J-Hermitian determinantal point processes: balanced rigidity and balanced Palm equivalence - Archive ouverte HAL
Article Dans Une Revue Mathematische Annalen Année : 2018

J-Hermitian determinantal point processes: balanced rigidity and balanced Palm equivalence

Résumé

We study Palm measures of determinantal point processes with $J$-Hermitian correlation kernels. A point process $\mathbb{P}$ on the punctured real line $\mathbb{R}^* =\mathbb{R}_{+}\sqcup \mathbb{R}_{-}$ is said to be balanced rigid if for any precompact subset $B \subset\mathbb{R}^*$, the difference between the numbers of particles of a configuration inside $B \cap \mathbb{R}_{+}$ and $B \cap\mathbb{R}_{-}$ is almost surely determined by the configuration outside $B$. The point process $\mathbb{P}$ is said to have the balanced Palm equivalence property if any reduced Palm measure conditioned at $2n$ distinct points, $n$ in $\mathbb{R}_{+}$ and $n$ in $\mathbb{R}_{-}$ , is equivalent to $\mathbb{P}$. We formulate general criteria for determinantal point processes with $J$-Hermitian correlation kernels to be balanced rigid and to have the balanced Palm equivalence property and prove, in particular, that the determinantal point processes with Whit-taker kernels of Borodin and Olshanski are balanced rigid and have the balanced Palm equivalence property.
Fichier principal
Vignette du fichier
1512.07553.pdf (480.23 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01483624 , version 1 (06-03-2017)

Identifiants

Citer

Alexander I. Bufetov, Yanqi Qiu. J-Hermitian determinantal point processes: balanced rigidity and balanced Palm equivalence. Mathematische Annalen, 2018, 371 (1-2), pp.127-188. ⟨10.1007/s00208-017-1627-y⟩. ⟨hal-01483624⟩
806 Consultations
232 Téléchargements

Altmetric

Partager

More