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J-Hermitian determinantal point processes:
balanced rigidity and balanced Palm equivalence

Alexander |. Bufetov, Yanqi Qiu

Abstract

We study Palm measures of determinantal point processks/vtitermitian cor-
relation kernels. A point procedson the punctured real line* = R, L/ R_ is said
to bebalanced rigidif for any precompact subsét C R*, thedifferencebetween the
numbers of particles of a configuration insiBeN R, and B N R_ is almost surely
determined by the configuration outside The point proces® is said to have the
balanced Palm equivalence propertyny reduced Palm measure conditionedsat
distinct points;n in R andn in R_, is equivalent to thé.

We formulate general criteria for determinantal point jpsses with/-Hermitian
correlation kernels to be balanced rigid and to have thenbalh Palm equivalence
property and prove, in particular, that the determinantahtpprocesses with Whit-
taker kernels of Borodin and Olshanski are balanced rigil lzawve the balanced
Palm equivalence property.

Keywords. Determinantal point processes;Hermitian kernel; Whittaker kernels;
L-processes; Palm measures; balanced rigidity; balandedd@aivalence property.
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1 Introduction

1.1 Palm measures of determinantal point processes

The present paper is the first one devoted to the equivalerctenatual singularity rela-
tions between reduced Palm measures of determinantalgroicesses witl/-Hermitian
correlation kernels.

A a concrete model, we consider the family of determinantahtpprocesses on the
punctured real lineR* = R\ {0} with Whittaker kernels of Borodin and Olshanski
[Bor, Olg], scaling limits of the so-called-measures of partitions3[D00, ]. For
these determinantal point processes, we observe a new. ¢fffeceduced Palm measure
conditioned aBn points,n on the positiven. on the negative semi-axis, is equivalent to
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the initial determinantal measure; whilenif£ k, then the initial measure and the reduced
Palm measure conditioned at+ k£ points,n on the positivei on the negative semi-
axis, are mutually singular. In the former case, the Radkodym derivatives between
the reduced Palm measures and the initial determinantadumeare found explicitly as
regularized multiplicative functionals

In the case of determinantal measures with kernels givendsynifian projection op-
erators, the statement that two such measures differ by tytradtive functional can be
checked on the level of the corresponding subspaces, tlgesanf our projections: in
fact, it suffices to verify that these subspaces differ bytipligation by a function, see
[ : ] for precise statements.

Although J-Hermitian operators considered in this paper are clossbted to cer-
tain Hermitian projection operators, it does not seem bs$0 work with their ranges.
Instead, we use the fact that the determinantal point psesewith the Whittaker ker-
nels admit so-called.-kernels. Following Borodin and Olshanski, such procesgés
be calledL-processes. Twad.-processes differ by a multiplicative functional once eerr
spondingL-kernels themselves differ by multiplication by a function the left and on
the right.

The realization of this scheme requires some effort. Firatm measures of ah-
process, generally speaking, do not admit/akernel (this can be seen already on the
level of discrete phase spaces: indeed, Borodin and R&i#s5 shown that any deter-
minantal point process can be obtained from/aprocess by conditioning). Second, in
developing the formalism of the regularized multiplicatiunctionals, we are not able to
use the standard linear statistics astnfL4, BQ]. We use thewistedones instead (see
(3.28 and @.84) below for the definitions); in particular, an extended i@nof Fredholm
determinants is used.

1.2 Main results for Whittaker kernels

We start by formulating our main results for a concrete motled family of the deter-
minantal point processes with Whittaker kernels of Boraali Olshanski. The reader
is referred to | ] , Olg] for the origin of these point processes in the problem of
harmonic analysis on the infinite symmetric group angadelow for a reminder of the
main definitions related to determinantal point processes.

Let R* = R\ {0} be the punctured real line. Byanfigurationon R*, we mean a
locally finitesubsetX C R*, thatis,X is a subset oR* such that for any compact subset
B C R*, the cardinality#(X N B) of the intersection of the subsetSand B is finite.
Define thespace of configurationsn R* by

Conf(R*) := {X C R*: for any compact subsét C R*, #(X N B) < oo}.
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The space of configuratior@onf(R*) is naturally equipped with a Borel structure, see
§2. A point process ofiR* is by definition a Borel probability ofonf(R*).

The family of the determinantal point processes with Whatakernels of Borodin
and Olshanski is a 2-parameter fami¥, ..* of determinantal point processesih The
two parameters, ' € C satisfy one of the following conditions:

e eitherz’ = zandz € C\ Z,
e Or 2,2’ € R and their existen € Z such thatn < z,2’ < m + 1.

Following | , formula (5.6)], we now write the correlation kernel of treterminantal
point process?, .. explicitly. Fix two parameters, ' € C such that one of the two
conditions as above is satisfied. Set

(ZZ/)1/4

Pel@) = TAE T T e st e (0), W
B (ZZ/)3/4 ’
) = AT e e 2 (1)

wherel'(+) is the Euler Gamma-function ariél, ;(-) is the Whittaker function with pa-
rametera, b € C, see | , 6.9] for the definition of Whittaker functions. The cor-
relation kernel of%, .. is given by

(PGP oo
e () - WD e oen
BN 9 Capa g_<—x>9+<y>7 e o
> (0 () Y
\ y—z

These kernel&, ., are called Whittaker kernels.

Recall that given a finite sef, we denote its cardinality by#(S). Denote byR
the positive semi-axis ani_ the negative semi-axis. Our first main result, in case of
Whittaker kernel model, is

Theorem A Assume that the parametdrs 2') are such that’ = z andz € C \ R. Then
for any subseB C R* having a positive distance from the origin, the difference

#BNXNRy) —#(BNXNR.)

4|t was denoted a§zyz/ in[ I
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is &, -almost surely determined h¥ N (R* \ B), the configuration outsid&. That
is, there exists a measurable functidfi : Conf(R*) — Z, such that for#, .,-almost
every configuratiorX' € Conf(Rx), we have

#BNXNR,)—#BNXNR_) =Ny X\ B).

In particular, if B C R, is a subset in the positive semi-axis with a positive distanc
from the origin, ther# (B N X) is &, ,.-almost surely determined by N (R*\ B). If B
is in the negative semi-axis, the same result holds.

Remarkl.1 When the subseB is either in positive semi-axis or in negative semi-axis,
we recover the usualumber rigidity propertyof Ghosh | ], Ghosh and Peresi[].

If P is a point process oR* and ifp = (p1,...,pn) € (R*)™ is anm-tuple of distinct
points inR*, then we denot®” thereducedPalm measure df conditioned at the points
D1, - -, Pm- Sees2.1for the formal definition of the reduced Palm measures.

Using a variant of Proposition 8. 1 i®{)], we derive from Theorem A the following
corollary.

Corollary 1.1. Assume that the parametefs 2’) are such that’ = zandz € C\ R.
Letn, k be two non-negative integers such that4 k. Then for Lebesgue-almost every
p=, . ...00pr,- . pp) € RE X Rk of distinct points, the reduced Palm measure
7 ., and the initial determinantal measur#. .. are mutually singular.

We now proceed to formulating our second main result whislegequivalence of
the reduced Palm measur@iz, and &, ./, under the conditions that the parameters
z,2 € Care suchthalz + 2’| < landp = (p{,....p};p1,....p,) € RY xR" is a
2n-tuple of distinct points iR* with equal numbers of points from positive and negative
semi-axis. The Radon-Nikodym derivatid@iz,/dg@z,z/ is computed explicitly.

We start with an auxiliary proposition

Proposition 1.2. Assume that the two parameters:’ € C are such thatz + 2| < 1.
Then the following limit

2

2 _
5 z/pi —1 z/p; —1
Sp(X) = lim { g ( g log —| - E log | ———— )
=0t Ui zeXN(8,00 z/py —1 T€XN(—00,—6) z/pi —1
2 _ 2
x/p x/p; —1
(S [ s it
Pz x/ . o z/pi —1 }

=1  zeXN(d,00) z€XN(—00,—0)

exists forZ, .,-almost every configuratioX € Conf(R*). Moreover, we have

exp(S,) € L' (Conf(R*), 2, .1).
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Theorem B Assume that the two parametets’ € C are such that: + z/| < 1. Then the
determinantal point proces®, ., possesses the following property: for Lebesgue almost
everyp = (pi,....p5p1,--.,p,) € RL x R of distinct points, the reduced Palm
measureZ’? , is equivalent to the initial determinantal measufg ... For the Radon-
Nikodym derivative, we have the’, .,-almost sure equality

47’ exp(S,(X))
1 X) = .
z,z! E’@z,z’ [exp(Sp)}

Remarkl.2 In [ ], the determinantal point processé% .. are obtained as scaling
limits of determinantal point processes 6inf(Z') with hypergeometric kernel mea-
sures, wherd/ = % + Z is the set of half-integers. Being point processes all coinate
on the set obalanced configurationaith a finite number of particles:

{X €Conf(Z): #:(X NZ,) =#(X NZ.) < o},

the determinantal point processes with hypergeometringterare of courséalanced
rigid in the sense of Theorem A. However, as already shown in Hemmiernel case,
the rigidity property is not stable under taking limits. &&tl, orthogonal polynomial en-
sembles, having a fixed number of particles, are rigid in grese of Ghosh{ ] and
Ghosh-PeresjH, while in general this is not the case for their scaling tsnFor exam-
ple, as Holroyd and Sod513 showed, the determinantal point process on the unit disk
D with Bergman kernel:

1

1 N9 Y 6 D7
(1 — zw)? -

KBerg(z7 'LU) =

is not rigid (the Radon-Nikodym derivatives between thisswee and its Palm measures
are computed infQ]), but is nonetheless the limit of the following sequenceigid de-
terminantal point processes whose kernels are given by fiauitk orthogonal projections:

—_

3

K(")

Berg

(k+1)(zw0)*, z,weD,
0

3| =

(sz) =

e
i

1.3 Main results for general J-Hermitian kernels

Our proofs of Theorem A and Theorem B do not proceed by linangition from pro-
cesses with finitely many particles and work for more genérillermitian kernels.

