities, called volume and energy,
formally given by

V :=
∑
x∈Z

ωx, Eγ :=
∑
x∈Z

eγ(ωx).

2A function g : Ω→ R is local if it depends on the variable ω ∈ Ω only through a finite number
of {ωx ; x ∈ Z}.
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Above, Zγ(β, λ) is the normalization constant. The parameters β−1 > 0 and τ ∈ R
are called, respectively, temperature and tension.

For any (β, τ, γ) ∈ (0,∞) × R × (0,∞), let us denote by 〈ϕ〉β,τ,γ the average
of ϕ : Ω → R with respect to νβ,τ,γ and by 〈·, ·〉β,τ,γ the corresponding L2-scalar
product. Let us define

eγ(β, τ) :=
〈
eγ(ω0)

〉
β,τ,γ

= − ∂

∂β

(
logZγ(β, λ)

)
, (1)

vγ(β, τ) :=
〈
ω0

〉
β,τ,γ

= − ∂

∂λ

(
logZγ(β, λ)

)
. (2)

From here on, we consider the dynamics described by the accelerated generator
naLγn (therefore the system evolves on the time scale tna for some a > 0), where
γn now depends also on the scaling parameter in such a way that limn→∞ γn = 0.
The dependence of γn with respect to the scaling parameter n will be precised later.
We assume that the dynamics starts from the Gibbs equilibrium measure νβ,0,γn
at temperature β−1 and tension τ = 0, and we look at its evolution during a time
interval [0, T ], where T > 0 is fixed. The law of the resulted process{

ωγnx (tna) ; t ∈ [0, T ] , x ∈ Z
}

is simply denoted by P, and the expectation with respect to P is denoted by E. For
the sake of readability, from now on we denote ωγnx (tna) simply by ωx(tna).

2.2. Energy and volume fluctuation fields. We define, for any test function
f ∈ C∞c (R) and ω ∈ Ω,

En(f, ω) :=
1√
n

∑
x∈Z

f
(x
n

){
eγn(ωx)− eγn(β, 0)

}
,

and the dynamical energy fluctuation field by

Ent (f) := En(f, ω(tna)).

Similarly, we define, for any test function f ∈ C∞c (R) and ω ∈ Ω

Vn(f, ω) :=
1√
n

∑
x∈Z

f
(x
n

){
ωx − vγn(β, 0)

}
,

and the dynamical volume fluctuation field by

Vnt (f) := Vn(f, ω(tna)).

Let g ∈ C∞c (R) be a fixed function. The goal of this paper is to study the behavior
as n → ∞ of the correlation energy and volume fields given for any test function
f ∈ C∞c (R) by

En
t (f) : = E

[
En0 (g) Ent (f)

]
= E

[
En0 (g)

{
1

4
√
n

∑
x∈Z

f
(x
n

)([
2ω2

x + γnω
4
x

]
(tna)− 4eγn(β, 0)

)}]
,

Vn
t (f) : = E

[
Vn0 (g) Vnt (f)

]
= E

[
Vn0 (g)

{
1√
n

∑
x∈Z

f
(x
n

)(
ωx(tna)− vγn(β, 0)

)}]
.
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We show in Appendix A that we have the following expansions when γn → 0:

vγn(β, 0) = o(γn) (3)

eγn(β, 0) =
1

2β
− 3γn

4β2
+ o(γn). (4)

2.3. Notations and definitions. For any f ∈ C∞c (R) and h ∈ C∞c (R2) we intro-
duce two `2-norms defined as follows:

‖f‖22,n := 1
n

∑
x∈Z

f2
(
x
n

)
,

(
N 6=n (h)

)2 := 1
n2

∑
x 6=y

h2
(
x
n ,

y
n

)
. (5)

The discrete gradient and discrete Laplacian of f are defined as usual by

(∇nf)
(
x
n

)
:= n

[
f
(
x+1
n

)
− f

(
x
n

)]
, (∆nf)

(
x
n

)
:= n2

[
f
(
x+1
n

)
+ f

(
x−1
n

)
− 2f

(
x
n

)]
where x ∈ Z and n ≥ 1 is the inverse of the mesh of the discretization3. For our
purpose, we also need to define three Fourier transforms:

• Fourier transform of integrable functions – If f : R → R is an integrable
function, we define its Fourier transform F(f) : R→ C as

F(f)(ξ) :=
∫

R
f(u)e2iπξu du, ξ ∈ R. (6)

• Fourier transform of square summable sequences – If h : Z → R is square
summable, we define its Fourier transform ĥ : T→ C in L2(T) as

ĥ(θ) :=
∑
x∈Z

h(x)e2iπθx, θ ∈ T. (7)

• Discrete Fourier transform of integrable functions – If g : R → R is an
integrable function, we define its discrete Fourier transform Fn(g) : R→ C
as

Fn(g)(ξ) = 1
n

∑
x∈Z

g
(
x
n

)
e2iπx ξn , ξ ∈ R.

These definitions can easily be extended for d-dimensional spaces, d ≥ 1. Finally,
given some parameters (β, τ, γ) and ϕ ∈ L2(νβ,τ,γ) belonging to the domain of S,
the Dirichlet form of ϕ is given by

D(ϕ) :=
〈
ϕ , (−S)ϕ

〉
β,τ,γ

. (8)

Observe that we do not precise the dependence on (β, τ, γ) in (8). Any time we
will use the Dirichlet form, there will be no confusion regarding the values of the
parameters. Similarly, for any ϕ ∈ L2(νβ,τ,γ) we introduce, for any z > 0, the
H−1,z norm given by∥∥ϕ∥∥2

−1,z
: =

〈
ϕ ,

(
z − S

)−1
ϕ
〉
β,τ,γ

= sup
g

{
2
〈
ϕ , g

〉
β,τ,γ

− z
〈
g2
〉
β,τ,γ

−
〈
g , (−S)g

〉
β,τ,γ

}
(9)

where g : Ω→ R belongs to the set of local bounded functions.

3The reader will notice that the previous definitions depend in fact only on the values of the
functions f and h respectively on 1

n
Z and 1

n
Z× 1

n
Z so that they can be generalized to functions

defined only on these sets.
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3. Statement of the main results

Let us assume that

γn =
c

nb
for some c, b > 0,

and recall that the time scale is tna, with a > 0. Our main convergence theorems
depend on the range of the parameters (a, b). Recall that τ = 0. In the nonlinear
fluctuating theory framework this choice implies in particular the identification of
the sound mode with the volume, and the heat mode with the energy.

3.1. Macroscopic fluctuations.

Theorem 3.1 (Volume fluctuations in the time scale tna with a ≤ 1).
Let us fix f, g ∈ C∞c (R), and t > 0. The macroscopic volume behavior follows

the dichotomy:
1. If a < 1, then

lim
n→∞

Vn
t (f) = lim

n→∞
Vn

0 (f) =
1
β

∫∫
R2
f(u)g(v) dudv.

2. If a = 1, then

lim
n→∞

Vn
t (f) =

1
β

∫∫
R2
f(u)g(v)P̂t(u− v) dudv,

where {P̂t ; t ≥ 0} is the semi-group generated by the transport operator −2∇.

In order to study the fluctuations in the time scale a > 1, we need first to recenter
the fluctuation field in a frame moving with some specific velocity. Let us denote
χn := 〈ω2

0〉β,0,γn which satisfies χn → β−1 as n→∞ (see Appendix A). We define

cn := −2− 6χnγn
which is essentially the sound mode velocity c(β, 0, γn) (defined in Appendix A) at
first order in γn. We now introduce the new volume fluctuation field Ṽn

t (f), which
is defined on a moving reference frame as follows:

Ṽn
t (f) := E

[
Vn0 (g)

{
1√
n

∑
x∈Z

f
(x− cntna

n

)(
ωx(tna)− vn(β, 0)

)}]
. (10)

Theorem 3.2 (Volume fluctuations in the time scale tna with a > 1).
Let us fix f, g ∈ C∞c (R), and t > 0. Let

a∗(b) =

{
1 + 2b , b ∈ [0, 1

2 ],
2 , b ≥ 1

2 .

For any b > 0 two cases hold:
1. If a < a∗(b), then

lim
n→∞

Ṽn
t (f) = lim

n→∞
Ṽn

0 (f) =
1
β

∫∫
R2
f(u)g(v) dudv.

2. If b > 1
2 and a = a∗(b) = 2 then

lim
n→∞

Ṽn
t (f) =

1
β

∫∫
R2
f(u)g(v)P̃t(u− v) dudv,

where {P̃t ; t ≥ 0} is the semi-group generated by the Laplacian operator ∆.
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These two theorems establish the following picture which is also summarized in
Figure 1:

• In the time scale tna, a < 1, the volume field does not evolve.
• In the hyperbolic time scale tn (a = 1), the initial fluctuations of the volume

field are transported with velocity −2.
• We then define a new volume field in a frame moving at velocity cn =
−2 − 6χnγn which takes into account the first order term in γn of the
sound velocity. The new field does not evolve up to time scale tn2 for b > 1

2

and up to the time scale tn2b+1 for 0 ≤ b ≤ 1
2 .

• For b > 1
2 , in the diffusive time scale, the evolution is driven by a heat

equation.

a

b0
0

1
2

2

1

heat eq.

No evolution

???

Figure 1. Volume fluctuations: value of the time scale exponent
a as a function of the anharmonicity exponent b.

Remark 3.1. For 0 ≤ b ≤ 1
2 we conjecture in fact that the evolution is trivial up to

the time scale tn2 (a proof that there is no evolution in the light gray zone is thus
missing). Our conjecture is supported by the following consideration : for b = 0,
i.e. γn of order one, according to Spohn’s nonlinear fluctuating hydrodynamics
theory [15, 16] and the computations of Appendix A, the fluctuations of the volume4

field should still belong to the diffusive universality class. Therefore, at b = 0, the
time scale for which the sound evolution takes place should be a = 2. Assuming
that the exponent a := a∗(b) of the time scale on which evolution of the sound
mode occurs is continuous and linear in b ∈ [0, 1

2 ], we would get that a∗(b) = 2 for
b ∈ [0, 1

2 ].

Theorem 3.3 (Energy fluctuations).
Let us fix f, g ∈ C∞c (R), and t > 0. We have the following two cases:

1. If a < 3
2 and b > 1

4 , then the macroscopic energy fluctuation field does not evolve:

lim
n→∞

En
t (f) = lim

n→∞
En

0 (f) =
2
β2

∫∫
R2
f(u)g(v) dudv.

4Recall that since τ = 0 the sound mode coincides with the volume.
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2. If a = 3
2 and b > 1

4 , then

lim
n→∞

En
t (f) =

2
β2

∫∫
R2
f(u)g(v)Pt(u− v) dudv,

where {Pt ; t ≥ 0} is the semi-group generated by the infinitesimal generator of
an asymmetric 3/2-stable Lévy process

L := − 1√
2

(
(−∆)

3
4 −∇(−∆)

1
4
)
. (11)

Note that the operator L in (11) is the same as in [2], which corresponds to the
case γn = 0. This theorem shows that if the nonlinearity is sufficiently weak, i.e.
γn = o(n−1/4), then the energy fluctuation field starts to evolve only in the time
scale tn3/2 and that in this time scale its evolution is the same as in the linear case
(γn = 0). Similarly to what we explained in Remark 3.1 we expect that the result
remains valid for b ∈ [0, 1

4 ], see Figure 2.

a

b0
0

1
4

3/2
frac. heat eq.

No evolution

???

Figure 2. Energy fluctuations: value of the time scale exponent
a as a function of the anharmonicity exponent b.

3.2. Introduction of auxiliary fields. In order to explain the proofs of our main
theorems we need to introduce some auxiliary fields. From now on, for the sake of
simplicity we assume β = 1. The general case β > 0 can be easily deduced from
this by performing a change of variables.

Let κn := κ(γn) be the constant given ahead by (20), which satisfies κn → 3
as γn → 0 (see Section 4.2). Fix g ∈ C∞c (R). First we define the bidimensional
correlation fields, for any h ∈ C∞c (R2), as follows

Q2,n
t (h) := E

[
En0 (g)

{
1
n

∑
x 6=y

h
(x
n
,
y

n

)
ωxωy(tna)

}]
,

Q4,n
t (h) := E

[
En0 (g)

{
1
n

∑
x 6=y

h
(x
n
,
y

n

)
(ω3
x − κnωx)ωy(tna)

}]
,

Q6,n
t (h) := E

[
En0 (g)

{
1
n

∑
x 6=y

h
(x
n
,
y

n

)
(ω3
x − κnωx)(ω3

y − κnωy)(tna)
}]
.
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We point out that Q2,n
t ,Q4,n

t ,Q6,n
t do not depend on the values of h at the diagonal

{(x, y) ∈ Z2 ; x = y}. We also define, for f ∈ C∞c (R), the auxiliary field

E4,n
t (f) := E

[
En0 (g)

{
1√
n

∑
x∈Z

f
(x
n

)(
ω4
x(tna)−

〈
ω4
x

〉
β,0,γn

)}]
.

Let us introduce another one dimensional field, related to the evolution of the
volume correlation field as follows: it is defined for f ∈ C∞c (R) as

V3,n
t (f) := E

[
Vn0 (g)

{
1√
n

∑
x∈Z

f
(x
n

)
ω3
x(tna)

}]
. (12)

Finally, similarly to (10), we define Ṽ3,n
t (f) in a reference frame which moves at

velocity cn.

4. Estimate tools

4.1. Two major inequalities. We state here two inequalities, that are going to
be largely used in what follows, in order to estimate the limit behavior of the main
correlation fields En

t , Vn
t and Q2,n

t .

4.1.1. Cauchy-Schwarz inequality. The following a priori bounds are consequences
of the Cauchy-Schwarz inequality and stationarity of the process: for any f ∈
C∞c (R) and h ∈ C∞c (R2),

|En
t (f)| ≤ C(g) ‖f‖2,n (13)

|E4,n
t (f)| ≤ C(g) ‖f‖2,n (14)

|Qλ,n
t (h)| ≤ Cλ(g) N 6=n (h), for any λ ∈ {2, 4, 6}, (15)

|Vn
t (f)| ≤ C(g) ‖f‖2,n (16)

|V3,n
t (f)| ≤ C(g) ‖f‖2,n. (17)

where Cλ, C are positive constants that only depend on the fixed test function g,
and ‖ · ‖2,n, N 6=n (·) are the norms defined in (5).

4.1.2. Kipnis-Varadhan inequality and H−1,z norms. A more refined bound is pro-
vided by [9, Lemma 2.4] as follows: for any function ψ ∈ L2(νβ,τ,γn) we have

E
[(∫ T

0

ψ
(
ω(tna)

)
dt

)2]
≤ CTn−a

∥∥ψ(·)
∥∥2

−1,n−aT−1 (18)

where ‖ · ‖2−1,z is defined in (9). Then we have, for instance,

E
[(∫ T

0

En
t (f)dt

)2]
≤ C(g)Tn−a

∥∥En(f)
∥∥2

−1,n−aT−1 (19)

The goal of the next section is to present a general method to compute the H−1,z-
norms that appear at the right hand side of (18) and (19), and to estimate them
with the sharpest possible bounds.