We briefly recall the necessary definitions. /&t, P~ denote the orthogonal projec-
tions onL?(R) = L?(R, dz) whose ranges are the subspat&®R ;) andL*(R_) respec-
tively. Define a bounded linear operatdon L?(R) by

J:=P, — P,
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Introduce an indefinitg-scalar product, -] on L?(R) by the formula

[f)g] = (vag) = (P+f,P+g)—(P_f,P_g), f?gELQ(R)7

where(-, -) denotes the usual scalar productZ/if(IR). A bounded linear operatdk on
L*(R) is calledJ-self-adjoint if K f, g| = [f, K g] for any pairf, g € L*(R). By slightly
abusing the notation, the kernel of an integral operatavill denote again byx. A kernel
K is called aJ-Hermitian kernel, if the corresponding operafois .J-self-adjoint. More
precisely,K (z, y) is J-Hermitian if it induces a bounded linear operator and if

K(z,y) = sgn(z)sgn(y)K(y,z), =,y € R’ (1.3)

wheresgn(z) is the sign of the real numberc R*.
By convention, a bounded measurable functforiR* — C will be identified with the
bounded linear operatdi/; on L?(R) defined by

Mjy(g) = fg, foranyg € L*(R).

The notationf K (or f- K) andK f (or K - f) stands for the composition operatas o
andK o M, respectively.
Given a bounded linear operataron L?(R), we set

K :=sgn - K+ g =P, K+ P_(1-K). (1.4)
An operatorK is J-self-adjoint if and only if the operatcﬁ? is self-adjoint in the usual
sense.
The following Theorem of Lytvynov gives a necessary and cigifit condition for the
existence of a determinantal point process with a givdtermitian kernel.

Theorem 1.3(E. Lytvynov | ]). Let K be aJ-self-adjoint bounded linear opera-
tor on L?(R). Assume that the operatofs K P, and P_K P_ are non-negative. Assume
also that, for any bounded subseétg, A, of R such thatA; € R, andA; C R_, the op-
eratorsxa, Kxa, (i = 1,2) are in trace-class, whilga, K xa, is Hilbert-Schmidt. Then
the integral kernel(z, y) of the operatori is the correlation kernel of a determinantal
point process ofiR if and only if0 < K <1.

The determinantal point process induced by a correlationeté as in Theoren..3
will be denoted byP .

1.3.1 Theorem A for general/-Hermitian kernels

We now formulate a general variant of Theorem A, namely, &icsemt condition on
the J-Hermitian kernelK for the determinantal point proceBs to be balanced rigid.
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For the purpose of our later use of Fourier analysis, we stateesult in this part only
for determinantal point processes with a singularity atitfi The case with a single
singularity at the origin, such as the determinantal paiotpsses with Whittaker kernels,
can be easily transformed to this case by the change of \esiab- 1/x.

We need the following two conditions on the keri€l: Condition1 guarantees that
the J-Hermitian kernelK is indeed a correlation kernel of a certain determinantaitpo
process and the variance of the linear statistics

> sgn(x)p(x), (whereX € Conf(R)),

can be expressed by a simple formula, see Lerdrhelow. Conditior2 guarantees that
the diagonal coefficienk’(z, x) is locally integrable ofR and controls the rate of decay of
off-diagonal coefficients((x, y) when|z — y| is large. The former condition oR (z, z)
implies in particular that the associated determinantaltgwocess has no accumulation
point at any point of the real line.

Condition 1. Assume thafs is the integral kernel of a bounded linear operator.8(R)
such that

e the operators®, K P, and P_K P_ are non-negative. Moreover, for any bounded
subsetsA;, A, of the real line such that\; ¢ R, andA, C R_, the opera-
tors xa, K'xa,(i = 1,2) are in trace-class, and the operator, K x a, is Hilbert-
Schmidt.

¢ the following operator

~

K :=sgn- K+ xg_
defines arorthogonal projectioron L*(R, dz).

Condition 2. Fix M > 0. Assume that the kern&l satisfies the following conditions:

e Let K (z,z) be the diagonal value of the kern&l, then for anyR > 0, we have

K(z,z)dr < oo; (1.5)

lz|<R

e There exists a non-negative integrable functioa L'(R, dt) satisfying
/ B(t)dt = O(R™') as R — oo, (1.6)
|t>R

such that iflx| > M, |y| > M, then

K (z,y)]* < ®(x —y); (1.7)
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The general variant of Theorem A is

Theorem 1.4(A sufficient condition for balanced rigidity)l et K be a./J-Hermitian ker-
nel satisfying Condition$ and 2. Then the determinantal point proceéBg possesses the
following rigid property: for any bounded Borel subgetC R, there exists a measurable
functionNg* : Conf(R) — Z, such that fofPx-almost everyX € Conf(R), we have

#BNXNR,)—#(BNXNR_) =Ny X\ B).

In particular, if B C R, is a bounded subset in the positive semi-axis, théB N X)
is Px-almost surely determined by N (R \ B). If B C R_ is a bounded subset in the
negative semi-axis, the same result holds.

Using a variant of Proposition 8. 1 i{)], we derive from Theorerf.4the following
corollary.

Corollary 1.5. Let K be aJ-Hermitian kernel satisfying Conditiorisand 2. Letn, k
be two non-negative integers such that k. Then for Lebesgue-almost evary=
(pf.....p5ipr, ... o) € RT x R of distinct points, the reduced Palm meastife
and the initial determinantal measulg, are mutually singular.

1.3.2 Theorem B for general/-Hermitian kernels

We now formulate a general variant of Theorem B, namely, icserit condition for the
determinantal point process to havalanced Palm equivalence properitythe sense of
Theorem B, see also Definitioh1 below. In this part, let us state the result in the case
where there is a single singularity at the origin (rathentaaingularity at infinity).

We first need the definition df-processes of Borodin and Olshanski.

Definition 1.1 (L-kernel) Given a bounded linear operatéf on L?(R), if 1 — K is
invertible, then we define the-operator of’ by

L=K(1-K)"

In order to emphasize that the operatordepends or., we will sometimes write;,
instead ofK, thus having
K;,=L(1+L)™"

Condition 3. Assume that. is a bounded operator at?(R*, dx) having the following
block form:

A@Atw) o : (1.8)

0 v’]__ 0 AT (2)A™ (y)
B 0

T—y
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whereA € C'(R*) N L*(R*, dx) is a real-valued function and
AT = Axr, andA™ := Axg_.

In other words, the operatdr admits an integral kernel given by

o) = DO EADAW) e o)

We will also assume that the support of the funcitibms the whole punctured ling*.

Lemma 1.6. Let L be an operator satisfying ConditioB Then the operato#(;, is a
J-self-adjoint operator satisfying all the conditions ofthytvynov’'s Theorem.3. In
particular, K, is the correlation kernel of a determinantal point proceasRy.

Definition 1.2 (L-processes)We denote byu; the determinantal point process &
whose correlation kernel &7, = L(1 + L)7, that is

ML = ]PKL. (110)
Following Borodin and Olshanski, such processes will bedal-processes.

We need the following auxiliary propositions.
Letp = (py,...p5;py, ..., p,) be a2n-tuple of real numbers such that > 0 and
p; <O0fori=1,...,n. Moreover, assume tha # p.", p; # p; wheni # j. Define

w =11 (e e ).

Proposition 1.7. Let L be an operator satisfying Conditidh Let.;, be the determinantal
point process ofR* whose correlation kernel i&;, = L(1+L)~!. Then the reduced Palm
measure.} conditioned at &n-tuple of distinct points

p= . .,o800,-p,) €ERY XRY, (1.12)
is again anL-process and is given by
IupL = HfpLfp- (1.13)

Proposition 1.8. Let L be an operator satisfying Conditidhand letp be a2n-tuple of
distinct points inR* given as in(1.12), the functionf, is defined by formulél.11). Then
the following limit

S(X) 5%{2( >

zeXN(d

2 2

rv/p; —1
z/pi —1

Jn 1)

x/pz
2 —1

M)— Z_log

$/pz' -1

n

5.3 Y v

i=1  zeXn(d,00)
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exists foru-almost every configuratioX' € Conf(R*). Moreover, we have
exp(S,) € L' (Conf(R*), uur,).

Theorem 1.9(A sufficient condition to have balanced Palm equivalenaperty) Let

L be an operator satisfying Conditiahand letp be a2n-tuple of distinct points irR*
given as in(1.12), let f, denote the function defined by formiglal1). Then the reduced
Palm measure/} is equivalent tou,. For the Radon-Nikodym derivative, we have the
1z -almost sure equality:

iy o ep(S(X)

Wi R, [ exp(S,)|

1.4 Olshanski's Problem

Olshanski { ] posed the following

Problem. Let P, and P, be two determinantal point processes on a common phase space
with correlation kernelds; (z, y) and K»(x, y) respectively. Decide the equivalence and
the mutual singularity relations betwedn and P, by inspection of their correlation
kernels Ky (z,y) and Ky(x,y). WhenP, and P, are equivalent, calculate the Radon-
Nikodym derivative between them.

We now briefly mention the previous works on this problem fiaj@ction kernels and
note the particle-hole duality relation, in the case of dise phase spaces, of these results
to the results of the present paper.

e The Gamma-kernel.

Olshanski { ] obtained the quasi-invariance of the so-called Gammaekern
determinantal point processes on the spéad half-integers under the action of the
groupS|(oco) of finite permutations of arbitrary size. The grofifo) acts naturally
onZ' and hence on the space of configurations @/eket P, be the Gamma kernel
determinantal point process @1 with the correlation kernel denoted Wy, see

[ ] for the precise definition. Take an element S(co), denoteP, = o,(P)
the determinantal point process obtained by the transftoma on the space of
configurationsConf(Z') = 2% . ThenP, has a correlation kernel given by

Kg(l',y) = Kl(a_l(x)va_l(y)) T,y € 7.

By limit transition from finite particle systems, Olshanski proved the equivede
of P, and P, and calculated the Radon-Nikodym derivative between thearaul-
tiplicative functional.
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e Determinantal point processes with integrable kernels.

In [ ], it has been proved that all determinantal point processeR (or 7)
whose correlation kernel&” are Hermitian orthogonal projections and have an in-
tegrable form as follows:
A(x)B(y) — A(y)B
K(z,y) = 20BW = AWB@) - Riorsy e z), (1.14)
r—y

are quasi-invariant, under the action of the group of cornipatpported diffeo-
morphisms orR (or under the action of(co) on Z). The equivalence between
reduced Palm measures of the same oilays a central role in the proof, which
proceeds by the method, further developed in this papeegoilarized multiplica-
tive functionals

Determinantal point processes associated with Hilbert spzes of holomorphic
functions.

Holroyd and Soo {|S1J have shown that the determinantal point process with
the Bergman kernel on the unit disk has the propertyneértion toleranceits
Palm measures are equivalent to itself. For the Ginibretgmiscess on the com-
plex plane, using its finite-dimensional approximationsobthogonal polynomial
ensembles, Osada and Shiraid14 have shown that Palm measures of different
orders are singular, while Palm measures of the same ordeegjaivalent and the
Radon-Nikodym derivative is a regularized multiplicatiuectional. In BQ], the
method ofregularized multiplicative functionalsas been further elaborated for ob-
taining in a unified way, on one hand, the equivalence of rediRalm measurex
the same ordeof the determinantal point processes on the complex plangth
correlation kernels given by the reproducing kernels ofegelized Fock spaces on
C, and on the other hand, the equivalence of reduced Palm nesaduall orders

of the determinantal point processes on the open unitisk C with correla-
tion kernels given by the reproducing kernels of generdlBergman spaces di
Specifically, the Radon-Nikodym derivative between theedatnantal point pro-
cess with the Bergman kernel on the unit disk and its Palm ameass computed
explicitly as a regularized Blaschke product.

As a consequence, we also obtained the quasi-invariangenyoof these deter-
minantal point processes, under the action of the group ofpeatly supported
diffeomorphisms on the complex plafieand on the open unit disk respectively.

Relations with rigidity of determinantal point processes.

Recall that a point process on a Euclidean spRéds said to be rigid in the
sense of Ghosh( ] and Ghosh-Peres[H, if for any bounded open subset
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B C R4, such that the topological bounda®y is negligible with respect to thé
dimensional Lebesgue measure, the number of particlessgbdimt process inside
the subseB is almost surely determined by the configuration outsiddéefstubset
B. Olshanski’s problem is closely related to this rigiditpperty of determinantal
point processes. In particular, if a determinantal pointpss is rigid in the above
sense, then its reduced Palm measafekfferent ordersare almost surely singular,
see 2O, Prop. 8.1]. Note that for processes witfHermitian kernels we encounter
a rather different notion of rigidity. In the case of disergthase spaces, however,
the new notion can be reduced to the old one, as we shall nowmgnate.

¢ Discrete phase spaces and the particle-hole duality

Analogues of our main results, Theordn and Theoreni.9, can be formulated
and proved in similar way when the phase spRtés replaced byZ or 7/ = % +7Z

or any other discrete subsetsiRniIn particular, in the case where the phase space is
a discrete subsets &, our results are related to previous worksd11, ] by
doingparticle-hole dualityas follows: LetP be a determinantal point process, say
onZ'. Assume thaP has a Hermitian correlation kerngl. Define the particle-hole
duality onZ’ = 7Z' " R_ as a maplual : Conf(Z') — Conf(Z') given by

dual(X) := (X NZ,)U(Z_ \X).

Then this particle-hole duality transforhto a new point processual, (), which
is again a determinantal point process. A correlation Rexftéis new point process
can be provided by

K°:=sgn- K+ xzw .

Note that/(° is J-Hermitian with respect to the partitidgl = Z' U Z’ and the
orthogonal decompositioft(Z') = (*(Z!,) @ ¢*(Z"). In general, the particle-hole
duality transforms a rigid point process (see Definitibf) to a balanced rigid
one and vice-versa. It transforms a quasi-invariant paintss to a point process
having balanced Palm equivalence property and vice-vergarms of correlation
kernels, the particle-hole duality transforms Hermitianriels to/-Hermitian ones
and vice-versa.

At the same time, we would like to note that the particle-fthlality argument only
works in the case where the phase spaces are discrete. TiHig eédready seen on
the level of correlation kernels, indeed, the kerfietlefined in (.4) corresponds

to K° as above. Observe thaf can not be used to define (extended) Fredholm
determinants, and it is not the correlation kernel of angeinantal point process.
Thus when the phase spaceRs, processes witly-Hermitian kernels can not be
transformed to processes with Hermitian kernels.
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1.5 Organization of the paper and schemes of proofs

The paper is organized as follows.

In the preliminary part§2, we briefly recall the definition of determinantal point pro-
cesses and theory of reduced Palm measures. In particelagligct the necessary results
from [ ] on the general determinantal point processes wWithermitian correlation
kernels. Some standard properties of extended Fredholenndigiants are also collected
in §2. The proofs for these properties are postponed to the appenthe end of the
paper.

The main body of the paper is separated into two parts. Thepfirs,§3, is devoted to
the proofs of Theorem.4 and Theorem A; the second pdit, is devoted to the proofs
of Theoreml1.9 and Theorem B. These two parts are essentially independantdach
other.

First part §3: proofs of Theorem..4and Theorem AHere we follow the scheme of
Ghosh and Pere<[H. Let Px be the determinantal point process as in Theoie#n
Our main task is to construct, after fixing an arbitrarilygerintervallUr = [—R, R|, a
sequence ofompactly supportedontinuous functiongy,,),,~1 defined onR, such that
vn(z) tends tol uniformly onUgr whenn tends to infinity. Moreover, the following limit

relation holds:
Varp, (Z sgn(x)<pn(x)> 70.

zeX
See alsofDOQ, BO, ] for the use of the same method in the Hermitian case.

Second part4: proofs of Theoren..9 and Theorem BThere are three main ingredi-
ents in the proofs of our main results in this part:

(i) The J-Hermitian kernels for the determinantal point processekeuconsideration
havel-kernels, that is, the determinantal point processeg. grecesses;

(i) Under certain assumptions on thhekernel of the initial determinantal point process
11, all the reduced Palm measures conditionned at an equalaerwhpositions at
both sides ofR* = R, LI R_ are againL-processes, and thie-kernels for these
reduced Palm measures have the fgrhy, wheref is certain bounded measurable
function defined oriR*.

(iif) Under suitable assumptions on the kerdednd f, the two determinantal point pro-
cesses$isr,r andyy, are proved to be equivalent and the Radon-Nikodym derigativ
dusry/dpr, can be computed explicitly asregularized multiplicative functional

The verification of part (ii) will be given ig4.1. The proof relies heavily on the alge-
braic structures of thé-kernels, see Conditiofin §4.1
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Let us now explain part (iii). We will first prove a preliminaand abstract version
in Proposition4.1Q under a certain condition on thie-kernel, if supp(f — 1) C R*
has a positive distance from the origin , thep,; andy;, are equivalent and the Radon-
Nikodym derivative is given by a normalized multiplicatiftenctional:

o I 1/
X) = "¢ . 1.15
i By, I 7P (1.13)

But for f, defined by {.11), supp(f,—1) = R*, it does not have positive distance from the
origin. Moreover, the usual multiplicative functiondl[ |f,(x)|* on the right-hand side

zeX
of (1.15 does not converge absolutely. For overcoming this diffjcue are led to use a
new version ofegularized multiplicative functional©ne ingredient in the formalism of
this new version of regularized multiplicative functiosas the use of the twisted linear
statistics:

> sgn(z)p(x), (whereX € Conf(R")).