4.2. Orthogonal polynomials and H−1,z norms. Recall that for simplicity, we
assume that β = 1. In this section we drop the index (β, τ) from the notations. We
denote νγ := ν1,0,γ and the scalar product on L2(ν1,0,γ) is simply denoted by 〈·, ·〉.
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4.2.1. Construction of the orthogonal polynomials. Let {Hn ; n ∈ N} be the se-
quence of orthogonal polynomials with respect to the following probability measure
on R:

dW (u) := Z−1
γ (1, 0) exp(−eγ(u))du

obtained by a Gram-Schmidt procedure from the basis (1, u, u2, . . .). The average
of a function f(u) with respect to W is denoted by 〈f〉W . The first polynomials
are given by

H0(u) = 1, H1(u) = u,
H2(u) = u2 − 〈u2〉W , H3(u) = u3 − κ(γ) u,

where

κ(γ) :=
〈u4〉W
〈u2〉W

. (20)

Observe that κ(γ)→ 3 as γ → 0.
We use here some ideas of [3, Appendix 2]. Let us construct a basis of L2(νγ)

constituted by multivariate polynomials by tensorization of the Hk’s. We denote
by Σ the set composed of configurations σ = {σx}x∈Z ∈ NZ such that σx 6= 0 only
for a finite number of x and

Σk =
{
σ ∈ Σ ;

∑
x∈Z

σx = k
}
.

On the set of k-tuples x := (x1, . . . , xk) of Zk, we introduce the equivalence relation
x ∼ y if there exists a permutation p on {1, . . . , k} such that xp(i) = yi for all
i ∈ {1, . . . , k}. The class of x for the relation ∼ is denoted by [x] and its cardinal
by c(x). Then the set of configurations of Σk can be identified with the set of
k-tuples classes for ∼ by the one-to-one application:

[x] = [(x1, . . . , xk)] ∈ Zk/ ∼ → σ[x] ∈ Σk

where for any y ∈ Z, (σ[x])y =
∑k
i=1 1y=xi . We shall identify σ ∈ Σk with the

occupation number of a configuration with k particles, and [x] will correspond to
the positions of those k particles. To any σ ∈ Σ, we associate the polynomial
function Hσ given by

Hσ(ω) =
∏
x∈Z

Hσx(ωx).

Then, the family {Hσ ; σ ∈ Σ} forms an orthogonal basis of L2(νγ) such that∫
Hσ(ω)Hσ′(ω) dνγ(ω) = Nγ(σ)δσ=σ′ , (21)

where Nγ is a real-valued function and δ denotes the Kronecker function, i.e.
δσ=σ′ = 1 if σ = σ′ and zero otherwise.

A function Φ : Σ → R such that Φ(σ) = 0 if σ /∈ Σk is called a degree k
function. Thus, such a function is sometimes considered as a function defined only
on Σk. A local function φ ∈ L2(νγ) whose decomposition on the orthogonal basis
{Hσ ; σ ∈ Σ} is given by φ =

∑
σ Φ(σ)Hσ is called of degree k if and only if Φ is of

degree k. A function Φ : Σk → R is nothing but a symmetric function Φ : Zk → R
through the identification of σ with [x]. We denote, with some abuse of notation,
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by 〈·, ·〉 the scalar product on ⊕L2(Σk), each Σk being equipped with the counting
measure. Hence, if Φ,Ψ : Σ→ R, we have

〈Φ,Ψ〉 =
∑
k≥0

∑
σ∈Σk

Φk(σ)Ψk(σ) =
∑
k≥0

∑
x∈Zk

1
c(x)

Φk(x)Ψk(x),

with Φk,Ψk the restrictions of Φ,Ψ to Σk.
The nice property of the generator S of the stochastic noise is that it can be

nicely decomposed on the basis. If a local function φ ∈ L2(νγ) is written in the
form φ =

∑
σ∈Σ Φ(σ)Hσ then we have

(Sφ)(ω) =
∑
σ∈Σ

(SΦ)(σ)Hσ(ω)

with
(SΦ)(σ) =

∑
x∈Z

(Φ(σx,x+1)− Φ(σ)), (22)

where σx,x+1 is obtained from σ by exchanging the occupation numbers σx and
σx+1.

4.2.2. Estimates of H−1,z norms. Here we prove the following lemma:

Lemma 4.1. Let F : Z2 → R be square-summable, namely
∑
x,y F

2(x, y) < +∞,
and assume that F vanishes along the diagonal: F (x, x) = 0 for any x ∈ Z. Then,
there exists C > 0 such that, for any (p, q) ∈ N2 with p 6= q, any z > 0, and any
γ ≤ 1,∥∥∥∥∑

x6=y

F (x, y)Hp(ωx)Hq(ωy)
∥∥∥∥2

−1,z

≤ C
∫∫

[− 1
2 ,

1
2 ]2

|F̂ (k, `)|2

z + 4 sin2(πk) + 4 sin2(π`)
dkd`,

(23)
where

F̂ (k, `) =
∑

(x,y)∈Z2

F (x, y)e2iπ(kx+`y).

Proof. Let p, q ≥ 1 be fixed. We define the subset χp,q included in Σp+q as

χp,q :=
{
σ ∈ Σ ; ∃ x 6= y, σ = pδx + qδy

}
.

Then, the function φ ∈ L2(νγ) under interest in the left hand side of (23) is written
in the form φ =

∑
σ∈χp,q Φ(σ)Hσ where Φ(pδx + qδy) = F (x, y). The set χp,q has

the following stability property: for any σ ∈ χp,q and x ∈ Z, we have σx,x+1 ∈ χp,q.
For any local function ψ =

∑
σ∈Σ Ψ(σ)Hσ we write ψ = ψp,q + ψ′ where

ψp,q =
∑

σ∈χp,q

Ψ(σ)Hσ, ψ′ =
∑

σ/∈χp,q

Ψ(σ)Hσ.

We have
(Sψ)(ω) =

∑
σ∈Σ

(SΨ)(σ)Hσ(ω)

where S is defined by (22). Recall that D(ψ) has been defined in (8) as the Dirichlet
form of ψ. A simple computation based on the orthogonality of the polynomials
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Hσ and the stability property of χp,q shows that

D(ψ) = 〈ψ, −Sψ〉 = 〈Ψ, −SΨ〉

= 1
2

∑
x∈Z

∑
σ∈χp,q

Nγ(σ)
[
Ψ(σx,x+1)−Ψ(σ)

]2
+ 1

2

∑
x∈Z

∑
σ/∈χp,q

Nγ(σ)
[
Ψ(σx,x+1)−Ψ(σ)

]2
= D(ψp,q) +D(ψ′)

where Nγ has been defined in (21). Moreover we have that

〈φ, ψ〉 = 〈φ, ψp,q〉, 〈ψ,ψ〉 = 〈ψp,q, ψp,q〉+ 〈ψ′, ψ′〉. (24)

Recall from (9) that〈
φ,
(
z − S

)−1
φ
〉

= sup
ψ

{
2
〈
φ , ψ

〉
− z
〈
ψ2
〉
−D(ψ)

}
= sup
ψp,q,ψ′

{
2
〈
φ , ψp,q

〉
− z
〈
ψ2
p,q

〉
−D(ψp,q)− z

〈
(ψ′)2

〉
−D(ψ′)

}
.

Therefore, we have that〈
φ,
(
z − S

)−1
φ
〉

= sup
ψ

{
2
〈
φ , ψ

〉
− z
〈
ψ2
〉
−
〈
ψ (−S)ψ

〉}
,

where the supremum is now restricted to local functions ψ which are on the form
ψ =

∑
σ∈χp,q Ψ(σ)Hσ. As a result, for any z > 0 and as γ → 0,〈

ψ ,
(
z − S

)−1
ψ
〉

= sup
Ψ:χp,q→R

{
2
∑
σ∈χ

Φ(σ)Ψ(σ)Nγ(σ) − z
∑
σ∈χ

Ψ2(σ)Nγ(σ)

−
∑
x∈Z

∑
σ∈χp,q

Nγ(σ)
(
Ψ(σx,x+1)−Ψ(σ)

)2}

≈ sup
Ψ:χp,q→R

{
2
∑
σ∈χ

Φ(σ)Ψ(σ)− z
∑
σ∈χ

Ψ2(σ)−
∑
x∈Z

∑
σ∈χp,q

(
Ψ(σx,x+1)−Ψ(σ)

)2}
(25)

because Nγ(σ) is constant for σ ∈ χ and

lim
γ→0

Nγ(pδ0 + qδ1) = N0(pδ0 + qδ1) > 0,

and the last estimate in (25) follows by an explicit computation: let us define

∆0 = {(x, x) ; x ∈ Z} ,
∆+ =

{
(x, x+ 1) ∈ Z2 ; x ∈ Z

}
, ∆+

+ =
{

(x, y) ∈ Z2 ; y ≥ x+ 1
}
,

∆− =
{

(x, x− 1) ∈ Z2 ; x ∈ Z
}
, ∆−− =

{
(x, y) ∈ Z2 ; y ≤ x− 1

}
.
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For any ψ =
∑
σ∈χp,q Ψ(σ)Hσ, we define G := Gψ : Z2 → R as

G(x, y) :=


Ψ(pδx + qδy) if x 6= y,

1
4

∑
e∈Z2

|e|=1

G((x, y) + e) if x = y.
(26)

A straightforward computation shows that∑
x∈Z

∑
σ∈χp,q

(
Ψ(σx,x+1)−Ψ(σ)

)2
=

∑
|e|=1

y/∈{x−1,x,x+1}

(G((x, y) + e)− G(x, y))2

+
∑

(x,y)∈∆−

∑
|e|=1

(x,y)+e∈∆−−

(G((x, y) + e)−G(x, y))2

+
∑

(x,y)∈∆+

∑
|e|=1

(x,y)+e∈∆+
+

(G((x, y) + e)−G(x, y))2

+
∑

(x,y)∈∆−∪∆+

(G(x, y)−G(y, x))2
.

We denote by D the Dirichlet form of a symmetric simple random walk on Z2−∆0

where jumps from u ∈ ∆+ (resp. ∆−) to its symmetric u ∈ ∆− (resp. ∆+) with
respect to ∆0 have been added. Let D0 be defined for every function G : Z2 → R
as

D0(G) =
∑

(x,y)∈Z2

∑
|e|=1

(G((x, y) + e)− G(x, y))2
.

It has been proved in [1] the following

Lemma 4.2. There exist C,C ′ > 0 such that, for any ψ =
∑
σ∈χp,q Ψ(σ)Hσ,

D(ψ) ≥ C D(Gψ) ≥ C ′ D0(Gψ),

where Gψ is defined in (26).

From (25) and Lemma 4.2, we have

〈
φ ,

(
z − S

)−1
φ
〉
. sup

G

{
2
∑

(x,y)∈Z2

F (x, y)G(x, y)− z
∑

(x,y)∈Z2

G2(x, y)

−
∑
|e|=1

∑
(x,y)∈Z2

(
G((x, y) + e)−G(x, y)

)2}
where the supremum is now taken over all local functions G : Z2 → R. Then, by
Fourier transform, the last supremum is equal to∫∫

[− 1
2 ,

1
2 ]2

|F̂ (k, `)|2

z + 4 sin2(πk) + 4 sin2(π`)
dkd`. (27)

�
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5. Proof of the macroscopic fluctuations for the volume field

In this section we establish Theorems 3.1 and 3.2.
We are going to write in a convenient way the differential equations governing

the evolution of the fluctuation fields. Recall that V3,n
t has been defined in (12).

Proposition 5.1. For any function f ∈ C∞c (R),

d

dt
Vn
t (f) = Vn

t

(
2na−2∆nf − 2na−1 ∇nf

)
+ γnV3,n

t

(
na−2∆nf − 2na−1∇nf

)
.

The proof of this proposition is given in Appendix D.

5.1. Fluctuations in the time scale a ≤ 1. From Proposition 5.1, by using (16)
and (17), we obtain in the case a < 1 that Vn

t (f) = Vn
0 (f) + o(1) and no evolution

holds.
Taking the hyperbolic time scale (a = 1), we get that the evolution of the volume

field is such that for any t ∈ [0, T ]

Vn
t (f)−Vn

0 (f) = −2
∫ t

0

Vn
s (∇nf)ds+ o(γn).

Thus, in the hyperbolic time scale, the initial fluctuations are transported with a
velocity −2, and Theorem 3.1 is proved. This result seems to indicate that the
sound velocity is −2. In fact this is not totally correct since a more accurate value
of the sound velocity is given in Appendix A and it is equal to −2 only at 0-th order.
Taking into account the first order correction in γn in the sound mode velocity is
fundamental in order to establish the next results.

5.2. Triviality of the fluctuations up to the time scale tna with a < a∗(b).
In this section, we consider the new field Ṽn

t defined in (10). The time evolution
equation given by Proposition 5.1 can be easily rewritten in the new reference frame
as:

d

dt
Ṽn
t (f) = Ṽn

t

(
2na−2∆nf − 2na−1 ∇nf − cnna−1f ′

)
+ γnṼ3,n

t

(
na−2∆nf − 2na−1∇nf

)
.

Observe that

∇nf
(
x−cntn

a

n

)
= f ′

(
x−cntn

a

n

)
+ 1

2nf
′′(x−cntn

a

n

)
+O(n−2),

∆nf
(
x−cntn

a

n

)
= f ′′

(
x−cntn

a

n

)
+O(n−1).

Therefore, for a ≤ 2, by using (16) and (17) we get, for t ∈ [0, T ],

Ṽn
t (f)−Ṽn

0 (f) =
∫ t

0

{
Ṽn
s

(
na−2f ′′ + 6χnγnna−1f ′

)
− 2na−1γnṼ3,n

s (f ′)
}
ds+εn(t)

(28)
where we have E

[
(supt≤T εn(t))2

]
→ 0 as n → ∞. Observe first that by (16) the

term
∫ t

0
Ṽn
s (na−2f ′′)ds vanishes in L2(P) as soon as a < 2 but remains if a = 2.
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Let τx : Ω → Ω be the shift operator defined by (τxω)z = ωx+z, z ∈ Z, whose
action is extended to functions ϕ : Ω→ R by (τxϕ)(ω) = ϕ(τxω). Note now that

ω3
x = (−Lγn)(ω2

xωx+1) (29)

+ 3ωx(ω2
x+1 − χn) + (ω2

x − χn)(2ωx+2 − 3ωx+1) + (ω2
x−1 − χn)ωx+1 (30)

− 2ωx−1ωxωx+1 (31)

+ χn(3ωx + 2ωx+2 − 2ωx+1) (32)

+ γn(τxψ)(ω) (33)

where ψ : Ω → R is a local function such that supn〈ψ〉β,0,γn < +∞. Using this in
(28) to rewrite the term na−1γnṼ3,n

s (f ′) we obtain several contributions.

I) The contribution of (32) to na−1γn
∫ t

0
Ṽ3,n
s (f ′)ds gives

3na−1γnχn

∫ t

0

Ṽn
s (f ′) ds+ εn(t),

with
lim
n→∞

na−1γn E
[

sup
t≤T

ε2
n(t)

]
= 0

because a ≤ 2. With the constant prefactor 2 this transport term cancels the
term 6χnγnna−1Ṽn

s (f ′) appearing in (28).

II) The contribution of (33) to na−1γn
∫ t

0
Ṽ3,n
s (f ′)ds gives a smaller term, which

by the Cauchy-Schwarz inequality (17) is at most of order γ2
nn

a−1. Therefore,
this term vanishes if γn = o(n

−a+1
2 ), i.e. a < 2b+ 1.

III) The contribution of (29) is null. Indeed, by Dynkin’s formula, we have

na−1γn

∫ t

0

(−Lγnφs)(ω(sna)) ds

=
γn

n
φt(ω(tna))−

γn

n
φ0(ω(0))−

γn

n

∫ t

0

(∂sφs)(ω(sna))ds+Mn
t (φ)

with

φs(ω) =
1√
n

∑
x∈Z

f ′
(x− cnsna

n

)
ω2
xωx+1

and Mn
t (φ) a martingale. Observe that

(∂sφs)(ω) =
cnna−1

√
n

∑
x∈Z

f
′′
(x− cnsna

n

)
ω2
xωx+1.