Extra efforts are also required in dealing with the extengedion of Fredholm determi-
nants. The reader is referred toL[i14, BQ] for the use of another version of regularized
multiplicative functionals in computing Radon-Nikodynridatives between determinan-
tal point processes whose correlation kernels are Hemmitia

2 Preliminaries

Let & be a locally compact complete metrizable separable spasime that o is
equipped with a positive-finite Borel measurg:.. A configurationon & is defined to
be anN U {0}-valued Radon measure @fi in other words, a configuration ofi is a
collection ofparticles possibly with multiplicity, that admits no accumulationipts in
&. Let Conf (&) denote the space of all configurations€nWith respect to the topology
induced by the vague topology on the space of Radon measuréstbe spac€ onf (&)
is itself a complete metrizable separable spac@oit proceson & is by definition a
Borel probability measure o@onf(&’). For further background on point processes, see,
e.g, | ].

We now briefly recall the definition afeterminantal point processesee, e.g.,IJ )

, ]. Fix a Radon measureon &’. A determinantal point process éhis deter-
mined by a correlation kerné{, that is, a certain two-variable complex-valued function
K(z,y) on& x &. More precisely, if we denote the determinantal point pssogith a
correlation kernelK by Px, then this measur@y is completely determined by the fol-
lowing: for any positive integek > 1 and any disjoint bounded subséis, - - - , D;, of
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&, we have

k
H #(X N DZ)]P)K(CZX) = / det(K(xZ-, Z’j))1§i7j§kdu®k($1 cee {L'k) (216)

Conf (&) =" Dix--xDy,

The equality 2.16) implies that if D, - - - , D, are disjoint bounded subsets &fandk;
are positive integers;, = k; + - - - + k., then

[T #CX 0 DI 0D = 1) (X 1 D) — ki + 1P ()

Conf (&) =1

= / det(K (i, 75))1<ij<kdp(z) - - - dp(y).
D’flx---foT

See, e.g.,lf , Remark 1.2.3 ]. By definition, determinantal measures hveyes
supported on the subsetsifnpleconfigurations, that is, configurations all of whose par-
ticles have multiplicity one.

In this paper, we are particularly interested in the deteamial point processes with
J-Hermitian correlation kernels, sé&.3and§2.2for a brief introduction or/-Hermitian
kernels. The reader is referred to/[13] for the general theory of such point processes.

2.1 Palm measures of determinantal point processes

In what follows, by Palm measures of a point process, we awagan itgseducedPalm
measures. Let us briefly recall the definition of Palm measofedeterminantal point
processes. For further details on Palm measures of ger@rdlgrocesses, the reader is
referred to | : ]

Let P be a point process afi (later, we will focus on the cas&= R or R*). Assume
that for any positive integet, the point procesB admits thek-th correlation measure,
on &*, that is,p,, is a positive measure afi* such that for any disjoint bounded subsets
Dy, ---, D, of &, the following identity

k
| H#xnpgpax)= [ pidor-do) 2.17)

Conf(&) =1 Dix--xDy,

holds. Then for,-almost everyk-tupleq = (qi,...,q:) € &% of distinctpoints in&,
one can define a point proceBson & by the following disintegration formula: for any
non-negative Borel test functian: Conf (&) x &% — R,

[ wapax) = [o) [ o akapax)
Conf(&) T ak€X &k Conf(&)
(2.18)
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Wherez*: denotes the sum over all distinct points. . ., ¢ € X. The point procesB? is
called the Palm measure Bfconditioned at, . . ., gy.

In the above situation, if thé-th correlation measurg, for the point proces® is
absolutely continuous with respect to the product meagtifeon &%, then the Radon-
Nikodym derivative

d
fk:($1, T ,xk) = ngk

is called thek-th correlation function of?. In terms of correlation functions, the Palm
measureP? can be described as follows: it is a point processéosuch that itsn-th
correlation function is given by

(w1, , 7)

fg(xb... 7'1:%) = fn-i-k(ql?‘“ y Qs T1y " " 7'TTL)'

Informally, if X is a random configuration afi whose probability distribution is given
by the point procesB, thenP? is the conditional distribution of the random configuration
X\{a¢,- -, q} conditioned to the event that all particlgs. . ., g, are in the configuration
X.

A Theorem of Shirai and Takahasti [0 states that the Palm measures of a de-
terminantal measure are again determinantal measuresslfetmulate this result more
precisely. Assume noW is a determinantal point process éninduced by a correlation
kernel K, thatis,P = Pg. Letq € & and assume thdt (¢, ¢) > 0. Set

K(z,q9)K(q,y)
K(g,q)

If K(q,q) =0, we setk? = K. More generally, iff = (¢, ...,q) € & is ak-tuple of
distinct points ing’, then we define by iteration

Kq(l’,y) = K('Tvy) -

(2.19)

K= (- (K72 ...)%, (2.20)
Observe that the order of the points ¢, - - - ¢ has no effect in the above iteration.

Theorem 2.1(Shirai and Takahashijjl03). LetP = Py be a determinantal point pro-
cess or¥’ induced by a correlation kernék'. Letk € N be a positive integer. Then for
pr-almost everyi-tupleq € &% of distinct points ing’, the Palm measurg}, of Px con-
ditioned atq is again a determinantal point process énMoreoverP}. is induced by the
kernel K% defined in(2.20), that is, we have

IED(}{ == PKq.

Remark2.1 Theoren?.1was proved by Shirai and Takahashiin[0J for determinantal
point processes with Hermitian correlation kernels. Tagiit was independently proved
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by Lyons in | ] in the case where the phase space is a discrete countabledstite
correlation kernel corresponds to a Hermitian orthogongjlgation. The proof in$ 1709
can be generalized word by word for determinantal point@sees without requiring that
the correlation kernels are Hermitian.

2.2 J-Hermitian kernels and extended Fredholm determinants

Recall that irg1.3, we have defined thé-Hermitian kernels oiR* = R, IR _ as follows:
a kernelK : R* x R* — C is called aJ-Hermitian kernel if it defines a bounded linear
operator on?(R) and if

K(z,y) = sgn(z)sgn(y) K (y,z), =,y €R".

In Theoreml.3, we recalled the Lytvynov’s characterization of the catiein kernels
of determinantal point process irrHermitian case in our particular situation with the
phase spac®* = R, LIR_. We shall need a slight reformulation of Theorérs.

Remark2.2 Note that the determinantal point proc@&ssinduced by the kernek as in
Theoreml.3 accumulates at infinity (both-oo and —oc), in this situation, we will say
that thesingularity of the kernel is at infinity. The change of variables— 1/z on
R* transformsP to a new determinantal point processibhinduced by the new kernel
@K(l/x, 1/y). This new determinantal point process has a single accuiowlgoint at
the origin0 € R of the real line, and in this situation, we call that the aboee kernel
has a singularity at the origin. Now it is clear how to forntala version of Theorem.3
when the kerneK has a singularity at the origin (and there is no singularityfnity):
we just need to replace the conditionsdn A, required in Theorem.3by the following

new condition:
A; andA, are two measurable subsetdfoboth having positive distances froim

Note that in the case of singularity at origin, the two subget, A, C R* can be un-
bounded.

Let.% (L?(R)) denote the space of trace-class operator5dR) and let%,(L*(R))
denote the space of Hilbert-Schmidt operatord.d(R). For further details on trace-class
and Hilbert-Schmidt operators, the reader is referrecsto1pq. Following [ ], we
denote by % »(L*(RR)) the space of all bounded linear operatorsi8fR) = L*(R.) &
L?(R_) such that when written in the following block forms

a b
2i)
we haveu, d € % (L*(R)) andb, c € % (L*(R)). Clearly,
Z(L*(R)) C Z12(L*(R)) C Z(L*(R)). (2.21)
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Let K be a bounded linear operator 6A(R). Then for any subsek C R, we denote
K the compressed operator defined by

KA = XAKXA-

By [ , Prop. 12], if K satisfies all the conditions in Theorelr8, including the con-
dition that0 < K < 1, then for any bounded subsatc R, we have

K% € Ap(LA(R)). (2.22)

Similarly, if K satisfies all the conditions of the origin-singularity versof Theorem
1.3as explained in Remark 2, then for any measurable subgetC R having a positive
distance from the origin, the compressed operatorbelongs taZ . (L*(R)).

The space?;»(L*(R)) is a Banach space equipped with a narm|| ¢, , defined by
the following formula

I

where|| - ||; is the trace-class norm while ||, is the Hilbert-Schmidt norm. Observe that
A 2(L*(R)) is not an ideal in th&*-algebra?’(L*(R)) of all bounded linear operators
on L*(R).

We collect a few standard facts needed in what follows; ferrdader’s convenience,
we include their proofs in the Appendix.

= [lalls + [ld]l1 + [|bll2 + [|c]l2,
L2

Proposition 2.2. Let A, B be two operators inZ;»(L*(R)). We have
[AB]l 2, < 2[[All 2,11 Bl .

More generally, ifA,, - - - , A, are operators in%;»(L*(R)), then

Ay - Anllzy, <27 T 1A 2

i=1

Proposition 2.3.Let f : R — C be a bounded measurable function andAebe an oper-
ator in £ 2(L*(R)). Then the operator$ K and K f are both in%»(L*(IR)). Moreover,

max (|| fK ||z, [Kfllz.) < [ fllooll K1 4.,
where|| f || means thd.>°-norm of f.

Proposition 2.4. Let A, B be two operators i} »(L*(R)). Assume that + A is invert-
ible. Then the operatord +A) ' B andB(1+A)~! both belong to the clas#5(L*(R)).
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Recall that the trace of an operatére %, (L*(R)) is given by

o

tr(A) =) (Aen, en),
n=1
where{e, }°°, is an orthonormal basis df*(R).
Let m be a positive integer. Denote by"(L?*(R)) the m-th antisymmetric tensor
power of the Hilbert spacé?(R). For anyA € .Z(L*(R)), denote by\"(A) the unique
bounded linear operator ox*(L*(R)) determined by

A (A) (L A+ Avg) = (Av)) A=A (Avy), o1, v, € LA(R).

Definition 2.1 (Fredholm determinant, Grothendieckp5€d). Let A € % (L*(R)), then
the Fredholm determinadtt(1 + A) is defined by

det(1+ A) == f: tr(A™(A)).

In[ ], itis proven that the functiod — det(1 + A) admits a unique extension
to 4 2(L*(R)) which is continuous in the topology o> (L*(R)). We will use the same
notationdet(1 + A) for this extended Fredholm determinant whér £ »(L*(R)).

Proposition 2.5. Let A, B be two operators inZ;»(L*(R)), then
det((1+ A)(1+ B)) = det(1 + A)det(1 + B). (2.23)

Proposition 2.6. Let A € .%p(L*(R)) and letf : R — C be a bounded measurable
function. Then

det(1 + fA) = det(1 + Af). (2.24)

We also need the following characterization of determiagmbint processes withi-
Hermitian correlation kernels in terms of multiplicativeiictionals.

Theorem 2.7(E. Lytvynov][ ]). Let K be a kernel as in Theoreth3. Then the de-
terminantal point procesBy is uniquely determined by the following property: for any
compactly supported bounded measurable funcfiorR — R, if A C R is a bounded
subset such thaupp(f) C A, then we have

[T+ f(2)Pr(dX) = det(1+ fFK2).

Conf(R) zeX
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3 Balanced rigidity
For any bounded Borel subsBtC &, let#5 : Conf(&) — N be defined by
45(X) = #(BN X).
Fix a Borel subset’ C &, let
Fo=0({#p: B C C,BBorel})

be the smallest-algebra making all functions frof 5 : B C C, B Borel} measurable.
If Pis a point process o#, then we denot&7, for thePP-completion ofF .

Definition 3.1 (Ghosh | ], Ghosh-PeresjH). A point processP on R is called
rigid if for any bounded measurable subget” R, the random variabléf zr is ?ﬁ\B-
measurable.

Definition 3.2 (Singularity at infinity version)A point proces® onR* is calledbalanced
rigid with respect to the partitioR* = R, LI R_ if for any bounded measurable subset
B C R*, the random variable

#BrR, — FBNR_

i P
is Fg. p-measurable.

3.1 A sufficient condition for balanced rigidity

This section is devoted to the proof of Theorém.

Assume thatK is a J-Hermitian kernel onR satisfying ConditionslL and 2. The
operatorsk’ and K have the following block forms with respect to the decomposi
L*(R) = L*(R,,dx) ® L*(R_, dz):

_ Kiy Kio 7 Kyt K-
K = { } and K = [ K., 1p —K__ | (3.25)
where for instancek, _ : L*(R_,dz) — L*(R",dx) stands for the operatdk, = =

P.KP_ and1r_ stands for the identity operator di¥(R_, dz). Note that the operator
K, _ admits the following integral kernel

Ky (z,y) = xr, (@)K (x,y)xr_(y).

Recall that in Conditiori,, we assume that the operator

~

K:=sgn-K+yxg_. =P, K+ P (1-K)

defines an orthogonal projection @A(R).
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Lemma 3.1. For anyx € R*, we have
K(z,z) = [ 1K) Pdy. (3.26)
R
Proof. By assumptionf{ is an orthogonal projection, hende® = K. By substituting
(3.29 into this identity and considering the diagonal blocks,deeuce that
K++ — K_2’_+ - K+_K_+
K _=K* —K K,

The above first identity combined with..) implies 3.26) for = > 0 while the second
one combined with1(.3) implies 3.26 whenz < 0. 0

Given a Borel functiornp : R — R, we definey® : R — R by
¢ (x) = sgn(a)p(z). (3.27)

By definition, the linear statisti®'[p] corresponding ta is the following function on
Conf(R):

= o), (3.28)

zeX

provided the right-hand side converges absolutely. Fopkiying the notation, we set
Tle] := S[e°]. (3.29)

Recall that by Theorer.3, the kernelK satisfying Conditiori induce a determinan-
tal point process o, denoted byP .

Lemma 3.2.Let f : R — R be a Borel function such that

/f K(z,z)dx < oc.

Then we have
Varp, (T’ / |f(x )2 K (z,y)|Pdxdy, (3.30)

whereVarp, (T[f]) stands for the variance of the random variallléf] defined on the
probability spacg Conf(R), Px) equipped with the Boret-algebra.

Proof. By definition of correlation functions of determinantal poprocess, we have

Varg, (T[f]) = / Fo (@)K (a, x)de / Fo(@) () K () K (y, ) dedy

_ /Rf(x)2 7, 7) dx—//R2f )| K (@, ) Pdady.

Substituting the formula3(26) into the above identity, we get the desired form@a().
]
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Lemma 3.3. Let K be a kernel satisfying Conditiorisand 2. Then for any fixed® > 0,
there exists a sequence,, ).y of real-valued Schwartz functions, such that(x)| < 1
and

lim sup |g,(z)—1| =0 and JeroloVaer(T[apn]) = 0.

N0 zc[—R,R]
Proof. It suffices to prove that given any positive integerc N, we can construct a
real-valued Schwartz functigp, such that

on(@)| <1, sup |pule) — 1] < 1/n andVars, (Tlp]) < 1/n
z€[—R,R]

Let M > 0 be the number given in Conditich Fix a real numbefN > 1 which will
be specified later. Given a real-valued Schwartz funcfiotkenote

Fle,y) = 515(2) = F()PIE )

We definel;(f),i = 1,2, 3, 4 as follows:

VarPK(T[f])g// F+// i
e <N M [yl <N M 2l <M, [y >NM

(.

=:I1(f) =:I>(f) (331)
+ / / P / / F.
| >N M, [y| <M | > M, ly|>M
—:I3(f) —I4(f)

Step 1:Control of I, and 5.
We claim that

lim // | K (z,y)|*dxdy = 0. (3.32)

N=oo J J{ja|<M,ly|>N-M}

Indeed, by Lemm&.1and condition {.5), we have

// |K (z,y)|*dedy < / K(z,z)dr < co.
{l=|<M,|y|>N-M} x| <M

Then the claim in .32 follows from above inequality and bounded convergence-the
rem. Now let us choos® > R + 1 large enough, such that

1
// |K (2,y)|*dzdy = // |K (z,y)|*dody < —.
{J2| <M, |y > N M} {lz|>N M |y| <M} 40n

It follows that for any functiorf such that f| < 1, we have

L)+ () < 3=
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In what follows, we fixV chosen as above.

Step 2:Control of ;.
Note thatV being fixed, the numbe¥ M is also fixed. For any functiofi, we have

nns( s 1@ —g@F) [[ K ey

<4 swp |f(x) 1) /| oy Kl

|z|<NM

It follows that for anyf such that

—-1/2
sup | f(x) = 1 < min {n"", (20n-/ K(x,x)dx) 3
|z|<NM 2| <NM

we have

For future use, let us denote
-1/2
dp, 1= min { <20n / K(x, x)dx) } (3.33)
|z|<NM

Step 3:Control of 1.
By (1.7), we may write

/ (@) — F()PD(x — y)dady

=[] #a+ 0 - rPadnar
_ / /R F©Plem — 1P (t)dear

~

- FOPEP(0) — (&) — B(—¢))ds,

(3.34)

wheref and® are the Fourier transforms gfand® respectively. Now we will apply a
result from | ], which says that for a positive integrable functidncondition (L.6)
is equivalent to

(C +&)+ <I>(§ ) — 2<I>( ) = O(|¢]), uniformlyin ¢, as|¢| — 0. (3.35)

Take¢ = 0 in (3.35 and note that is bounded, we see that there exists a numerical
constant” which only depends of®, such that

20(0) — B(£) — B(—¢) < C|¢], forall € € R.
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Substitue this inequality into the estimaB34), we obtain
1) < ¢ | lelfe) P
R

Step 4: Construction ofp,,.
Recall the definition ob,, in (3.33. Let £ > n be large enough such that for any
[t| < NME~!, we have
le?™ — 1] < 6,,.