The Cauchy-Schwarz inequality and stationarity imply that uniformly in t ∈
[0, T ],

lim
n→∞

E
[(

γn

n
φt(ω(tna))−

γn

n
φ0(ω(0))−

γn

n

∫ t

0

(∂sφs)(ω(sna))ds
)2]

= 0

as soon as γn → 0 (recall that a ≤ 2). The quadratic variation of the martin-
gale is given by

E
[
〈Mn(φ)〉t

]
= γ2

nn
a−2

∫ t

0

D(φs)ds,
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where the Dirichlet form D has been defined in (8). By the Cauchy-Schwarz
inequality and stationarity we have that

∫ t
0
D(φs)ds is uniformly bounded in

t ∈ [0, T ] by a constant depending on f and β. Therefore we have

lim
n→∞

E
[
〈Mn(φ)〉t

]
= 0

since a ≤ 2.

IV) Finally, it remains to treat the sum of two terms, which are of the form
(p ∈ {1, 2})

na−1γn

∫ t

0

1√
n

∑
x∈Z

f ′
(x− cnsna

n

)
(ω2
x − χn)ωx+p(sna)ds, (34)

and

na−1γn

∫ t

0

1√
n

∑
x∈Z

f ′
(x− cnsna

n

)
(ωx−1ωxωx+1)(sna)ds. (35)

Terms (34) and (35) are treated thanks to Lemma 5.2 below.

Lemma 5.2. Let h : (s, x) → hs(x) ∈ R be a smooth bounded test function and
p ∈ {1, 2}. If a < 2b+ 1 then

lim
n→∞

E
[(
na−1γn

∫ t

0

1√
n

∑
x∈Z

hsna−1

(x
n

)
(ω2
x − χn)ωx+p(sna)ds

)2]
= 0, (36)

lim
n→∞

E
[(
na−1γn

∫ t

0

1√
n

∑
x∈Z

hsna−1

(x
n

)
(ωx−1ωxωx+1)(sna)ds

)2]
= 0. (37)

Proof. We start with the proof of (36). Fix p ∈ {1, 2}. First, we have to rewrite
the H−1,z estimate (18) in the case when the test function ψ also depends on
time t. More precisely, an easy modification of [14, Lemma 3.9] gives: for any
ψ ∈ L2(νβ,τ,γn),

E
[(∫ T

0

ψ
(
tna−1, ω(tna)

)
dt

)2]
≤ Cn−a

∫ T

0

∥∥ψ(tna−1, ·)
∥∥2

−1,tn−a
dt. (38)

From (38) and Lemma 4.1, the term under the limit in (36) is bounded from above
by

Cn2a−2 γ2
n n
−a
∫ t

0

∫∫
[− 1

2 ,
1
2 ]2

|ϕ̂sna−1(k, `)|2

sn−a + 4 sin2(πk) + 4 sin2(π`)
dkd` ds

where

ϕs(x, y) =

{
0 if |x− y| 6= p,

n−
1
2hs( xn ) if |x− y| = p.

Therefore, |ϕ̂s(k, `)|2 = n
∣∣(Fnhs)(n(k + `))

∣∣2, and we are reduced to estimate

na−1γ2
n

∫ t

0

∫∫
[− 1

2 ,
1
2 ]2

∣∣(Fnhsna−1)(n(k + `))
∣∣2

sn−a + 4 sin2(πk) + 4 sin2(π`)
dkd` ds

. na−1γ2
n

∫ t

0

∫∫
[− 1

2 ,
1
2 ]2

1
sn−a + 4 sin2(πk) + 4 sin2(π`)

dkd` ds
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because the discrete Fourier transform of hsna−1 is bounded by a constant indepen-
dent of n. The last integral is of order na−1γ2

n log n and goes to 0 if a− 2b− 1 < 0.
This proves (36).

Now we prove (37). For that purpose we note that it is enough to bound each
one of the following terms:

E
[(
na−1γn

∫ t

0

1√
n

∑
x∈Z

hsna−1

(x
n

)
(ωx−1ωx(ωx+1 −−→ω `

x+1))(sna)ds
)2]

, (39)

E
[(
na−1γn

∫ t

0

1√
n

∑
x∈Z

hsna−1

(x
n

)
((ωx−1 − ωx−1−L)ωx−→ω `

x+1)(sna)ds
)2]

,

E
[(
na−1γn

∫ t

0

1√
n

∑
x∈Z

hsna−1

(x
n

)
((ωx−1−L −←−ω L

x−1−L)ωx−→ω `
x+1)(sna)ds

)2]
,

E
[(
na−1γn

∫ t

0

1√
n

∑
x∈Z

hsna−1

(x
n

)
(←−ω L

x−1−L(ωx −←−ω L
x )−→ω `

x+1)(sna)ds
)2]

,

E
[(
na−1γn

∫ t

0

1√
n

∑
x∈Z

hsna−1

(x
n

)
(←−ω L

x−1−L
←−ω L
x
−→ω `
x+1)(sna)ds

)2]
, (40)

where for k ∈ N− {0} and z ∈ Z we define

−→ω k
z =

1
k

z+k∑
y=z+1

ωy.
←−ω k
z =

1
k

z−1∑
y=z−k

ωy.

From an ad-hoc version of Lemma 6.2 of [5], when L ≥ `, the sum of the terms in
the previous display are bounded from above by a constant times

γ2
nn

2a−3

{
`2

na−1
+

L2

`na−1
+

L

`na−1
+ t

n

`L

}∫ t

0

1
n

∑
x∈Z

hsna−1

(x
n

)2

ds.

We note that in order to bound the first term (39) the proof of the Lemma 6.2 of [5]
relies on the one-block estimate that, for completeness, we prove in the next lemma.
The last term (40) is estimated by using Cauchy-Schwarz inequality, stationarity
and independence. Now, by choosing ` = ε

√
n and L = εn3/4, since a < a∗(b), the

previous expression vanishes as n→∞ and ε→ 0. �

Lemma 5.3 (One-block estimate). Fix ` ∈ N and let ϕ : Ω→ R be a local function
which has mean zero w.r.t. νβ,0,γn , and whose support does not intersect the set of
points {0, · · · , `}. There exists a constant C > 0, such that for any T > 0 and any
function h as in Lemma 5.2:

E
[(∫ t

0

∑
x∈Z

hsna−1

(x
n

)
τxϕ(ω(sna))

(
ωx+1 −−→ω `

x+1

)
(sna) ds

)2]

≤ C `2

na−1
〈ϕ2〉β,0,γn

∫ t

0

1
n

∑
x∈Z

hsna−1

(x
n

)2

ds.
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and

E
[(∫ t

0

∑
x∈Z

hsna−1

(x
n

)(
ωx−1(sna)− ωx−1−`(sna)

)
(τxϕ)(ω(sna))ds

)2]

≤ C `2

na−1
〈ϕ2〉β,0,γn

∫ t

0

1
n

∑
x∈Z

hsna−1

(x
n

)2

ds.

Proof. We only prove the first display since the proof of the second one is similar.
By (38) and (9) we bound the previous expectation from above by a constant times∫ t

0

∥∥∥∥∑
x∈Z

hsna−1( xn )τxϕ(ω(tna))
(
ωx+1 −−→ω `

x+1

)
(sna)

∥∥∥∥2

−1

ds

=
∫ t

0

sup
f

{
2
∑
x∈Z

hsna−1( xn )
〈
τxϕ(ω)

(
ωx+1 −−→ω `

x+1

)
f(ω)

〉
β,0,γn

− naD(f)
}
ds,

(41)

where the supremum is carried over local functions and D is the Dirichlet form
defined in (8). The term ωx+1 −−→ω `

x+1 can be written as a sum of gradients as

ωx+1 −−→ω `
x+1 =

1
`

x+1+`∑
y=x+2

y−1∑
z=x+1

(ωz − ωz+1).

By writing the average in (41) as twice its half and in one of the terms performing
the exchange ω to ωz,z+1, for which the measure νβ,0,γn is invariant, we write the
term inside the supremum in (41) as

∑
x∈Z

hsna−1( xn )
1
`

x+1+`∑
y=x+2

y−1∑
z=x+1

〈
τxϕ(ω)(ωz − ωz+1)(f(ω)− f(ωz,z+1))

〉
β,0,γn

.

Now, applying Young’s inequality in the term inside brackets in the previous ex-
pression, for any choice of positive constants Bx, it is bounded from above by

1
`

∑
x∈Z

x+1+`∑
y=x+2

y−1∑
z=x+1

∣∣hsna−1( xn )
∣∣ Bx

2
〈
(τxϕ(ω))2(ωz − ωz+1)2

〉
β,0,γn

(42)

+
1
`

∑
x∈Z

x+1+`∑
y=x+2

y−1∑
z=x+1

∣∣hsna−1( xn )
∣∣

2Bx

〈(
f(ω)− f(ωz,z+1)

)2〉
β,0,γn

. (43)

Let ε > 0. For the choice 2Bx = ε−1`n−a|hsna−1( xn )| and independence, (42) is
bounded from above by a constant times

ε−1

na

∑
x∈Z

x+1+`∑
y=x+2

y−1∑
z=x+1

(
hsna−1( xn )

)2〈ϕ2〉β,0,γn .
〈ϕ2〉β,0,γn

ε

`2

na−1

1
n

∑
x∈Z

(
hsna−1( xn )

)2
.

Finally, a simple computation shows that for the choice of Bx that we have fixed
above, the term (43) is bounded from above by a constant times εnaD(f). By
choosing ε sufficiently small, this term counterbalances with the term naD(f) in
(41). This ends the proof. �
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5.3. Fluctuations in the diffusive time scale tn2 with a = 2 and b ∈ ( 1
2 ,+∞).

The estimates above show that starting from (28) and using the previous estimates
with a = 2, if b > 1

2 , only the term
∫ t

0
Ṽn
s (f ′′)ds survives. All the other terms give

a zero contribution. This concludes the proof of Theorem 3.2.

6. Proof of the macroscopic fluctuations for the energy field

In this section we prove Theorem 3.3. We need to introduce some operators
which are defined as follows. Let f ∈ C∞c (R) and h ∈ C∞c (R2), then

(i) ∇nf ⊗ δ : 1
nZ2 → R approximates the distribution f ′(x)δ(x = y) as

(
∇nf ⊗ δ

)(
x
n ,

y
n

)
=


n2

2

{
f
(
x+1
n

)
− f

(
x
n

)}
; y = x+ 1

n2

2

{
f
(
x
n

)
− f

(
x−1
n

)}
; y = x− 1

0; otherwise.

(ii) ∆nh : R2 → R approximates the 2− d Laplacian of h as

∆nh
(
x
n ,

y
n

)
= n2

{
h
(
x+1
n , yn

)
+ h
(
x−1
n , yn

)
+ h
(
x
n ,

y+1
n

)
+ h
(
x
n ,

y−1
n

)
− 4h

(
x
n ,

y
n

)}
.

(iii) ∇nh : R2 → R approximates the gradient of h along the diagonal5 as

∇nh
(
x
n ,

y
n

)
=


n
2

{
h
(
x+1
n , x+1

n

)
− h
(
x
n ,

x
n

)}
; y = x+ 1

n
2

{
h
(
x
n ,

x
n

)
− h
(
x−1
n , x−1

n

)}
; y = x− 1

0; otherwise.

(iv) Anh : R→ R approximates the directional derivative (−2,−2) · ∇h as

Anh
(
x
n ,

y
n

)
= n

{
h
(
x
n ,

y−1
n

)
+ h
(
x−1
n , yn

)
− h
(
x
n ,

y+1
n

)
− h
(
x+1
n , yn

)}
.

(v) Dnh : 1
nZ→ R approximates the directional derivative of h along the diagonal

as
Dnh

(
x
n

)
= n

{
h
(
x
n ,

x+1
n

)
− h
(
x−1
n , xn

)}
.

(vi) D̃nh : 1
nZ2 → R approximates the distribution ∂yh(x, x)⊗ δ(x = y) as

D̃nh
(
x
n ,

y
n

)
=


n2
{
h
(
x
n ,

x+1
n

)
− h
(
x
n ,

x
n

)}
; y = x+ 1

n2
{
h
(
x−1
n , xn

)
− h
(
x−1
n , x−1

n

)}
; y = x− 1

0; otherwise.

(vii) Bnh : 1
nZ2 → R is defined as

Bnh
(
x
n ,

y
n

)
:=
√
n
{
h
(
x−1
n , yn

)
− h
(
x+1
n , yn

)
+
(
1y=x+1 − 1y=x−1

)
h
(
y
n ,

y
n

)}
. (44)

In the following, we consider a function h ∈ C∞c (R2) which is symmetric, namely
that satisfies h(u, v) = h(v, u) for any u, v ∈ R.

5The reader will notice that we used also the notation∇nf to denote the usual discrete gradient
of the function f : R → R. No confusions are possible since the latter acts on functions defined

on R.
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Proposition 6.1. For any function f ∈ C∞c (R), and any symmetric function h ∈
C∞c (R2),

d

dt
En
t (f) = En

t

(
na−2 ∆nf

)
− (1 + γnκn)2 Q2,n

t

(
na−

3
2 ∇nf ⊗ δ

)
− 2γn(1 + γnκn) Q4,n

t

(
na−

3
2 ∇nf ⊗ δ

)
− γ2

n Q6,n
t

(
na−

3
2 ∇nf ⊗ δ

)
, (45)

d

dt
Q2,n
t (h) = Q2,n

t

(
Lnh

)
− 4En

t

(
na−

3
2 Dnh

)
− γn E4,n

t

(
na−

3
2 Dnh

)
+ 2Q2,n

t

(
na−2 D̃nh

)
+ 2γn Q4,n

t

(
na−

1
2Bnh

)
+ γnκn Q2,n

t

(
na−1∇nh

)
(46)

where the operator Ln is defined by

Ln := na−1(1 + κnγn)An + na−2∆n. (47)

The proof of Proposition 6.1 is given in Appendix D. We remark that since
the underlying model is nonlinear the time evolution of the pair (energy field ;
quadratic field) is not closed and we have to deal with some hierarchy. This is the
main difference with previous studies ([2, 3, 4, 8]) whose success was very dependent
of this closeness due to the linear interactions.

6.1. Strategy of the proof of Theorem 3.3. Assume a = 3
2 . The expressions

(45) and (46) can be written, respectively, as

d

dt
En
t (f) =− (1 + γnκn)2 Q2,n

t

(
∇nf ⊗ δ

)
+ En

t

(
n−

1
2 ∆nf

)
− 2γn(1 + γnκn) Q4,n

t

(
∇nf ⊗ δ

)
− γ2

n Q6,n
t

(
∇nf ⊗ δ

)
, (48)

d

dt
Q2,n
t (h) =Q2,n

t

(
Lnh

)
− 4En

t

(
Dnh

)
− γnE4,n

t

(
Dnh

)
+ 2Q2,n

t

(
n−

1
2 D̃nh

)
+ 2γnQ4,n

t

(
nBnh

)
+ γnκnQ2,n

t

(√
n∇nh

)
. (49)

Let hn : 1
nZ× 1

nZ→ R be the symmetric solution of the Poisson equation

Lnhn = (1 + γnκn)2 ∇nf ⊗ δ, with Ln =
√
n (1 + κnγn)An + n−

1
2 ∆n. (50)
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Then, summing equations (48) and (49), and integrating in time between 0 and
T > 0 fixed, we obtain

En
T (f) = En

0 (f)− 4
∫ T

0

En
t

(
Dnhn

)
dt (51)

+ Q2,n
0 (hn)−Q2,n

T (hn)− γn
∫ T

0

E4,n
t

(
Dnhn

)
dt (52)

+
∫ T

0

En
t

(
n−

1
2 ∆nf

)
dt+ γnκn

∫ T

0

Q2,n
t

(√
n∇nhn

)
dt (53)

− γ2
n

∫ T

0

Q6,n
t

(
∇nf ⊗ δ

)
dt (54)

+ 2
∫ T

0

Q2,n
t

(
n−

1
2 D̃nhn

)
dt (55)

+ 2γn
∫ T

0

Q4,n
t

(
nBnhn − (1 + γnκn)∇nf ⊗ δ

)
dt. (56)

We want to estimate the range of the parameter γn for which the unique term that
contributes to the equality above is (51), namely −4En

t

(
Dnhn

)
. This term will be

replaced by En
t

(
Lf
)

thanks to the next proposition which is proved in Section 6.2.