We claim that there exists a non-negative even functipne C2°(R) supported in a
(1)-neighbourhood of, such that

/ 4u(€)d = 1 and / €[ (€)%dE < (3.36)

10Cn”

Indeed, since the funCt|0|?WX|§|<1/k is not integrable, we can easily construct a
Schwartz function),, such that

1

This last pointwise inequality implies thaipp(¢,) C [-1/k,1/k] and

[ teun(eriae < (suplelon©) - [ vnlerie < i

on(z) = Pulz) = / (€)™ e,

Theny, € L (R), ¢,(0) = 1 and|¢,(z)| < 1. Moreover, since),, is an even real-valued
function, ¢, is real-valued. By construction, we have

Xje|<i/k, foranyé € R.

Now set

2) < On(EPde < —.

ien) < C [ I€lRuOFds < -

Moreover, by our choice of, we know that if|¢| < k~! and|z| < NM, then we have
|€i27rx£ -1 | S NM,

[on(a) = 1 = lenla) = a1 £ [ 1627 = 1] Ol
R
:/ |27 — 1|9 (€)]dE < 6, <m™*
|€|<k—1

By Step 2, the above inequality implies thaty, ) < 10% It is readily seen that we also
havel;(¢,) < 1+-,i = 2,3, hence

4
VarPK( QOn SZ Spn <

This completes the proof of the proposition. O
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Remark3.1 The construction in3.36) relies heavily on the non-integrability ?gl in any
neighbourhood of the origin. Indeed, given a positive fiorct(¢),

([ atorac) i { [[at@uteac s  posiive and | vie)as =1},

with the understanding that the left hand side equals ta:(if ! is not integrable.
Now we can prove Theorem4. Our proof follows the line of that of ;F°, Thm. 6.1].
Proof of Theoremi..4. Let B C R be any bounded measurable subset. Chddse 0

large enough such th& C [—R, R]. Let ¢, be a sequence of Schwartz functions con-
structed as in Lemma 3 We have

Tlen)(X) = Z on(x)sgn(z) + Z on(x)sgn(x) =: I(n) + I1(n).
2EXNB 2EX\B
First note that

1(n) = > sen(@)lh < Epye Y 11— pule)lxa(@)

rzeXNB reX

< sup \1—<pn(x)\-/K(x,x)dx,
B

z€[—R,R)]

we have, passing to a subsequence if necessary,

I(n) ——— #prr, — #5rr_- (3.37)

P i -almost surely

By construction]im,, ., Varp, (T[¢,]) = 0, passing to a subsequence if necessary, we
have

I(n) + II(n) — Ep, T[p,] ——2— 0. (3.38)

P i -almost surely

Combining @.37) and (.39, for Px-almost every configuratioX € Conf(R), we get
#prr, (X) — #pr_(X) = nh_{lolo (Ep Tlpn] — 11(n)(X)).

Since all the functionEp, T'[,| — 11(n) areJr g-measurable, thE x-almost sure limit

function#prr, —#p5rr_ IS ?fgf\(B-measurable. The proof of Theordmlis complete. [

3.2 Proof of Theorem A

Following | , Thm. 5.3], wher, 2’ are fixed, we denote the Whittaker kert€] ..
simply by X. The change of variables — 1/x transforms the Whittaker kernel to the
following new kernel

Koo (19) = T K(1/2,1/3). (3.39)
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Note that the kernekK ., satisfies Conditiori. Indeed, it is known inf ] that the
Whittaker kernelX is such that the operatofd X P, and P_XP_ are non-negative and
for any subsetg\, A, both with positive distance from the origin such tigt ¢ R, and
Ay C R_, the operatorga, Kxa, (i = 1,2) are in trace-class, and the operatar, X x a,

is Hilbert-Schmidt. Moreover the operator

UAC::sgn-UCjLXRf

defines amrthogonal projectioron L?(R, dz). By the change of variable — 1/z, these
properties imply exactly that the kernkl,.,, satisfies Condition.

Lemma 3.4. Assume that the parameters:’ satisfy the conditions' = z andz € C\R.
ThenKk ., satisfies Conditior.

Proof. From the explicit formulaX.2) for the Whittaker kernel, we see that the diagonal
valueX(z, z) is given by

Kz, x) = £(P(z)Qx(lz]) — Qu(l2)P£(|]), (3.40)

the sign+ depends on the sigign(x) of the real number € R*. Since the Whittaker
function converges to 0 exponentially fast at infinity, itéadily seen that

K(z,x)dr < oo. (3.41)
|z|>d
This in turn implies the conditionl(5) for K., around the origin.
As in the proof of Bor, Prop. 4.1.3], forr > 0 near the origin, by expressing the
Whittaker functions in terms of confluent hypergeometrindiions, the function®, and
Q. can be written as

P (2) = 257 Ay(2) + 257 B (z)

L (3.42)
Q.(x) =22 As(x)+2 2 By(x)

where A;(x), B;(x),i = 1,2, are analytic in a neighbourhood of the origin. At infinity,
both functions tend to 0. Hend, andQ, are bounded o, . The fact thatP_ andQ_
are bounded o _ can be proved similarly. It follows that there exists> 0, such that

C

foranyz,y € R*, ,
|z =yl

Kz, y)| <

or, equivalently,

C

. (3.43)
|z —y|

for anyx,y R, |Know(x7y)| <
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Now fix M > 0, let§’ be a fixed number such that< ¢ < M /4. We claim that there
existsC’ > 0, such that

if |z| > M, |y| > M and|z — y| < &', then| Ko (z, )] < C". (3.44)

Indeed, by the choice of, any pair(z,y) verifying the hypothesis in3(44) satisfies
sgn(x)sgn(y) > 0. If x > 0,y > 0, then

. B ?+(%)Q+(i) — Q+(%)?+(i)
new(xay) - y— (345)

1 , /1) 1 1N, /1) 1
—‘f“(z)%(@)z*%(z)f’ﬂ(gmg)

where¢, , € (min(z,y), max(z,y)). By (3.42), it is readily seen that

P (1/z) =0(x), Q. (1/z)=0(z), asz — ooc. (3.46)

From (3.45 and (.46, it is readily seen that3(44) holds forz > 0,y > 0. Similarly, by
analyzing®P_, Q_, we also obtain3.44) for x < 0,y < 0. Combining 8.43 and (.44,
we see that the conditiod (/) in Condition2 holds for K., that is
if |2 > M, |y| > M, then|K e\ (z,y)]* < ®(z —y),
where
: c?
(1) = (C') X< + Z3 X2
is a function satisfying the required conditioh ). O

4 Balanced Palm equivalence property

Recall that for a point procegson & and a positive integet € N, the k-th correlation
measure;, of P is a positive measure aff*, which is defined by the relatior (17).

Definition 4.1. A point proces® on & is said to havdalanced Palm equivalence prop-
erty with respect to the partitiod® = & LI &, if for any positive integen € N, for
pan-almost ever®n-tuplep € & x &3 of distinct points, in other words, is a2n-tuple
of distinct points of&” with a equal number of points frod, andé&;, the Palm measure
P? is equivalent tdP.

For processes governed ByHermitian kernels, the balanced Palm equivalence prop-
erty is the natural analogue of equivalence of Palm measird®e same order for pro-
cesses with Hermitian kernels.
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4.1 Palm measures of.-processes

In this section, we will study the correlation kernels ofiRaheasures fof.-processes.

Recall the definition of.-kernels in Definitionl.1 Let x4, be the determinantal mea-
sure induced by a kernél;, = L(1+L)~!, whereL is a kernel satisfying Conditiod By
Lemmal.6, the kernelK is J-Hermitian. WhenL is fixed, we simply writeK' = K7..
Shirai-Takahashi’'s Theore 1 says that for almost evegy € R* (with respect to the
measurek (z, x)dz), the Palm measurg) is a determinantal point process with the fol-
lowing kernel:

K(z,p)K(y, p)
K(p,p)

K(z,p)K(p,y)
K(p,p)

KP(z,y) = K(z,y) — = K (z,y) — sgn(p)sgn(y)

(4.47)

Letpt > 0 andp~ < 0, our aim is to describe the correlation kernel of the Palmsuea
p%"7) thatis, the kernel

K®rpT) . (KPJr)If _ (Kp*)pf

More generally, we are going to describe the kerRéldefined by the formula2(20)
whenp = (pf,...p ipr,...,p,) with pf > 0andp; < 0fori = 1,...,n. While it
is easily seen thak™® is a.J-Hermitian kernel satisfying Conditioh (transformed to the
version with singularity at origin), it is a priori not cleathetherK® admits anL-kernel.
We now check that it does and that thekernel of K* also satisfies Conditiod

Definition 4.2. Givenp = (p*, p~), wherep®™ > 0, p~ < 0, we define doundedunction

onR* by the formula

+ —
r—p r—p
gp(z) = z—p- X{z>0} + SR X{z<0}- (4.48)

More generally, it = (pf,...p " p7,...,p,;) withp > 0andp; <0Ofori=1,...,n,
we set

n + —

T —D; T —Dp;

gla) =] (m — X0+ WX{KO}) . (4.49)
=1

K3 7

Proposition 4.1. Let L be an operator satisfying Conditich If p = (p*, p~) such that
pt > 0,p” <0, then we have
KE = KgpLgp'

Corollary 4.2. Let L be an operator satisfying Conditicdh Let
p=(pl, - PniPLs-- D)
be a2n-tuple of real numbers such that > 0 andp, < 0fori=1,...,n,then

P
KL - KgpLgp'
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Proof. Whenp = (p;, p; ), this is just Propositiod.1. Now since the new kernel

g(p;r,p;) ('T)L('I7 y>g(p1+7p;) (y)

has a similar structure as(x, y), that is, it satisfies Conditio, we can continue our
procedure and complete the proof of the corollary. O

Proof of PropositioriL.7. Note that in Corollaryt.2, we obtaink} = K, .,,. However,
by the special form of., we have (see Lemmallbelow for this fact)

gpLgp = prfm

whereg, and f, are functions defined in4(49 and (L.11) respectively. Hence we obtain
that

1y, = gL,
O

Lemma 4.3. Letp € R*. Then the kernek?(z, y) defined in(4.47) is J-Hermitian and
KP is an orthogonal projection. Moreover,jif- > 0, then

Ran(l?l’\*) = Ran(f() O Csgn(-)K (-, p");

if p~ <0, then
Ran(K? ) = Ran(K) ® Csgn(-)K (-, p).

Proof. Itis clear that the kernek”(z, y) is J-Hermitian. By Lemma3.1, we see that, for
anyp € R*, the following kernel

K(z,p)K(y, p)
K(p,p)

induces the orthogonal projection onto the one dimensigutadpac€sgn(-) K (-, p). Let
us denote this one dimensional projection agaird oy definition, it is easy to see that

lp(, y) = sgn(x)sgn(y)

~

K=K — sgn(p)l,.

That is, ifp* > 0, thenk»™ = K — »+ and ifp™ <0, thenk? = K + (,~. Thus for
proving Lemma4.3 we only need to show that

sgn(-)K (-, pT) € Ran(K) andsgn(-)K(-,p~) € Ran(K)™ . (4.50)

The first relation in4.50) is equivalent to

/RK(% y)sgu(y) K (y,p")dy + xr_(2)K (z,p*) = K(z,p%); (4.51)
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while the second is equivalent to
/ K(z,y)sgn(y) K (y,p")dy + xz_(x) K (z,p~) = 0. (4.52)
R

By usmg the fact thak’® = K and comparing all the block coefficients of the operator
K? and K, both written in the block form as iIB(25, we get

K. =K —-K, K.

K _=K —-K ,K,_
K. K. =K. K__
K, K.,=K _K_,

The above first identity impliesi(51) for x > 0; the second one implied (62 for = < 0;
the third one implies4.52 for > 0 and the last one implieg(51) for x < 0. 0

),
),

Remark4.1 AIthough[A{ is not the reproducing kernel of the Hilbert subspRea(
the spaceRan(f() still possesses certain reproducing feature. Indeed, & Ran(
then we have the following identity of functions irf (R):

K
K

X (7 / K(z,y)p(y)dy = / sgu(y) K (y, ©)e(y)dy
(p,sen() K (-, 2)) r2w).-
Now we can apply Lemma.3to K*" andK* respectively and get the following
Proposition 4.4. Letp = (p™,p~) withp* > 0,p~ < 0, then
Ran(K%) = (Ran(K) & Csgn(-)K (7)) & Csgn(-)K”" (-,p") (4.53)

<Ran( )& Csgn () K (-, p_)> © Csgn(-)K? (-, p"). (4.54)

We also need an explicit description of subspacel?naaf{[/(z). It is convenient for us
to introduce a general condition on the kerhel

Condition 4. The L-operator is assumed to have the following block form witspesct
to the decompositiof?(R*, dx) = L*(R., dz) & L*(R_, dx):
0o Vv
L= { V0 } , (4.55)

whereV : L?(R_) — L?*(R,) is a bounded linear operator. Moreover, assume that the
operatorV’ is such that for any > 0, the operators ..,V andV x(_, ) are Hilbert-
Schmidt.
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L-kernels satisfying Conditiofhappear naturally in many contexts, see e 0(.

Proposition 4.5([ ], Prop. 5. 1) Let L be an operator as in Conditio#, then the
operatorf{L is an orthogonal projection, the rangﬁm(f(L) and its orthogonal comple-
ment are given by

Ran(K;) = {Vh @®h:he (R, dx)}; (4.56)
Ran(K;)* = {f @ (—Vf): f e L2(]R+,dx)}. (4.57)
Remarkd.2 Let f : R* — C be a bounded function, then
_ 0 Ixe VIixe | _ 0 [V
Thr = [ —fe Ve, 0 ] - [ SFVIE 0 ] |

Proof of Propositiont.1. SinceK <+ Kisa bijection, to showk} = K, ,, is equiva-
lent to show the coincidence of two orthogonal projections:

K} = Kg,14,- (4.58)
By Propositiond.5and Remarld.2, we have
Ran(K,, 1, ) = {g;V(gp_h) Shihe LZ(R_,dx)}.

Hence to show the identity}(59), it suffices to show the coincidence of the following two
subspaces

Ran(K}) = (Ran(K%) © Csgn() K1 (,p")) @ Csgn()KE ()
and

Ran(K,, 1,,) = {ggwgp—h) Shihe L?(R_,dx)}. (4.59)

—

Steplif o e Ran(I/{\L) © Csgn(-)KL(-,pT), thenp € Ran(Ky, L, ).

Recall that
Ran(K;) = {Vh Sh:he LZ(R_,dx)}.

Hence the hypothesis € Ran(l/(\L) © Csgn(-)K (-, p") is equivalent to the existence of
a functioinh € L*(R_) such that

o=nh+V(h)andy L sgn(-)Kp(-,p").

By Remark4.1, this last condition can be translated to the conditigqi)(p*) = 0, that

IS
s [ A,
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SinceA is assumed to have full support, the §ptc R* : A(p) = 0} is negligible, hence
we may assume that(p*) # 0. Thus we have

/ A(y)h(y)dy _o

Pty
Now we want to show that there exigts € L?(R_) such that
h+V(h) = hi+ g, V(hg, ).
The above identity is equivalent to
h=hy andV (h) = g, V(hg, ).

Hence what we need to show is: once we h&ve)(p™) = 0, then

r—pt_ x—p
Vi) =T V()

The above assertion is equivalent to

L yiny@) = vt

h)(2). (4.60)

xr—pt r—pt

If we denotek = -, then the identity4.60) is equivalent to
[z, V]k = 0, (4.61)

where[z, V] is the commutator between the multiplicatierand’. Since the commuta-
tor [z, V] has a kernel given by the formula, (z)A(x)A(y)xr_(v), hence the identity
(4.61) can be checked as follows:

(12 VI)@) = xe, (@A) [ Al = xa, (o) AG) [ 228y o,

Step 2 If ¢ = sgn(-)K?' (-,p~), thenyp € Ran(K,, 1, ).

By (4.59, what we need to show is that

_r—pt o (z—p
e, () = T (L2 pone ) (@) (4.62)

This is in turn equivalent to the following assertion: for- 0, we have

+ + — D Lt
K7 o) =2y (22 ) @) (.69
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By aresultin [ , Section II], under ConditioB, the kernelK (x, y) = K (x,y)
has the following integrable form

Fy(2)G1(y) + Fo(2)Ga(y)

K —
(z,9) pr— ,
where
(1 + L)Fl == A+
(1 + L)FQ == A_
(1+ LGy = A"

(14 L*)Gy = AT
Note thatZ, = V — V*, and sincé/, V* has range in.?(R, ), L>(R_) respectively, the
above equation system is equivalent to

(F1). —V*F; =0, (F1)y +VF = A"
(F2>_ —V*Fg :A y (F2>++VF2 —0 (4 64)
(G1)-+V*Gi=A", (G1)y —VG; =0 '
(Go)- +V*Gy =0, (Gy)y —VGy=A"
Moreover, we have
From this, by I'Hopital’s rule, we have
K(z,x) = F{(2)G1(z) + Fy(x)Ga(z). (4.66)

Forz > 0 andxz # p*, we have

o () 9= [ e
1 / (A‘(y)Fl(y) B A‘(y)Fl(y)) dy

r—pt Jr r—y Pr—y
1 [(VFl)(f) _ (VFl)(PJF)}
xr—pt

At(z) At(p*)

1 <A+(SC) —Fi(r) AT - Fl(p+)>
z—pt A"‘(:L’) A+(p+)

_ 1 <—F1($) n Fi(p ))

r—pt\At(x)  At(p*)

Similarly, if z > 0 andx # p™, then

1 Fy _ 1 ((VE)@) (VR
mo" (o) 0= - o
_ 1 =F(z) | B(pY)

T ( A (o) A+(p+)>'
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We thus get

P - A — i _K( +7 _)
V(i_;K(:&p )) ($):—i_i+K(x,p )+pg;_pp+ Af(pf) A*(z). (4.67)

Now note that we have

y—p _rx—p 1 x—p 1 pr—p 1
(—y)y—p")? (@—-pae—y (@-—p")2p-—-—y z—p" (p"—y)?
(4.68)
Givenf € L*(R_, dr), we have
AWfy) ,  d A Wrfly) , —  d V()
/7(33_@2 d =0 R,ix—y dy = d:);{AJF}(x)' (4.69)