Proposition 6.2. The solution hn of (50) satisfies

lim
n→∞

1
n

∑
x∈Z

∣∣Dnhn( xn)+ 1
4Lf

(
x
n

)∣∣2 = 0, (57)

where L is the operator defined in (11).

We know two different ways to prove that the other terms vanish as n→∞: the
Cauchy-Schwarz inequality, and the Kipnis-Varadhan inequality, which have been
presented in Section 4. We start with the easiest term: from (13) one can directly
see that, uniformly in t ∈ [0, T ],∣∣∣En

t

(
n−

1
2 ∆nf

)∣∣∣ −−−−→
n→∞

0,

independently of γn. The other contributions need some work. In the following
proposition, which is proved in Appendices B and C, we estimate some `2-norms
that will be used in the Cauchy-Schwarz argument.

Proposition 6.3 (`2-norms involving the solution of the Poisson equation (50)).
If hn : 1

nZ× 1
nZ→ R is the symmetric solution of (50), then∑

x,y∈Z
h2
n

(x
n
,
y

n

)
= O

(
n

3
2
)
, (58)

∑
x∈Z

h2
n

(x
n
,
x

n

)
= O

(
n
)
, (59)

∑
x∈Z

[
Dnhn

(x
n

)]2
= O(n), (60)

∑
x∈Z

[
hn

(x+ 1
n

,
x+ 1
n

)
− hn

(x
n
,
x

n

)]2
= O

(
n−1

)
. (61)
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A direct consequence of Proposition 6.3 and the Cauchy-Schwarz inequality is
the following: from (60) we have∣∣∣γnE4,n

t

(
Dnhn

)∣∣∣ −−−−→
n→∞

0,

since it is of order γn. From (58) we also get∣∣∣Q2,n
T (hn)

∣∣∣ −−−−→
n→∞

0,
∣∣∣Q2,n

0 (hn)
∣∣∣ −−−−→
n→∞

0,

independently of γn. We know from (61) that the L2(P)-norm of

γnκn

∫ T

0

Q2,n
t

(√
n∇nhn

)
dt

is of order γn, and then vanishes. To sum up, both terms (52) and (53) vanish in
L2(P), as soon as γn = o(1).

Moreover, concerning (54), observe that by a first order Taylor expansion we
have that

(
N 6=n (∇nf ⊗ δ)

)2 = O(n). Therefore (15) gives that∣∣∣γ2
n Q6,n

t (∇nf ⊗ δ)
∣∣∣ −−−−→
n→∞

0,

if γn = o(n−
1
4 ), since it is of order γ2

n

√
n.

Finally, the terms that need a refined investigation are (55) and (56). For these
terms, the Cauchy-Schwarz inequality is not sharp enough, hence we are going
to estimate them using a dynamical argument for (55) and the Kipnis-Varadhan
inequality (18), with some H−1,z norms estimates for (56). This is the purpose of
Section 6.3 and Section 6.4 respectively, in which we prove the following results:

Proposition 6.4. For hn solution of (50), we have that

lim
n→∞

E
[(∫ T

0

Q2,n
t

(
n−

1
2 D̃nhn

)
dt

)2]
= 0.

Proposition 6.5. Let hn be solution of (50). If γn = o(n−
1
4 ), then

lim
n→∞

E
[(
γn

∫ T

0

Q4,n
t

(
2nBnhn − 2(1 + γnκn)∇nf ⊗ δ

)
dt

)2]
= 0.

In the next sections we give the details of the proofs of Propositions 6.2, 6.4 and
6.5.

Remark 6.1. Note that in the whole argument we used the restriction γn = o(n−
1
4 )

only twice:

• first, to make (54) vanish as n→∞;
• second, to prove Proposition 6.5.

Our conjecture is that in the first case, the limitation could be improved quite easily.
Indeed, to treat (54) recall that we roughly applied the Cauchy-Schwarz inequality,
but it is highly probable that a H−1,z-norm argument would give a more refined
estimate, and therefore would relax the restriction. However, in the second case,
we do not see any easy way to improve the result. This is why we believe that the
restriction γn = o(n−

1
4 ) comes from Proposition 6.5, and only from this last result.
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6.2. Proof of Proposition 6.2. First let us note that the Fourier transform of
hn defined in (50) is explicitly given, for any (u, v) ∈ [−n2 ,

n
2 ]2, by

Fn(hn)(u, v) =
(1 + κnγn)2

2
√
n

iΩ(un ,
v
n )Fn(f)(u+ v)

(1 + κnγn)Λ(un ,
v
n )− iΩ(un ,

v
n )

=
(1 + κnγn)2

2
√
n

Θ
(
u
n ,

v
n

)
Fn(f)(u+ v)

(62)

where, for (k, `) ∈
[
− 1

2 ,
1
2

]2,

Λ(k, `) := 4
[
sin2(πk) + sin2(π`)

]
, (63)

Ω(k, `) := 2 [sin(2πk) + sin(2π`)] , (64)

Θ(k, `) :=
iΩ(k, `)

(1 + κnγn)Λ(k, `)− iΩ(k, `)
. (65)

Let G0 be defined for any v ∈ R as

G0(v) :=
1
2

∣∣πv∣∣ 32 (1 + isgn(v)),

and let us denote q : R→ R the function

q(u) :=
∫

R
e−2iπuv G0(v)F(f)(v) dv = −1

4
Lf(u).

The last equality is obtained by computing the Fourier transform of the right hand
side and using the inverse Fourier transform. We want to write a similar Fourier
identity for Dnhn( xn ). Let qn : 1

nZ→ R be the function defined by

qn
(
x
n

)
= Dnhn

(
x
n

)
.

Since Fn(hn) is a symmetric function we can easily see (as in [2, Lemma D.1]) that

Fn(qn)(ξ) = − i
2

∑
x∈Z

e2iπx ξn

∫∫
[−n2 ,

n
2 ]2

e−2iπx
(k+`)
n Ω

(
k
n ,

`
n

)
Fn(hn)(k, `) dkd`.

We use now Lemma B.1 (proved ahead) and the inverse Fourier transform relation
to get

Fn(qn)(ξ) = − in2
∫

[−n2 ,
n
2 ]

Ω
(
ξ−`
n , `n

)
Fn(hn)(ξ − `, `) d`.

By the explicit expression (62) of Fn(hn) we obtain that

Fn(qn)(ξ) =
(1 + γnκn)2

4
n

3
2 K( ξn ) Fn(f)(ξ),

where

K(y) := −
∫

[− 1
2 ,

1
2 ]

i (ΩΘ) (y − x, x)dx. (66)

Therefore, we have proved the identity

Dnhn
(
x
n

)
=
∫

[−n2 ,
n
2 ]

e−2iπx ξn n
3
2Gn

(
ξ
n

)
Fn(f)(ξ) dξ,

where Gn is the 1-periodic function defined for any y ∈ [− 1
2 ,

1
2 ] by

Gn(y) =
(1 + γnκn)2

4
K(y). (67)
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The proof is now reduced to prove that n
3
2Gn( ξn ) is close to G0(ξ), in the following

sense:

Lemma 6.6. For any ξ ∈ [−n2 ,
n
2 ],∣∣∣n 3

2 Gn

( ξ
n

)
−G0(ξ)

∣∣∣ . γn|ξ|
3
2 +
|ξ|2
√
n
.

Lemma 6.6 is proved in Section C.2. Let us now prove (57): we have

Dnhn
(
x
n

)
+ 1

4Lf
(
x
n

)
= qn

(
x
n

)
− q
(
x
n

)
=
∫
|ξ|≥n2

e−2iπx ξn G0(ξ) F(f)(ξ) dξ

+
∫
|ξ|≤n2

e−2iπx ξn G0(ξ)
(
F(f)(ξ)−Fn(f)(ξ)

)
dξ

+
∫
|ξ|≤n2

e−2iπx ξn

(
G0(ξ)− n 3

2 Gn
(
ξ
n

))
Fn(f)(ξ) dξ.

Therefore, we bound from the Parseval-Plancherel identity as

1
n

∑
x∈Z

[
q
(
x
n

)
− qn

(
x
n

)]2 ≤ 1
n

∑
x∈Z

∣∣∣∣ ∫
|ξ|≥n2

e−2iπx ξn G0(ξ) F(f)(ξ) dξ
∣∣∣∣2 (68)

+
∫
|ξ|≤n2

∣∣G0(ξ)
∣∣2 ∣∣F(f)(ξ)−Fn(f)(ξ)

∣∣2 dξ (69)

+
∫
|ξ|≤n2

∣∣∣G0(ξ)− n 3
2 Gn

(
ξ
n

)∣∣∣2 ∣∣Fn(f)(ξ)
∣∣2 dξ. (70)

We treat each term (68), (69) and (70) separately. For the first one (68), we perform
an integration by parts and then we use two facts: first the Fourier transform F(f)
of f is in the Schwartz space, and second, the functions G0 and G′0 grow at most
polynomially. This implies that (68) is bounded by a constant times

1
n

∑
x∈Z

n2

|x|2
{∣∣G0 F(f)

∣∣2(± n
2

)
+
∣∣∣ ∫
|ξ|≥n2

∣∣ d
dξ [G0 F(f)](ξ)

∣∣ dξ∣∣∣2} . n−p,

from some p > 0 and it vanishes as n→∞. The second term (69) can be bounded
from above by ∫

[−n2 ,
n
2 ]

|ξ|3
∣∣F(f)(ξ)−Fn(f)(ξ)

∣∣2 dξ.
Performing the change of variables y = ξ

n and using the fact that f is in the Schwartz
space (together with Lemma B.2), we can prove that (69) does not contribute to
the limit n→ +∞. Finally, the contribution of (70) is estimated by using Lemma
6.6: it is bounded by a sum of terms of the form

1
nβ

∫
[−n2 ,

n
2 ]

|ξ|α
∣∣Fn(f)(ξ)

∣∣2 dξ . 1
nβ

∫
[−n2 ,

n
2 ]

|ξ|α

(1 + |ξ|p)2
dξ,

for some α, β > 0. The last inequality above is a consequence of Lemma B.2, and
therefore it vanishes as n→ +∞ after choosing p such that 2p > α+ 1.
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6.3. Proof of Proposition 6.4: the dynamical argument. As in [2] the idea
of the proof consists in using once again the differential equation (49) after solving
a new Poisson equation, with a different right hand side. For that purpose, let
vn : 1

nZ× 1
nZ→ R be the symmetric solution of

Lnvn = 2n−
1
2 D̃nhn, with Ln = n

1
2 (1 + κnγn)An + n−

1
2 ∆n. (71)

From (49), the term that we want to estimate is now equal to∫ T

0

Q2,n
t

(
n−

1
2 D̃nhn

)
dt =Q2,n

T (vn)−Q2,n
0 (vn) + 4

∫ T

0

En
t (Dnvn)dt

+γn
∫ T

0

E4,n
t (Dnvn)dt− 2

∫ T

0

Q2,n
t

(
n−

1
2 D̃nvn

)
dt

−2γn
∫ T

0

Q4,n
t (nBnvn)dt− γnκn

∫ T

0

Q2,n
t (
√
n∇nvn)dt.

It turns out that the work becomes easier, since the rough Cauchy-Schwarz in-
equality will be enough to control all these terms but one, thanks to the following
proposition whose proof is given in Appendix B.

Proposition 6.7 (`2-norms involving the solution of the Poisson equation (71)).
If vn : 1

nZ× 1
nZ→ R is the symmetric solution to (71), then∑

x,y∈Z
v2
n

(x
n
,
y

n

)
= O(

√
n), (72)

∑
x∈Z

v2
n

(x
n
,
x

n

)
= O(1), (73)

∑
x∈Z

[
Dnvn

(x
n

)]2
= O(1), (74)

∑
x∈Z

[
vn

(x+ 1
n

,
x+ 1
n

)
− vn

(x
n
,
x

n

)]2
= O(n−2), (75)

∑
x∈Z

[
D̃nvn

(x
n
,
x+ 1
n

)]2
= O(n2). (76)

From (15) and (72) we get that∣∣∣Q2,n
T (vn)

∣∣∣ −−−−→
n→∞

0,
∣∣∣Q2,n

0 (vn)
∣∣∣ −−−−→
n→∞

0,

independently of γn. From (14) and (74) we get that

γn

∫ T

0

∣∣∣E4,n
t (Dnvn)

∣∣∣dt = O(γnn−
1
2 ).

Analogously, from (15) and (76) we have that∣∣∣Q2,n
T (n−

1
2 D̃nvn)

∣∣∣ −−−−→
n→∞

0,

independently of γn. Finally, from (15) and (75) we have that∣∣∣γnQ2,n
T (
√
n∇nvn)

∣∣∣ −−−−→
n→∞

0,

independently of γn. Moreover, we prove below in Section 6.5 the following
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Proposition 6.8. For vn solution of (71), we have that

lim
n→∞

E
[(
γn

∫ T

0

Q4,n
t

(
nBnvn

)
dt

)2]
= 0. (77)

This ends the proof of Proposition 6.4.

6.4. Proof of Proposition 6.5. Thanks to the Kipnis-Varadhan inequality (18)
together with Lemma 4.1 we have reduced the problem to control the L2(P)-norm
of (56) to estimating the behavior w.r.t. n of the integral (23) with z = n−

3
2 and ϕ

suitably defined. We can make a change of variables in (23) in order to get:

1
n2

∫∫
[−n2 ,

n
2 ]2

|ϕ̂(un ,
v
n )|2

z + 4 sin2(π un ) + 4 sin2(π vn )
dudv.

Now, we observe that

Q4,n
t

(
2nBnhn−2(1+γnκn)∇nf ⊗δ

)
= E

[
En0 (g)

{∑
x 6=y

Φn(x, y)H3δx+δy (ω(tn
3
2 ))
}]

where

Φn(x, y) =

0 if y = x,

2
√
n hn

(
x−1
n , x+1

n

)
− n (1 + γnκn)

(
f
(
x+1
n

)
− f

(
x
n

))
if y = x+ 1,

− 2
√
n hn

(
x+1
n , x−1

n

)
− n (1 + γnκn)

(
f
(
x
n

)
− f

(
x−1
n

))
if y = x− 1,

2
√
n
(
hn
(
x−1
n , yn

)
− hn

(
x+1
n , yn

))
otherwise.

Then, compute the Fourier transform: for (k, `) ∈
[
− 1

2 ,
1
2

]2,

Φ̂n(k, `) =
∑

(x,y)∈Z2

Φn(x, y)e2iπ(kx+`y)

= −(1 + γnκn)n
∑
x∈Z

[
f
(
x+1
n

)
− f

(
x
n

)]
e2iπx(k+`)

(
e2iπ` + e2iπk

)
+ 2n

1
2

∑
j≥1

∑
u∈Z

hn
(
u
n ,

u+j
n

)
e2iπ(k+`)u

(
e2iπk − e−2iπk

)(
e2iπ`j + e2iπkj

)
− 2n

1
2

∑
u∈Z

hn
(
u
n ,

u+1
n

)
e2iπu(k+`)

(
e2iπ(k+`) − 1

)
.

We have, for any m ∈ Z, (see Lemma B.1 below)

∑
u∈Z

hn
(
u
n ,

u+m
n

)
e2iπ(k+`)u = n

∫
[−n2 ,

n
2 ]

Fn(hn)(n(k + `)− u, u)e−2iπm
u
n du.
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Therefore, we have

Φ̂n(k, `) =(1 + γnκn) n2Fn(f)(n(k + `)) iΩ(k, `)

+ 2n
3
2
(
e2iπk − e−2iπk

) ∫
[−n2 ,

n
2 ]

Fn(hn)(n(k + `)− u, u)

×
∑
j≥1

[
e−2iπj

(
u
n−`
)

+ e−2iπj
(
u
n−k

)]
du

− 2n
3
2
(
e2iπ(k+`) − 1

) ∫
[−n2 ,

n
2 ]

Fn(hn)(n(k + `)− u, u)e−2iπ
u
n du.

Observe that Fn(hn)(ξ − u, u) = Fn(hn)(u, ξ − u) for any ξ, u ∈ R. Therefore, one
can perform the change of variables v = n(k + `)− u in one of the integrals in the
second term above, and one gets

Φ̂n(k, `) = (1 + γnκn) n2Fn(f)(n(k + `)) iΩ(k, `)

+ 2n
3
2
(
e2iπk − e−2iπk

) ∫
[−n2 ,

n
2 ]

Fn(hn)(n(k + `)− u, u)× 2Re
[(
e2iπ

(
u
n−`
)
− 1
)−1

]
du

− 2n
3
2
(
e2iπ(k+`) − 1

) ∫
[−n2 ,

n
2 ]

Fn(hn)(n(k + `)− u, u)e−2iπ
u
n du.

Note that

2Re
[(
e2iπ

(
u
n−`
)
− 1
)−1

]
= −1.

Using (62), we obtain

Φ̂n(k, `) = n2(1 + γnκn)Fn(f)(n(k + `))Rn(k, `)

where

Rn(k, `) = iΩ(k, `) + (1 + γnκn)
{
I(k + `)

(
e−2iπk − e2iπk

)
+ J(k + `)

}
and I, J are defined as (see (65) for the definition of Θ)

I(y) :=
∫

[− 1
2 ,

1
2 ]

Θ(y − x, x) dx, (78)

J(y) :=
∫

[− 1
2 ,

1
2 ]

Θ(y − x, x)e−2iπx(1− e2iπy) dx. (79)

Finally, from (18) and Lemma 4.1, the square of the L2(P)-norm of

γn

∫ T

0

Q4,n
t

(
nBnhn − (1 + γnκn)∇nf ⊗ δ

)
dt.

is bounded from above by (recall that z = n−
3
2 )

Cγ2
n n

5
2

∫∫
[− 1

2 ,
1
2 ]2

|Rn(k, `)|2

z + sin2(πk) + sin2(π`)

∣∣Fn(f)(n(k + `))
∣∣2 dkd`

= Cγ2
n n

5
2

∫
[− 1

2 ,
1
2 ]

Un(ξ)
∣∣Fn(f)(nξ)

∣∣2 dξ, (80)

where

Un(ξ) :=
∫

[− 1
2 ,

1
2 ]

|Rn(k, ξ − k)|2

z + sin2(πk) + sin2(π(ξ − k))
dk.
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We can bound |Rn(k, ξ − k)| from above as follows:

|Rn(k, ξ − k)|2 ≤ 2|Ω(k, ξ − k)|2 + 2(1 + γnκn)2
∣∣2i sin(2πk)I(ξ) + J(ξ)

∣∣2.
Let us first estimate the contribution coming from Ω(k, ξ − k), namely:∫

[− 1
2 ,

1
2 ]

|Ω(k, ξ − k)|2

z + sin2(πk) + sin2(π(ξ − k))
dk ≤

∫
[− 1

2 ,
1
2 ]

4 sin2(πξ)
z + sin2(πk) + sin2(π(ξ − k))

dk

≤ 4n
3
2 sin2(πξ).

Therefore, the contribution of this term in (80) gives

Cγ2
n

∫
[− 1

2 ,
1
2 ]

n4 sin2(πξ)
∣∣Fn(f)(nξ)

∣∣2 dξ
and by Lemma B.2 it vanishes since nγ2

n → 0. Moreover, we now use Lemma C.1
in order to estimate the remaining contribution, namely∫

[− 1
2 ,

1
2 ]

∣∣2i sin(2πk)I(ξ) + J(ξ)
∣∣2

z + sin2(πk) + sin2(π(ξ − k))
dk ≤ C

∫
[− 1

2 ,
1
2 ]

sin2(2πk)|I(ξ)|2 + |J(ξ)|2

z + sin2(πk) + sin2(π(ξ − k))
dk

≤ C
∫

[− 1
2 ,

1
2

] sin2(2πk)| sin(πξ)|+ | sin(πξ)|3

z + sin2(πk) + sin2(π(ξ − k))
dk

≤ C
[
| sin(πξ)|+ n

3
2 | sin(πξ)|3

]
.

Therefore, the contribution of this term in (80) gives

Cγ2
nn

5
2

∫
[− 1

2 ,
1
2 ]

[
| sin(πξ)|+ n

3
2 | sin(πξ)|3

]∣∣Fn(f)(nξ)
∣∣2 dξ

and by Lemma B.2 it vanishes if
√
nγ2

n → 0. This ends the proof of Proposition
6.5.

6.5. Proof of Proposition 6.8. Here we follow closely the proof of Proposition
6.5 and for that reason we skip some steps of it. First we observe that

Q4,n
t

(
nBnvn

)
= E

[
En0 (g)

{∑
x6=y

Ψn(x, y)H3δx+δy (ω(tn
3
2 ))
}]

where

Ψn(x, y) =



0 if y = x,
√
n vn

(
x−1
n , x+1

n

)
if y = x+ 1,

−
√
n vn

(
x+1
n , x−1

n

)
if y = x− 1,

√
n
(
vn
(
x−1
n , yn

)
− vn

(
x+1
n , yn

))
otherwise.
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The Fourier transform of Ψ is given on (k, `) ∈
[
− 1

2 ,
1
2

]2 by

Ψ̂n(k, `) =
∑

(x,y)∈Z2

Ψn(x, y)e2iπ(kx+`y)

= n
1
2

∑
j≥1

∑
u∈Z

vn
(
u
n ,

u+j
n

)
e2iπ(k+`)u

(
e2iπk − e−2iπk

)(
e2iπ`j + e2iπkj

)
− n 1

2

∑
u∈Z

vn
(
u
n ,

u+1
n

)
e2iπu(k+`)

(
e2iπ(k+`) − 1

)
.

Ψ̂n(k, `) = n
3
2
(
e2iπk − e−2iπk

) ∫
[−n2 ,

n
2 ]

Fn(vn)(n(k + `)− u, u)

×
∑
j≥1

[
e−2iπj

(
u
n−`
)

+ e−2iπj
(
u
n−k

)]
du

− n 3
2
(
e2iπ(k+`) − 1

) ∫
[−n2 ,

n
2 ]

Fn(vn)(n(k + `)− u, u)e−2iπ
u
n du.

The proof of this proposition is very similar to the previous one. Indeed, what we
really need is the expression of the Fourier transform of vn, solution to the Poisson
equation (71). For any (u, v) ∈ [−n2 ,

n
2 ]2, we have

Fn(vn)(u, v) = − 2
n

e2iπ un + e2iπ vn

(1 + κnγn)Λ(un ,
v
n )− iΩ(un ,

v
n )
Fn(wn)(u+ v), (81)

where wn : 1
nZ→ R is defined by

wn
(
x
n

)
:= hn

(
x
n ,

x+1
n

)
− hn

(
x
n ,

x
n

)
(82)

and therefore, for any ξ ∈ [−n2 ,
n
2 ], we deduce from (62) that

Fn(wn)(ξ) =
∫

[−n2 ,
n
2 ]

Fn(hn)(ξ − `, `)
(
e−2iπ `n − 1

)
d` = −

√
n

2 L
(
ξ
n

)
Fn(f)(ξ), (83)

where
L(y) :=

∫
[− 1

2 ,
1
2 ]

(1− e−2iπx)Θ(y − x, x) dx. (84)

From the previous computations we conclude that

Fn(vn)(u, v) =
1√
n

e2iπ un + e2iπ vn

(1 + κnγn)Λ(un ,
v
n )− iΩ(un ,

v
n )
L
(
u+v
n

)
Fn(f)(u+ v), (85)

Since vn is symmetric, Fn(vn)(ξ − u, u) = Fn(vn)(u, ξ − u) for any ξ, u ∈ R, and
similar computations as before give

Ψ̂n(k, `) = n
3
2
(
e2iπk − e−2iπk

) ∫
[−n2 ,

n
2 ]

Fn(vn)(n(k + `)− u, u) du

− n 3
2
(
e2iπ(k+`) − 1

) ∫
[−n2 ,

n
2 ]

Fn(vn)(n(k + `)− u, u)e−2iπ
u
n du.

Using (85), we obtain

Ψ̂n(k, `) = n2L(k + `)Fn(f)(n(k + `))R̃n(k, `)

where

R̃n(k, `) = O(k + `)
(
e−2iπk − e2iπk

)
+
(
1− e2iπ(k+`)

)
M(k + `)



30 CÉDRIC BERNARDIN, PATRÍCIA GONÇALVES, MILTON JARA, AND MARIELLE SIMON

with O and M given respectively by

O(y) :=
1

1− e−2iπy

∫
[− 1

2 ,
1
2 ]

Θ(y − x, x) dx (86)

and

M(y) :=
1

1− e−2iπy

∫
[− 1

2 ,
1
2 ]

e−2iπx Θ(y − x, x) dx. (87)

Finally, from (18) and Lemma 4.1, the square of the L2(P)-norm of

γn

∫ T

0

Q4,n
t

(
nBnvn

)
dt

is bounded from above by

Cγ2
nn

5
2

∫
[− 1

2 ,
1
2 ]

Ũn(ξ)
∣∣L(ξ)|2|Fn(f)(nξ)

∣∣2 dξ, (88)

where

Ũn(ξ) :=
∫

[− 1
2 ,

1
2 ]

|R̃n(k, ξ − k)|2

z + sin2(πk) + sin2(π(ξ − k))
dk.

We can bound |R̃n(k, ξ − k)| from above as follows:

|R̃n(k, ξ − k)|2 ≤ 2| sin(πξ)|2|M(ξ)|2 + 2| sin(2πk)|2|O(ξ)|2.

Let us first estimate the contribution coming from O(ξ), namely:∫
[− 1

2 ,
1
2 ]

| sin(2πk)O(ξ)|2

z + sin2(πk) + sin2(π(ξ − k))
dk ≤ C|O(ξ)|2.

Therefore, from Lemma C.1 (119) the contribution of this term in (88) gives

Cγ2
n

∫
[− 1

2 ,
1
2 ]

n
5
2 sin2(πξ)

∣∣Fn(f)(nξ)
∣∣2 dξ

and by Lemma B.2 it vanishes independently of γn, since γ2
n/
√
n → 0. Now using

again Lemma C.1 we estimate the contribution coming from M(ξ), namely:∫
[− 1

2 ,
1
2 ]

| sin(πξ)|2|M(ξ)|2

z + sin2(πk) + sin2(π(ξ − k))
dk ≤ C|M(ξ)|2n 3

2 | sin(πξ)|2

Therefore, the contribution of this term in (88) gives

Cγ2
n

∫
[− 1

2 ,
1
2 ]

n4 sin4(πξ)
∣∣Fn(f)(nξ)

∣∣2 dξ
and by Lemma B.2 it vanishes independently of γn, since γ2

n/n→ 0. This ends the
proof.
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Appendix A. Nonlinear fluctuating hydrodynamics predictions

The aim of this Appendix is to show that if we perturb the noisy linear Hamil-
tonian lattice field model by an even potential V then the nonlinear fluctuating
hydrodynamics theory predicts that for a zero tension τ = 0 the model belongs
to the universality class of the harmonic case. We consider an even potential V ,
namely V (u) = V (−u) and we assume moreover that V is non-negative and con-
tinuous, with at most polynomial growth at infinity.

A.1. Cumulants and rules of derivation. We still denote by νβ,τ,γ the product
measure

dνβ,τ,γ(ω) :=
∏
x∈Z

e−β[eγ(ωx)+τωx]

Zγ(β, τ)
dωx, τ ∈ R, β > 0, (89)

where the energy is now

eγ(u) :=
u2

2
+ γV (u).

Note that, if τ = 0, the density of the marginal of (89) at site x with respect to the
Lebesgue measure dωx is an even function, and every local function f which is odd
has a zero average with respect to νβ,0,γ .

Let us denote by 〈f〉β,τ,γ (resp. 〈f ; g ; h . . .〉β,τ,γ) the average of f (resp. the
cumulants between f, g, h . . .) with respect to νβ,τ,γ , and define

eγ(β, τ) :=
〈
eγ(ωx)

〉
β,τ,γ

and vγ(β, τ) :=
〈
ωx
〉
β,τ,γ

.

For any γ > 0 sufficiently small the application

(β, τ) ∈ (0,∞)× R 7→ (eγ(β, τ), vγ(β, τ)) ∈ Uγ
is one-to-one for some open subset Uγ . In the sequel, we denote (e, v) for (eγ(β, τ),
vγ(β, τ)) and by (β, τ) := (β(e, v), τ(e, v)) the inverse application. If γ = 0 then

logZ0(β, τ) =
1
2

log(2π)−
1
2

log β +
τ2β

2
.

If γ is small one can easily check that

Zγ(β, τ) = Z0(β, τ)
(

1− γβ
〈
V (ωx)

〉
β,τ,0

)
+ o(γ).
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We can also easily compute

∂γZγ(β, τ)
Zγ(β, τ)

= −β
〈
V (ω0)

〉
β,τ,γ

∂τZγ(β, τ)
Zγ(β, τ)

= −β
〈
ω0

〉
β,τ,γ

∂βZγ(β, τ)
Zγ(β, τ)

= −
〈
eγ(ω0) + τω0

〉
β,τ,γ

.

The computational rules explained in [16, Appendix 3], may be slightly generalized
into

∂γ
〈
A(ω0)

〉
β,τ,γ

= −β
〈
A(ω0) ; V (ω0)

〉
β,τ,γ

, (90)

∂τ
〈
A(ω0)

〉
β,τ,γ

= −β
〈
A(ω0) ; ω0

〉
β,τ,γ

, (91)

∂β
〈
A(ω0)

〉
β,τ,γ

= −
〈
A(ω0) ; eγ(ω0) + τω0

〉
β,τ,γ

. (92)

These derivation rules can be extended to higher-order cumulants as follows:

∂γ
〈
A(ω0); B(ω0)

〉
β,τ,γ

= −β
〈
A(ω0); B(ω0) ; V (ω0)

〉
β,τ,γ

, (93)

∂τ
〈
A(ω0); B(ω0)

〉
β,τ,γ

= −β
〈
A(ω0) ; B(ω0) ; ω0

〉
β,τ,γ

, (94)

∂β
〈
A(ω0); B(ω0)

〉
β,τ,γ

= −
〈
A(ω0) ; B(ω0) ; eγ(ω0) + τω0

〉
β,τ,γ

, (95)

and so on.
The microscopic energy current jex,x+1 of the Hamiltonian part of the dynamics

is given by
jex,x+1 = −

[
ωx+1 + γV ′(ωx+1)

][
ωx + γV ′(ωx)

]
and the microscopic volume current jvx,x+1 of the Hamiltonian part of the dynamics
is given by

jvx,x+1 = −
[
ωx+1 + γV ′(ωx+1)

]
−
[
ωx + γV ′(ωx)

]
.

Their averages at equilibrium are equal to

Je(e, v) = 〈je0,1〉β,τ,γ = −τ2, Jv(e, v) = 〈jv0,1〉β,τ,γ = 2τ.

Observe that for γ = 0, τ(e, v) = −v. For γ > 0, we do not have an explicit formula
for τ in terms of e and v.

We use the results of [16] and we refer the reader to this paper for more expla-
nations. When τ = 0, it is not difficult to check that

(1) the sound mode is proportional to the volume field;
(2) the heat mode is proportional to the energy field, because we have ∂eτ = 0

(see (8.3) of [16], or Lemma A.4 below).

A.2. Computations of coupling constants for any γ ≥ 0. In this section, we
compute some coupling constants which are introduced in [16] and are fundamental
to predict the universality classes to which the model belongs.

To simplify the exposition, we redefine Y := ω0 which is distributed according
to the probability law

1
Zγ(β, τ)

exp
(
− βω

2

2
− βγV (ω)− βτω

)
dω.

The following lemma is straightforward:
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Lemma A.1. Assume that f(u) is an odd function, and that g(u), h(u) are even
functions defined on R. Then, for any β, γ > 0,〈

f(Y )
〉
β,0,γ

= 0,〈
f(Y ) ; g(Y )

〉
β,0,γ

= 0,〈
f(Y ) ; g(Y ) ; h(Y )

〉
β,0,γ

= 0.

Moreover, if f, g, h are all odd functions on R, then〈
f(Y ) ; g(Y ) ; h(Y )

〉
β,0,γ

= 0.

Remark A.1. Note that, if τ = 0, and γ = 0, then Y = 1√
β
G, where G is a

standard Gaussian variable.

Lemma A.2 (Continuity). For any f1, f2, . . . , fk functions defined on R, the map

φ : R+ → R
γ 7→

〈
f1(Y ) ; f2(Y ) ; . . . ; fk(Y )

〉
β,0,γ

is continuous.

Proof. This is an easy consequence of the dominated convergence Theorem. �

A.2.1. Gamma function. Let us define

Γ := Γγ(β, τ) = β
(〈
Y ; Y

〉
β,τ,γ

〈
eγ(Y ) ; eγ(Y )

〉
β,τ,γ

−
〈
Y ; eγ(Y )

〉2
β,τ,γ

)
= β

4

(〈
Y ; Y

〉
β,τ,γ

〈
Y 2 + 2γV (Y ) ; Y 2 + 2γV (Y )

〉
β,τ,γ

−
〈
Y ; Y 2 + 2γV (Y )

〉2
β,τ,γ

)
.

To simplify notation from now on we write eγ for eγ(Y ). From the computational
rules (94) and (95), the derivatives of Γγ are given by

∂τΓγ(β, τ) = β2

4

(
−
〈
Y ; Y ; Y

〉
β,τ,γ

〈
Y 2 + 2γV (Y ) ; Y 2 + 2γV (Y )

〉
β,τ,γ

−
〈
Y ; Y

〉
β,τ,γ

〈
Y 2 + 2γV (Y ) ; Y 2 + 2γV (Y ) ; Y

〉
β,τ,γ

+ 2
〈
Y ; Y 2 + 2γV (Y ) ; Y

〉
β,τ,γ

〈
Y ; Y 2 + 2γV (Y )

〉
β,τ,γ

)
,

∂βΓγ(β, τ) = β−1 Γγ(β, τ)

+β
8

(
−
〈
Y ;Y ; Y 2 + 2γV (Y )+2τY

〉
β,τ,γ

〈
Y 2 + 2γV (Y ) ; Y 2 + 2γV (Y )

〉
β,τ,γ

−
〈
Y ;Y

〉
β,τ,γ

〈
Y 2 + 2γV (Y ) ; Y 2 + 2γV (Y ) ; Y 2 + 2γV (Y )+2τY

〉
β,τ,γ

+2
〈
Y ; Y 2 + 2γV (Y ) ; Y 2 + 2γV (Y )+2τY

〉
β,τ,γ

〈
Y ; Y 2 + 2γV (Y )

〉
β,τ,γ

)
.
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In particular, for the value τ = 0, these three expressions simplify significantly
thanks to Lemma A.1 into

Γγ(β, 0) = β
4

〈
Y ; Y

〉
β,0,γ

〈
Y 2 + 2γV (Y ) ; Y 2 + 2γV (Y )

〉
β,0,γ

,

∂τΓγ(β, 0) ≡ 0,

∂βΓγ(β, 0) = β−1 Γγ(β, 0)

+ β
8

(
−
〈
Y ; Y ; Y 2 + 2γV (Y )

〉
β,0,γ

〈
Y 2 + 2γV (Y ) ; Y 2 + 2γV (Y )

〉
β,0,γ

−
〈
Y ; Y

〉
β,0,γ

〈
Y 2 + 2γV (Y ) ; Y 2 + 2γV (Y ) ; Y 2 + 2γV (Y )

〉
β,0,γ

)
.

In particular Lemma A.1 and Lemma A.2 directly imply the following

Lemma A.3 (Derivative of Γ and its inverse at τ = 0). The map γ 7→ Γγ(β, τ) is
continuous, and moreover

∂τΓγ(β, 0) ≡ 0, ∂τ

( 1
Γγ
)

(β, 0) ≡ 0.

A.2.2. Tension and its derivatives. Now let us compute the derivatives of τ with
respect to e and v when τ(e, v) = 0. Equation (8.3) of [16] gives

∂vτ = − 1
Γ
〈
eγ(ω0) ; eγ(ω0) + τω0

〉
β,τ,γ

, (96)

∂eτ =
1
Γ
〈
ω0 ; eγ(ω0) + τω0

〉
β,τ,γ

, (97)

which read with our notations

∂vτ = − 1
4Γγ(β, τ)

〈
Y 2 + 2γV (Y ) ; Y 2 + 2γV (Y ) + 2τY

〉
β,τ,γ

, (98)

∂eτ =
1

2Γγ(β, τ)
〈
Y ; Y 2 + 2γV (Y ) + 2τY

〉
β,τ,γ

. (99)

For τ(e, v) = 0, it is then trivial that

∂eτ
∣∣
τ=0
≡ 0,

∂vτ
∣∣
τ=0

= − 1
4Γγ(β, 0)

〈
Y 2 + 2γV (Y ) ; Y 2 + 2γV (Y )

〉
β,0,γ

.

One can even goes further, and compute the second order derivatives of τ as follows:

Lemma A.4. If (e, v) are such that τ(e, v) = 0, we have that

τ = 0, ∂eτ
∣∣
τ=0
≡ 0, ∂2

vτ
∣∣
τ=0
≡ 0, ∂2

e τ
∣∣
τ=0
≡ 0.

Proof. The second derivatives of τ are evaluated as explained in [16, Appendix 3.2].
First, we compute the derivatives of v and e with respect to τ and β, and then we
use the Jacobian inversion. Recall that, in our notation

v(β, τ) =
〈
Y
〉
β,τ,γ

, e(β, τ) = 1
2

〈
Y 2 + 2γV (Y )

〉
β,τ,γ

.

Therefore at τ = 0, v(β, 0) ≡ 0. We deduce from the derivation rules (91) that

∂τv = −β
〈
Y ; Y

〉
β,τ,γ

,

∂βv = − 1
2

〈
Y ; Y 2 + 2γV (Y ) + 2τY

〉
β,τ,γ
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and from Lemma A.1 we directly deduce

∂τv
∣∣
τ=0
6= 0, (100)

∂βv
∣∣
τ=0
≡ 0. (101)

In the same way

∂τ e = −β
〈
Y ; Y 2 + 2γV (Y )

〉
β,τ,γ

,

∂βe = − 1
4

〈
Y 2 + 2γV (Y ) ; Y 2 + 2γV (Y ) + 2τY

〉
β,τ,0

and, in particular, for τ = 0 we get

∂τ e
∣∣
τ=0
≡ 0, (102)

∂βe
∣∣
τ=0
6= 0. (103)

By using (98), (99), (91), Lemma A.1 and Lemma A.3, we get that

∂τ (∂vτ)
∣∣
τ=0

= −1
4
∂τ

( 1
Γγ
)

(β, 0)
〈
Y 2 + 2γV (Y ) ; Y 2 + 2γV (Y )

〉
β,0,γ

+
β

4Γγ(β, 0)
〈
Y ; Y 2 + 2γV (Y ) ; Y 2 + 2γV (Y )

〉
β,0,γ

≡ 0.

Similarly,

∂τ (∂eτ)
∣∣
τ=0

=
1
2
∂τ

( 1
Γγ
)

(β, 0)
〈
Y ; Y 2 + 2γV (Y )

〉
β,0,γ

+
1

Γγ(β, 0)
〈
Y ; Y

〉
β,0,γ

− β

2Γγ(β, 0)
〈
Y ; Y 2 + 2γV (Y ) ; Y

〉
β,0,γ

. (104)

Finally, combining (92), Lemma A.1 and Lemma A.3 we have

∂β(∂vτ)
∣∣
τ=0

= −1
4
∂β

( 1
Γγ
)

(β, 0)
〈
Y 2 + 2γV (Y ) ; Y 2 + 2γV (Y )

〉
β,0,γ

+
1

8Γγ(β, 0)
〈
Y 2 + 2γV (Y ) ; Y 2 + 2γV (Y ) ; Y 2 + 2γV (Y )

〉
β,0,γ

(105)

and

∂β(∂eτ)
∣∣
τ=0

=
1
2
∂β

( 1
Γγ
)

(β, 0)
〈
Y ; Y 2 + 2γV (Y )

〉
β,0,γ

− 1
4Γγ(β, 0)

〈
Y ; Y 2 + 2γV (Y ) ; Y 2 + 2γV (Y )

〉
β,0,γ

≡ 0.

We deduce from (100) and (103) that

1
∂τv

∣∣∣∣
τ=0

6= 0,
1
∂βe

∣∣∣∣
τ=0

6= 0.
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Recall the values (100),(101), (102), (103). Then, the values of the second deriva-
tives of τ are given by(

∂2
vτ

∂2
evτ

) ∣∣∣∣
τ=0

=
(
∂τv ∂τ e
∂βv ∂βe

) ∣∣∣∣−1

τ=0

(
∂τ (∂vτ)
∂β(∂vτ)

) ∣∣∣∣
τ=0

=


[
∂τv
∣∣
τ=0

]−1

0

0
[
∂βe
∣∣
τ=0

]−1

( 0
∂β(∂vτ)

∣∣
τ=0

)
,

(
∂2

veτ
∂2

e τ

) ∣∣∣∣
τ=0

=
(
∂τv ∂τ e
∂βv ∂βe

) ∣∣∣∣−1

τ=0

(
∂τ (∂eτ)
∂β(∂eτ)

) ∣∣∣∣
τ=0

=


[
∂τv
∣∣
τ=0

]−1

0

0
[
∂βe
∣∣
τ=0

]−1

(∂τ (∂eτ)
∣∣
τ=0

0

)

and therefore ∂2
vτ
∣∣
τ=0
≡ 0, and ∂2

e τ
∣∣
τ=0
≡ 0. �

From [16], the sound mode (mode 1) has velocity

c(β, τ, γ) = − 2
Γγ(β, τ)

〈
τω0 + eγ(ω0) ; τω0 + eγ(ω0)

〉
β,τ,γ

= 2(∂v − τ∂e)τ,

and the heat mode (mode 2) has velocity 0. The coupling constants G1
αα′ and G2

αα′ ,
α, α′ ∈ {1, 2} determine the universality class of the model. In the case considered
here, we have that

G1
11 = −

( − 2
βc

) 1
2 [
∂v − τ∂e

]2
τ.

When τ = 0, the sound mode has velocity c(β, 0, γ) := 2∂vτ
∣∣
τ=0

and from Lemma
A.4 we have

G1
11 = −

( − 2
βc

) 1
2
∂2

vτ
∣∣
τ=0
≡ 0.

Therefore, according to [16, Section 2.2], there are four possibilites:

1. If G1
22 = 0 and G2

11 6= 0, the sound mode is diffusive and the heat mode is Lévy
with exponent 3

2 ;
2. If G1

22 = 0 and G2
11 = 0, the sound mode and the heat mode are diffusive;

3. If G1
22 6= 0 and G2

11 6= 0, the sound mode and the heat mode are Gold-Lévy;
4. If G1

22 6= 0 and G2
11 = 0, the sound mode is Lévy with exponent 3

2 and the heat
mode is diffusive.

In the following section we prove that our model belongs to the first case.

A.3. Coupling matrices. Let us introduce some definitions and notations, taken
from [16].

Definition A.1.
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1. Constants: let us denote

c := 2(∂v − τ∂e)τ,

Z1 := −
√
−βc

2 and Z2 :=
√
−c
2Γ ,

Z̃1 :=
√
−c
2β and Z̃2 :=

√
−Γc

2 .

2. Vectors: let us denote

ψ1 :=
1
Z1

(
1
−τ

)
and ψ2 :=

1
Z2

(
∂eτ
−∂vτ

)
.

3. Matrices: let us denote

R :=

(
(Z̃1)−1 ∂vτ (Z̃1)−1 ∂eτ

(Z̃2)−1 τ (Z̃2)−1

)
,

Hv := 2
(
∂2

vτ ∂v∂eτ
∂v∂eτ ∂2

e τ

)
,

He := −τHv − 2
(

(∂vτ)2 ∂vτ ∂eτ
∂vτ ∂eτ (∂eτ)2

)
.

With Definition A.1, we are now able to define the coupling matrices G1 and G2

as follows:

G1
αα′ :=

1
2

(
R11(ψTα ·Hvψα′) +R12(ψTα ·Heψα′)

)
(106)

G2
αα′ :=

1
2

(
R21(ψTα ·Hvψα′) +R22(ψTα ·Heψα′)

)
(107)

A first corollary of Lemma A.2 is the following:

Corollary A.5 (Continuity of the coupling constants). All the constants that are
defined in Definition A.1 and also in (106) and (107) are continuous functions of
γ ∈ R+.

We now give the values of each quantity that appears in (106) and (107), taken
first at τ = 0 and γ = 0.

Proposition A.6 (Without anharmonicity, γ = 0). If (e, v) are such that τ(e, v) =
0, and if γ = 0 then we have
1. Constants:

c = −2,

Z1 = −
√
β and Z2 =

√
2β,

Z̃1 = − 1
β
Z1 = − 1√

β
and Z̃2 =

1√
2β
.

2. Vectors:

ψ1 =
(
− 1√

β

0

)
and ψ2 =

(
0
1√
2β

)
.

3. Matrices:

R =
(
−
√
β 0

0
√

2β

)
, Hv =

(
0 0
0 0

)
, He =

(
−2 0
0 0

)
.
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Proof. This proposition follows from easy computations, using Remark A.1, and
the following straightforward lemma:

Lemma A.7. Let G be a standard Gaussian variable of mean zero and variance
1. Then we have that all the odd moments of G are zero and

〈G2n〉 =
(2n)!
n! 2n

.

We also have

〈Gp1 ; Gp2 ; · · · ; Gpk〉 = 0 as soon as p1 + · · ·+ pk is odd.

and

〈G ; G〉 = 1, 〈G2 ; G2〉 = 2,

〈G ; G ; G2〉 = 2, 〈G2 ; G2 ; G2〉 = 8.

�

Therefore, from Proposition A.6 we conclude that

G2
11

∣∣
τ=0,γ=0

= −
√

2 6= 0.

Since the map γ 7→ G2
11 is continuous in γ ≥ 0, we conclude that there exists γ0 > 0

such that, for any γ ≤ γ0, G2
11 6= 0.

It remains to compute G1
22, which is given by the following:

Proposition A.8. Assume that (e, v) are such that τ(e, v) = 0. Then for any
γ ≥ 0,

G1
22 = 0.

Proof. We let the reader check, using the proof of Lemma A.4, that for any γ > 0,
1. the diagonal coefficients of Hv are equal to 0;
2. the off-diagonal coefficients of He are equal to 0, as well as the second diagonal

coefficient. In other words, the unique non-zero coefficient of He is the first one
which is equal to −2(∂vτ)2;

3. the off-diagonal of R are equal to 0;
4. the second component of ψ1 is equal to 0;
5. the first component of ψ2 is equal to 0.
Then, by computing the matrix product appearing in (106), the result follows. �

Appendix B. Estimates on the Poisson equation

In this appendix we prove Proposition 6.3 and Proposition 6.7. Several times we
will use the following change of variable property proved in [2] and that we recall
here.

Lemma B.1. Let f : R2 → C be a n-periodic function in each direction of R2.
Then we have∫ ∫

[−n2 ,
n
2 ]2

f(k, `) dkd` =
∫ ∫

[−n2 ,
n
2 ]2

f(ξ − `, `) dξd`.

Another useful lemma is
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Lemma B.2. If g ∈ S(R), then for any p ≥ 1, there exists a constant C := C(p, g)
such that for any |y| ≤ 1

2 , ∣∣Fn(g)(ny)
∣∣2 ≤ C

1 + (n|y|)p
.

The following result is an easy corollary of the previous lemma.

Corollary B.3. If g ∈ S(R), then, for any p ≥ 0,

lim
n→∞

∫
[−n2 ,

n
2 ]

|ξ|p |Fn(g)(ξ)− (Fg)(ξ)|2 dξ = 0,

and there exists a constant C > 0 such that∫
[−n2 ,

n
2 ]

|ξ|p |Fn(g)(ξ)|2dξ ≤ C.

We start with some estimates concerning the solution hn of (50), and then we
treat the solution vn of (71). All technical estimates involving integral calculus are
detailed in the next section, see Appendix C.

B.1. Proof of Proposition 6.3. Let us recall the explicit expression for the
Fourier transform of hn given in (62).

B.1.1. Proof of (58). From the Parseval-Plancherel relation and from (62), we have
that
1
n2

∑
x,y

h2
n

(
x
n ,

y
n

)
=
∫∫

[−n2 ,
n
2 ]2
|Fn(hn)(k, `)|2dkd`

=
(1 + κnγn)4

4n

∫∫
[−n2 ,

n
2 ]2

Ω2
(
k
n ,

`
n

)
|Fn(f)(k + `)|2

(1 + κnγn)2 Λ2
(
k
n ,

`
n

)
+ Ω2

(
k
n ,

`
n

) dkd`
.

1
n

∫
[−n2 ,

n
2 ]

∣∣1− e 2iπξ
n
∣∣2 ∣∣Fn(f)(ξ)

∣∣2 [∫
[−n2 ,

n
2 ]

d`

Λ2
(
ξ−`
n , `n

)
+ Ω2

(
ξ−`
n , `n

)] dξ

≈ n
∫

[− 1
2 ,

1
2 ]2

sin2(πy)|Fn(f)(ny)|2 W (y)dy,

where for the last equality we performed the changes of variables y = ξ
n and x = `

n .
The function W is defined by

W (y) =
∫

[− 1
2 ,

1
2 ]

dx

Λ2(y − x, x) + Ω2(y − x, x)
. (108)

It is proved in [2, Lemma F.5] that W (y) ≤ C|y|− 3
2 on [− 1

2 ,
1
2 ]. Hence, we get, by

using Lemma B.2 with p = 3 and the elementary inequality sin2(πy) ≤ π2y2, that∫∫
[−n2 ,

n
2 ]2
|Fn(hn)(k, `)|2dkd` . n

∫
[− 1

2 ,
1
2 ]

|y| 12
1 + (n|y|)3

dy . n−
1
2 ,

which proves (58).
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B.1.2. Proof of (59). The Plancherel-Parseval equality gives

1
n

∑
x∈Z

h2
n

(
x
n ,

x
n

)
=
∫

[−n2 ,
n
2 ]

∣∣Fn(hn)(ξ)
∣∣2dξ,

where hn
(
x
n

)
= hn

(
x
n ,

x
n

)
, and then Fn(hn)(ξ) = 1

n

∑
x∈Z hn

(
x
n ,

x
n

)
e2iπx ξn . By defi-

nition,

Fn(hn)(ξ) =
1
n

∑
x∈Z

(∫∫
[−n2 ,

n
2 ]2

dkd` Fn(hn)(k, `)e−2iπx k+`n e2iπx ξn

)
=
∫

[−n2 ,
n
2 ]

d` Fn(hn)(ξ − `, `).

By (62), we compute:

Fn(hn)(ξ) =
(1 + κnγn)2

2
√
n

∫
[−n2 ,

n
2 ]

d`
iΩ( ξ−`n , `n )

((1 + γnκn)Λ− iΩ)( ξ−`n , `n )
Fn(f)(ξ)

=
(1 + κnγn)2

2
√
n I
( ξ
n

)
Fn(f)(ξ), (109)

where I has already been defined in (78). From Lemma C.1, we have that |I(y)| .
| sin(πy)| 12 , and consequently, from (109) we get∣∣Fn(hn)(ξ)

∣∣2 . n
|ξ|
n

∣∣Fn(f)(ξ)
∣∣2,

and using Corollary B.3

1
n

∑
x∈Z

h2
n

(
x
n ,

x
n

)
.
∫

[−n2 ,
n
2 ]

dξ |ξ|
∣∣Fn(f)(ξ)

∣∣2 . 1,

which proves (59).

B.1.3. Proof of (60). Recall that qn : 1
nZ→ R is the function defined by

qn
(
x
n

)
= Dnhn

(
x
n

)
.

We already proved in Section 6.2 that

Fn(qn)(ξ) =
(1 + γnκn)2

4
n

3
2 K

( ξ
n

)
Fn(f)(ξ),

where K is defined in (66). From Lemma C.1 we get∣∣Fn(qn)(ξ)
∣∣2 . |ξ|3∣∣Fn(f)(ξ)

∣∣2
and therefore

1
n

∑
x∈Z

[
Dnhn

(
x
n

)]2
.
∫

[−n2 ,
n
2 ]

dξ |ξ|3
∣∣Fn(f)(ξ)

∣∣2 . 1,

using again Corollary B.3. This proves (60).



41

B.1.4. Proof of (61). By Parseval-Plancherel’s relation we have that

1
n

∑
x∈Z

[
hn
(
x+1
n , x+1

n

)
− hn

(
x
n ,

x
n

)]2 =
∫

[−n2 ,
n
2 ]

∣∣1− e2iπ ξn
∣∣2∣∣Fn(hn)(ξ)

∣∣2dξ
so that by (109), together with Lemma C.1 and Corollary B.3, we get that

1
n

∑
x∈Z

[
hn
(
x+1
n , x+1

n

)
− hn

(
x
n ,

x
n

)]2
= (1 + κnγn)4n

∫
[−n2 ,

n
2 ]

sin2
(
ξ
n

)
I2
(
ξ
n

)∣∣Fn(f)(ξ)
∣∣2 dξ

. n−2

∫
[−n2 ,

n
2 ]

|ξ|3
∣∣Fn(f)(ξ)

∣∣2 dξ . n−2.

This proves (61).

B.2. Proof of Proposition 6.7: estimates on vn. In this section we will use the
explicit expression of the Fourier transform of vn, given in (85), and then repeat
the same computations as in the proof of Proposition 6.3.

B.2.1. Proof of (72). The same computation of Section B.1.1 gives that

1
n2

∑
x,y∈Z

v2
n

(
x
n ,

y
n

)
. n

∫
[− 1

2 ,
1
2 ]

∣∣Fn(f)(ny)
∣∣2∣∣L(y)

∣∣2 W (y) dy

. n

∫
[− 1

2 ,
1
2 ]

∣∣Fn(f)(ny)
∣∣2∣∣ sin(πy)

∣∣ 32 dy.
The last inequality comes from Lemma C.1 below, and using Lemma B.2, this
proves (72).

B.2.2. Proof of (73). Similarly to Section B.1.2 we have

1
n

∑
x∈Z

v2
n

(
x
n ,

x
n

)
=
∫

[−n2 ,
n
2 ]

∣∣Fn(vn(ξ)
∣∣2 dξ,

where

vn
(
x
n

)
= vn

(
x
n ,

x
n

)
, and Fn(vn)(ξ) =

∫
[−n2 ,

n
2 ]

Fn(vn)(ξ − `, `) d`.

From (85) we get

Fn(vn)(ξ) =
1√
n

∫
[−n2 ,

n
2 ]

e2iπ ξ−`n + e2iπ`

((1 + γnκn)Λ− iΩ)( ξ−`n , `n )
d` L

( ξ
n

)
Fn(f)(ξ)

=
√
n O

( ξ
n

)
L
( ξ
n

)
Fn(f)(ξ),

where O has been defined in (86). From Lemma C.1 we get

1
n

∑
x∈Z

v2
n

(
x
n ,

x
n

)
. n−1

∫
[−n2 ,

n
2 ]

|ξ|2
∣∣Fn(f)(ξ)

∣∣2 dξ.
From Corollary B.3 we get (73).
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B.2.3. Proof of (74). A straightforward computation gives that

Fn(Dnvn)(ξ) = −2n
(
1− e2iπ ξn

)
Fn(wn)(ξ)M

(
ξ
n

)
,

where wn : 1
nZ → R has been defined in (82) and M has been defined in (87).

Finally from (83) we get

Fn(Dnvn)(ξ) = n
3
2
(
1− e2iπ ξn

)
Fn(f)(ξ)L

(
ξ
n

)
M
(
ξ
n

)
,

where L is defined in (84). Therefore, using Lemma C.1 below,∥∥Dnvn∥∥2

2,n
. n3

∫
[−n2 ,

n
2 ]

sin2
(
πξ
n

)∣∣Fn(f)(ξ)
∣∣2∣∣L( ξn)∣∣2∣∣M( ξn)∣∣2 dξ

. n4

∫
[− 1

2 ,
1
2 ]

sin4(πy)
∣∣Fn(f)(ny)

∣∣2 dy,
and from Lemma B.2 this proves (74).

B.2.4. Proof of (75). As in Section B.1.4, using Lemma C.1 we have∑
x∈Z

[
vn
(
x+1
n , x+1

n

)
− vn

(
x
n ,

x
n

)]2 = n

∫
[−n2 ,

n
2 ]

∣∣1− e2iπ ξn
∣∣2 ∣∣Fn(vn)(ξ)

∣∣2 dξ
= 4n2

∫
[−n2 ,

n
2 ]

sin2
(
ξ
n

) ∣∣O( ξn)∣∣2 ∣∣L( ξn)∣∣2 ∣∣Fn(f)(ξ)
∣∣2 dξ

. n−2

∫
[−n2 ,

n
2 ]

|ξ|4
∣∣Fn(f)(ξ)

∣∣2 dξ,
which proves (75), from Corollary B.3.

B.2.5. Proof of (76). Let θn : 1
nZ→ R be defined by

θn
(
x
n

)
= vn

(
x
n ,

x+1
n

)
− vn

(
x
n ,

x
n

)
,

so that

1√
n
D̃nvn

(
x
n ,

y
n

)
= n

3
2


θn( xn ); y = x+ 1
θn(x−1

n ); y = x− 1
0 otherwise.

Moreover,

Fn(θn)(ξ) =
∫

[−n2 ,
n
2 ]

Fn(vn)(ξ − `, `)
(
e−2iπ `n − 1

)
d` =

√
nFn(f)(ξ)L

(
ξ
n

)
N
(
ξ
n

)
,

where L has been defined in (84) and N is given by

N(y) =
1

1− e−2iπy

∫
[− 1

2 ,
1
2 ]

(e−2iπx − 1) Θ(y − x, x) dx. (110)

Therefore, using Lemma C.1 below, we get

n−2
∥∥D̃nvn∥∥2

2,n
= n

∥∥θn∥∥2

2,n
. n2

∫
[−n2 ,

n
2 ]

∣∣Fn(f)(ξ)
∣∣2∣∣L( ξn)∣∣2∣∣N( ξn)∣∣2 dξ

.
1
n2

∫
[−n2 ,

n
2 ]

|ξ|4
∣∣Fn(f)(ξ)

∣∣2 dξ
and by Corollary B.3 the proof ends.
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Appendix C. Technical integral estimates

Recall the definitions of I, J,K,L,M,N,O given in (78), (79), (66), (84), (87),
(110), (86), respectively. Note that we have the relations

M(y) =
1

|w − 1|2
J(y), N(y) =

w

1− w
L(y), O(y) =

w

w − 1
I(y) (111)

and also

L(y) = I(y)− 1
1− w

J(y). (112)

C.1. Uniform bounds. In this section we prove the following:

Lemma C.1. For any y ∈
[
− 1

2 ,
1
2

]
|I(y)| . | sin(πy)| 12 , (113)

|J(y)| . | sin(πy)| 32 , (114)

|K(y)| . | sin(πy)| 32 , (115)

|L(y)| . | sin(πy)| 32 , (116)

and therefore (111) implies also that

|M(y)| . | sin(πy)|− 1
2 , (117)

|N(y)| . | sin(πy)| 12 , (118)

|O(y)| . | sin(πy)|− 1
2 . (119)

Proof. The proof consists in using the residue theorem to estimate each integral.
For any y ∈

[
− 1

2 ,
1
2

]
we denote by w := w(y) the complex number w = e2iπy.

We denote by C the unit circle positively oriented, and z := e2iπx is the complex
integration variable in C. With these notations we have

Λ(y− x, x) = 4− z(w̄+ 1)− z̄(w+ 1), iΩ(y− x, x) = z(1− w̄) + z̄(w− 1). (120)

Some quantities are going to appear many times, therefore for the sake of clarity
we introduce some notations. Hereafter, for any complex number z, we denote by√
z its principal square root, with positive real part. Precisely, if z = reiϕ, with

r ≥ 0 and ϕ ∈ (−π, π], then the principal square root of z is
√
z =

√
reiϕ/2. We

introduce the degree two complex polynomial:

Pw(z) := z2 − 4(1 + γnκn)z
(1 + κnγn)(1 + w̄) + 1− w̄

+ w = (z − z−)(z − z+), (121)

where |z−| < 1 and |z+| > 1. The useful identities are

z−z+ = w, z− + z+ =
4(1 + κnγn)

(1 + κnγn)(w̄ + 1) + 1− w̄
.

Finally, we denote

an(w) : = (1 + κnγn)(1 + w̄) + 1− w̄ = 2 + κnγn(1 + w̄)

δn(w) : = (1− w)(2 + κnγn)2 + (1− w̄)(κnγn)2

= 4(1 + κnγn)(1− w) + (κnγn)2(2− w − w̄),
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so that the discriminant of Pw is 4δn(w)/a2
n(w) and

z+ =
2(1 + κnγn) +

√
δn(w)

an(w)
, z− =

2(1 + κnγn)−
√
δn(w)

an(w)
.

Note the following identity:

wa2
n(w) + δn(w) = 4(1 + κnγn)2. (122)

Moreover

δn(w) = (2 + κnγn)2(1− w)
[
1− (κnγn)2w̄

(2 + κnγn)2

]
. (123)

With these notations, note also that (120) gives two very useful identities:

iΩ(y − x, x) = (z + wz̄)(1− w̄)[
(1 + κnγn) Λ− iΩ

]
(y − x, x) = −an(w)

z
Pw(z).

Let us now give some estimates as n→∞. For n large enough, we have∣∣∣∣ (κnγn)2w̄

(2 + κnγn)2

∣∣∣∣ ≤ 1
2
.

Therefore∣∣∣∣ 1√
δn(w)

∣∣∣∣ =
∣∣∣∣ (2 + κnγn)−1

√
1− w

∣∣∣∣ ∣∣∣∣1− (κnγn)2w̄

(2 + κnγn)2

∣∣∣∣− 1
2

.
∣∣ sin(πy)

∣∣− 1
2 (124)

since √
1− w =

∣∣ sin(πy)
∣∣ 12 e iπy2 (1− i sgn(y)

)
,

and |1+z|− 1
2 . 1 for all |z| ≤ 1

2 . Let us resume in the following lemma the estimates
that shall be needed:

Lemma C.2. For any w = e2iπy with y ∈ [− 1
2 ,

1
2 ], and any n large enough,∣∣∣∣ 1√

δn(w)

∣∣∣∣ . ∣∣ sin(πy)
∣∣− 1

2 .

We also have
1 . |an(w)| . 1.

(i) Proof of (113). We have

I(y) =
1

2iπ
1− w
w

1
an(w)

∮
C
dz fw(z),

with the function fw defined by

fw(z) =
(z2 + w)

z(z − z+)(z − z−)

where z± are the two complex solutions of Pw(z) = 0 defined in (121). Since
|z−| < 1 and |z+| > 1, by the residue theorem we have

I(y) =
1− w
w an(w)

[
Res(fw, 0) + Res(fw, z−)

]
.

It is easy to see that
Res(fw, 0) = 1,
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and

Res(fw, z−) =
z2
− + w

z−(z− − z+)
= −2(1 + γnκn)√

δn(w)
.

It follows by Lemma C.2 that

|I(y)| =
∣∣∣∣ w − 1
w an(w)

[
1− 2(1 + γnκn)√

δn(w)

]∣∣∣∣ =
2| sin(πy)|
|an(w)|

∣∣∣∣1− 2(1 + γnκn)√
δn(w)

∣∣∣∣
.
∣∣ sin(πy)

∣∣[1 + |δn(w)|− 1
2

]
.
∣∣ sin(πy)

∣∣ 12 .
(ii) Proof of (114). In the same way, we have

J(y) =
(1− w)2

w an(w)
1

2iπ

∮
gw(z)dz =

(1− w)2

w an(w)

[
Res(gw, 0) + Res(gw, z−)

]
,

with the function gw defined by

gw(z) =
(z2 + w)

z2(z − z+)(z − z−)
.

Here we have

Res(gw, 0) =
z+ + z−

w
=

4(1 + γnκn)
w an(w)

,

and

Res(gw, z−) =
z2
− + w

z2
−(z− − z+)

= −2(1 + γnκn)
z−
√
δn(w)

.

By (122) it follows that

J(y) =
2(1− w)2(1 + γnκn)

w2 a2
n(w)

[
1− 2(1 + γnκn)√

δn(w)

]
= 2(1 + γnκn)

1− w
w an(w)

I(y).

Therefore we conclude that, for any y ∈ [− 1
2 ,

1
2 ], |J(y)| . | sin(πy)| 32 .

(iii) Proof of (115). Again, similar computations give

K(y) =
(1− w)2

w2

1
an(w)

1
2iπ

∮
kw(z)dz

=
(1− w)2

w2

1
an(w)

[
Res(kw, 0) + Res(kw, z−)

]
,

with the function kw defined by

kw(z) =
(z2 + w)2

z2(z − z+)(z − z−)
.

Here we have

Res(kw, 0) = z− + z+ =
4(1 + γnκn)
an(w)

,

and

Res(kw, z−) =
(z2
− + w)2

z2
−(z− − z+)

= − 8(1 + γnκn)2

an(w)
√
δn(w)

.
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It follows that

K(y) =
(w − 1)2

w2 a2
n(w)

4(1 + κnγn)
[
1− 2(1 + γnκn)√

δn(w)

]
= 4(1 + γnκn)

1− w
w an(w)

I(y) = 2J(y).

Therefore we conclude that, for any y ∈ [− 1
2 ,

1
2 ], |K(y)| . | sin(πy)| 32 .

(iv) Proof of (116). Here we use the relation (112), and we obtain:

L(y) = I(y)− 1
1− w

J(y) = I(y)
[
1− 2(1 + γnκn)

wan(w)

]
.

It is easy to check that∣∣∣∣1− 2(1 + γnκn)
wan(w)

∣∣∣∣ =
∣∣∣∣ (2 + γnκn)(w − 1)

wan(w)

∣∣∣∣ . | sin(πy)|.

Using (113) we conclude that, for any y ∈ [− 1
2 ,

1
2 ], |L(y)| . | sin(πy)| 32 .

This concludes the proof of Lemma C.1. �

C.2. Proof of Lemma 6.6. Recall that Gn has been defined in (67), and it equals

Gn(y) =
(1 + γnκn)2

4
K(y) = (1 + γnκn)3 1− w

w an(w)
I(y)

=
(1 + γnκn)3

a2
n(w)

(1− w)2

w2

[
1− 2(1 + γnκn)√

δn(w)

]

=
1 + κnγn

4
w(w̄ − 1)2

(
wa2

n(w)
4(1 + κnγn)2

)−1
[

1−
(

1−
wa2

n(w)
4(1 + κnγn)2

)− 1
2
]

=
1 + κnγn

4
w(w̄ − 1)2g

(
wa2

n(w)
4(1 + κnγn)2

)
−

1 + κnγn

4
w(w̄ − 1)2

(
1−

wa2
n(w)

4(1 + κnγn)2

)− 1
2

where g : u ∈ C − {1} → u−1(1 − (1 − u)−
1
2 ) + (1 − u)−

1
2 . We have that g(u) =

1
1+
√

1−u . Since
√

1− u has a positive real part, we deduce that the function g is
uniformly bounded. Therefore,∣∣∣∣∣Gn(y) +

1 + κnγn

4
w(w̄ − 1)2

(
1−

wa2
n(w)

4(1 + κnγn)2

)− 1
2

∣∣∣∣∣ . |w − 1|2.

Let us now observe that, since an(w) = (1 + κnγn)(1 + w̄) + 1− w̄, we have that

1−
wa2

n(w)
4(1 + γnκn)2

=
(

1 +
1

(1 + κnγn)2

)
sin2(πy)−

i

1 + κnγn
sin(2πy). (125)

Note also that

Arg
(

1−
wa2

n(w)
4(1 + γnκn)2

)
= −sgn(y)

π

2

+ arctan
(

1
2

(
1 + κnγn +

1
1 + κnγn

)
tan(πy)

)
.
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Since sin(2πy) = 2 sin(πy) cos(πy) and cos2(πy) = 1− sin2(πy), we have that∣∣∣∣1− wa2
n(w)

4(1 + γnκn)2

∣∣∣∣2 =
4 sin2(πy)

(1 + κnγn)2

{(
1 + κnγn

2
− 1

2(1 + κnγn)

)2

sin2(πy) + 1

}
.

(126)
Therefore, by observing that (1− w̄)2 w = −4 sin2(πy), we have that

Gn(y) = (1 + κnγn)
3
2

| sin(πy)| 32
√

2
{(

1+κnγn
2 − 1

2(1+κnγn)

)2 sin2(πy) + 1
} 1

4
eiϕn(y) +O(|y|2)

=
| sin(πy)| 32
√

2
eiϕn(y) + εn(y) +O(|y|2)

where

ϕn(y) = sgn(y)
π

4
−

1
2

arctan
(

1
2

(
1 + κnγn +

1
1 + κnγn

)
tan(πy)

)
and |εn(y)| ≤ γn|y|

3
2 . Moreover we have that∣∣∣eiϕn(y) − eisgn(y)
π
4

∣∣∣ =
∣∣∣∣1− e− i2 arctan

(
1
2

(
1+κnγn+ 1

1+κnγn

)
tan(πy)

)∣∣∣∣
.

∣∣∣∣ arctan
(

1
2

(
1 + κnγn +

1
1 + κnγn

)
tan(πy)

)∣∣∣∣ . |y|.
We conclude that

Gn(y) =
| sin(πy)| 32
√

2
eisgn(y)

π
4 + O(γn|y|

3
2 ) +O(|y|2)

=
π

3
2 |y| 32
√

2
eisgn(y)

π
4 + O(γn|y|

3
2 ) +O(|y|2).

Appendix D. Proof of Propositions 5.1 and 6.1

In this section we prove Propositions 5.1 and 6.1. To simplify the notations we
write Ln, An, en for Lγn , Aγn and eγn . We start by showing Proposition 5.1. Let
f : Z→ R be a function of finite support and let us define

V (f) =
∑
x∈Z

f(x)ωx, V 3(f) =
∑
x∈Z

f(x)(ω3
x − κnωx) =

∑
x∈Z

f(x)H3δx(ω).

Observe that
SV (f) =

∑
x∈Z

∆f(x) ωx = V (∆f),

where ∆f(x) = f(x+ 1) + f(x− 1)− 2f(x) and

AnV (f) =
∑
x∈Z

[
∆f(x)− 2∇f(x)

]
(ωx + γnω

3
x)

= V
(

(1 + γnκn)(∆f − 2∇f)
)

+ γnV
3
(

(∆f − 2∇f
)
,

where ∇f(x) = f(x+ 1)− f(x). Therefore,

LnV (f) = V
(

(2 + γnκn)∆f − 2(1 + γnκn)∇f
)

+ γnV
3
(

∆f − 2∇f
)
.

From last computations it is simple to obtain Proposition 5.1.
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Now we prove Proposition 6.1 and we start with (45). Let f : Z → R and
h : Z2 → R be functions of finite support and define:

En(f) =
∑
x∈Z

f(x)en(ωx) =
∑
x∈Z

f(x)
[ω2

x

2
+ γn

ω4
x

4

]
,

E4(f) =
∑
x∈Z

f(x)ω4
x,

Q2(h) =
∑
x 6=y

h(x, y)ωxωy =
∑
x 6=y

h(x, y)Hδx+δy (ω),

Q4(h) =
∑
x 6=y

h(x, y)(ω3
x − κnωx)ωy =

∑
x6=y

h(x, y)H3δx+δy (ω),

Q6(h) =
∑
x 6=y

h(x, y)(ω3
x − κnωx)(ω3

y − κnωy) =
∑
x 6=y

h(x, y)H3δx+3δy (ω).

We define the symmetric (resp. antisymmetric) part hs (resp. ha) of h by hs(x, y) =
1
2 [h(x, y) + h(y, x)] (resp. ha = h − hs). Observe that Q2(h) = Q2(hs) and
Q6 = Q6(hs) depend only on the symmetric part hs of h but that it is not the case
for Q4(h). Then, observe that

SEn(f) =
∑
x∈Z

∆f(x)en(ωx),

and

AnEn(f) = −
∑
x∈Z
∇f(x)

[
ωxωx+1 + γn(ωxω3

x+1 + ωx+1ω
3
x) + γ2

nω
3
x+1ω

3
x

]
.

Therefore,

LnEn(f) =En(∆f)− (1 + γnκn)2Q2(∇f ⊗ δ)
− 2γn(1 + γnκn)Q4(∇f ⊗ δ)− γ2

nQ6(∇f ⊗ δ),

where

∇f ⊗ δ(x, y) =


(
f(x+ 1)− f(x)

)
/2 if y = x+ 1,(

f(x)− f(x− 1)
)
/2 if y = x− 1,

0 otherwise.

From this it is easy to obtain (45). Now we prove (46). For any symmetric function
h, we have that

LnQ2(h) = Q2(∆h+ Ah) + 2
∑
x∈Z

(h(x− 1, x)− h(x+ 1, x))(ω2
x + γnω

4
x)

+ 4
∑
x∈Z

(h(x, x+ 1)− h(x, x))ωxωx+1

+ 2γn
∑
x 6=y

[
h(x− 1, y)− h(x+ 1, y)

]
ω3
xωy

+ 2γn
∑
x∈Z

[
h(x+ 1, x+ 1)ω3

xωx+1 − h(x, x)ω3
x+1ωx

]
.
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We now replace ω3
xωy by (ω3

x−κnωx)ωy in order to see the product of two orthogonal
polynomials, and write the decomposition in the basis {Hσ ;σ ∈ Σ} as

LnQ2(h) = Q2
(
∆h+ (1 + γnκn)Ah

)
− 4En(Dh)− γnE4(Dh) + 2Q2(D̃h)

+ 2γn
∑
x 6=y

[
h(x− 1, y)− h(x+ 1, y)

]
(ω3
x − κnωx)ωy

+ 2γn
∑
x∈Z

h(x, x)
[
(ω3
x − κnωx)ωx+1 − (ω3

x+1 − κnωx+1)ωx
]

+ 2γn
∑
x∈Z

[
h(x+ 1, x+ 1)− h(x, x)

]
(ω3
x − κnωx)ωx+1

+ 2γnκn
∑
x∈Z

[
h(x+ 1, x+ 1)− h(x, x)

]
ωxωx+1.

We rewrite the previous identity as

LnQ2(h) =Q2
(
∆h+ (1 + γnκn)Ah

)
− 4En(Dh)− γnE4(Dh) + 2Q2(D̃h)

+ 2γn
∑
x 6=y

[
h(x− 1, y)− h(x+ 1, y)

]
H3δx+δy (ω)

+ 2γn
∑
x∈Z

h(x, x)
[
H3δx+δx+1 −H3δx+1+δx

]
(ω)

+ 2γn
∑
x∈Z

[
h(x+ 1, x+ 1)− h(x, x)

] [
H3δx+δx+1 + κnHδx+δx+1

]
(ω)

=Q2
(
∆h+ (1 + γnκn)Ah

)
− 4En(Dh) + 2Q2(D̃h)

+ 2γnQ4(Bh)− γnE4(Dh) + 2γnκnQ2(∇h),

where

Dh(x) = h(x, x+ 1)− h(x− 1, x).

∇h(x, y) =


(h(x+ 1, x+ 1)− h(x, x))/2 if y = x+ 1,
(h(x, x)− h(x− 1, x− 1))/2 if y = x− 1,
0 otherwise.

∆h(x, y) = h(x+ 1, y) + h(x− 1, y) + h(x, y + 1) + h(x, y − 1)− 4h(x, y),

Ah(x, y) = h(x− 1, y) + h(x, y − 1)− h(x+ 1, y)− h(x, y + 1),

D̃h(x, y) =


h(x, x+ 1)− h(x, x) if y = x+ 1,
h(x− 1, x)− h(x− 1, x− 1) if y = x− 1,
0 otherwise.

Bh(x, y) =
(
h(x− 1, y)− h(x+ 1, y)

)
+
(
1y=x+1 − 1y=x−1

)
h(y, y).

Remark that for any f : Z → R, h : Z2 → R the functions ∇h, D̃h, ∇f ⊗ δ are
always symmetric and that the operators ∆ and A preserve the parity of functions.
From last computations it is easy to recover (46).
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