Applying identities £.68 and @.69 and by denoting
H(z) = Fi(2)Gi(p") + Fa(2)Ga(p"),

we get

V(K@) @ [ L),
A*(x) _ (z—y)y—pT)?
T —p- / A‘(yzH(y)dy T —p- /R A‘(y)H(y)dy

(x—=p")2Jg. x—y (x —pt)? pt—vy
ptop [ AT(WH©)
+Jj—p+ / (p+_y)2 dy
v—p [V(H)(@) VH)E)) _pr—p d [VH)], 4
—(x—p*)z[ At (z) At (pt) } T —pt dr [ A+ } »")

By (4.64), for x > 0, we have
Fl(x At(z)—-F
% (VXE)) (z) = (z) (/)4+(:E
Fl(x)AT (2)—F
% (VXP)) (SL’) _ 5(x) (21+(m2
Keeping in mind that the identitieg (65 and @.66 hold, we obtain

pt—p K(p*,p")
r—pt At(pt)

)iz At (@)

=~

x
2
) At ()
2

~

AT (z). (4.70)

V(S LK) @) = - Tk ) +

Combining identities4.67) and @.70), we get

v (E2 [t ) o) - Ko K70 ) 0 o
— _i :z; {K(p+,p+)K(:L’,p_) — K(w*)K(p*,p‘)}-
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Since
K(p*,p")K? (z,p7) = K(p*,p")K(z,p") = K(p*,p") K (z,p"),
the identities4.63 and @.71) are equivalent. Thus we complete the proof of Step 2.

Remark4.3. Denote

r—p _T—=p pt+ _

() =

then we can show that the identit§.62) is equivalent ta), = K (¢), which is in turn
equivalentta) = K (1). Hence in Step 2, we in fact proved that

P + - -
; _p+sgn(~)Kf (-,p7) € Ran(K7).

Step 3:Now we want to prove thdﬁan(ff(\i) D Ran(m) , this is equivalent to

—_—

Ran(K?)* C Ran(K,, 1, )" 4.72)
By using ¢.54), we have
Ran(K})* = (Ran(Ky)" © Csgn() K1 (- p7)) & Csgn() KL (p7).
From (4.57), we know that
Ran(Kp)" = {fie (-V'f): fi € LRy, do) },
Ran(Rpig)* = {2 ® (=g, V(55 f2)) 1 2 € LRy do) }.

Now after switching the rdles df?(R_, dr) andL?*(R ., dx); the kerneld/ and—V*; the

pairs(p*,p~) and(p—,pT); the functions% and ;:Z;; and also the pairs of vectors

(sen() K (-, p*), sen() K2 (-p7) and (sgn(-) KL (-, p), sen(-)K% (,p")), we arrive
exactly at the same situation as above in proviag(K}) C Ran(Ky,,,). Hence we
may obtain 4.72) by repeating the same arguments in Step 1 and Step 2. ]

4.2 Sufficient condition for equivalence of twoL-processes

In this section, we formulate a sufficient condition for tweprocesses to be equivalent
on the level of their -kernels.

Lemma 4.6. Let L be an operator satisfying Conditich Then the operatok’;, is a J-
self-adjoint operator satisfying all the conditions of Bnem1.3. In particular, K, is the
correlation kernel of a determinantal point processlidh
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Lemma 4.7. Let L be an operator satisfying Conditioch Letg : R — R be a bounded
Borel function. Then the operatgtl.g satisfies also ConditioA. Moreover, the operator
Ky, = gLg(1+ gLg)~" is given by

Koy =gKL(1+ (¢ — 1)KL 'g. (4.73)

Condition 5. Assume thatl is a kernel given as in4(55 such that the operatdr :
L*(R_) — L?*(R,) satisfying the following condition: for any > 0, the operators
X(g,oo)v, VX(_OQ_a), X(Q,a)l’v andVyX(_&O) are Hilbert-Schmidt.

Lemma 4.8. An L-kernel satisfying Conditiofi is an L-kernel satisfying ConditioB.

Recall that we denote by, the determinantal point process B whose correlation
kernel isK, = L(1 + L)7.

Theorem 4.9. Let L be a kernel satisfying Conditioh Assume thag is a bounded real
function such thatg(z) — 1| < CJz| and there exists € (0, 1) such that the subset
{z € R*: |g(x) — 1| > £} has a positive distance frofn Then the following limit

Sillog ¢?](X) = lim > logg(x)’ =B, | D logg(x)®
T peX 2|26 2eX,[z|>5

exists foru-almost every configuratioX € Conf(R*). Moreover, we have
exp(Sillog g°]) € L' (Conf(R"), puz)

and we have _
exp(Sp[log g°] (X))

E,, | exp(SL[log ¢?))

fgrg(dX) = pr(dX).

4.3 Remarks on Conditions3, 4, 5 and Proofs of Lemmas4.6, 4.7, 4.8

Remark4.4. Let L be an operator as in Conditiah) then K ;, has the following block
form:

VV*A1+VvvHTt v+ vrv)TL
-V*A+VVvHt vVV(I4+Vvrv)TE

K =

(4.74)

Remark4.5. By the block form £.74) of the operatot;, and the following elementary
order inequalities for positive operators

1

va* <VVF(A+VVH)TL <V
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and
1

L+ [[V?
we may formulate Conditiob in terms of the kernek(;, as follows: for any > 0, we
have

VYV S VVIA+VV)TES VY,

Kp(z,z)dr < co and 2? Ky (v, v)dr < oo. (4.75)
|z|>e |z|<e
In particular, by § ) Thm. 4], the first inequality in4.75 implies that the relation
F#Rr\(—,0)(X) < 00 (4.76)

holds forPy, -almost every configuratioX € Conf(R*).
Remark4.6. Finite rank perturbation of the kerné{; will not affect the inequalities
(4.79.

Remarkd.7. In Condition3, we require the boundednessioand hence oV . In general,
an operato#” given by a kernel

iy = 2120

such thatd € L?(R*, dx), is not necessarily bounded. See e.g., Propositions 2.2.8nd
in [Olg].

Remark4.8. The operator norm of the operatar, given in @.74) satisfies
K]l < 1. (4.77)

Indeed, by Propositiod.5, the operatork;, is J-self-adjoint andK is an orthogonal
projection, by [ , Prop. 7], we have| K| < 1. We shall exclude the possibility
| K| = 1. Indeed, if this were the case (i.4L ;| = 1), then by [ , Prop. 8], we

would get

VV*(1+ VYt 0
= 1. (4.78)
0 V*V(1+ VvVt
However, by functional calculus, we have
IVV*A+VVH T = V'V +VV) = ﬂ <1
L+ VI

Hence ¢.79 is not valid. This completes the proof &f.77).

We will often use
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Remark4.9. Let a,b be two bounded linear operator on a Hilbert space. ¥ ab is
invertible, then so ig + ba. We have

a(l+0ba)™" = (14 ab) 'a. (4.79)

Proof of Lemmat.8. Let L be a kernel satisfying Conditiod Lets > 0. The simple

estimate:
dy / dx / dy)

max / dx/
shows that the operators with the kernels

< IATI3A 3
52
A @A) AT @A)
r—y r—y

AT (2)A™ (y) At (z )
xT—y xT—y

X(a,oo)(«r) X(—oo,—a)(y)

are Hilbert-Schmidt.
The inequality:

max(/ wf

< [A*IIRN A7

(y)

dy,/ da:/

2
dy)
implies thaty o..yzV andVyx o are also Hilbert-Schmidt.
The Lemmat.8is proved completely. O

Proof of Lemmat.6. By Proposition4.5, the operator[A(L is self-adjoint, hencdy, is
J-self-adjoint. By Remark .4, the operator$’, K, P, and P_K P_ are non-negative.

Let A, A, be compact subsets &* such thatA; ¢ R, andA, € R_. We now
check that the operatonga, K1 xa,(i = 1,2) are in trace-class. Let us verify this for
1 = 1. SinceV'V* is positive, we have

VV*A+ VvVl <vvE,
it follows that
0 < xa Krxa, = xa, VV* (1 +VV ) xa, < xa,VV x4,

The assumption thaga, V' is a Hilbert-Schmidt operator now implies that, K, xa, IS
a trace-class operator. The caseé ef 2 is similar.
Finally, let us verify thatyn, K1 xa, iS a Hilbert-Schmidt operator. Indeed, we have

Yoo Krxa, = —xa, V(L + VV)  ya, = —xa, (1 + VV) 'V ya,.
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Since the space of Hilbert-Schmidt operators is an ideatefigebraZ (L?(R)) of all

bouned linear operators, the assumption Hat,, = (xa,V)* is a Hilbert-Schmidt

operator implies thata, K. xa, iS a Hilbert-Schmidt operator. The proof is complete.
L

Proof of Lemmat.7. We have
0 axr,. Vgxe_
—gxr_ V7 gXr, 0

Sinceg is bounded, the operatgtyr, V gxr_ satisfies all the conditions in Conditigh
imposed on the operatdf.
Seta = gandb = gK(1 — K;)~!. The

gLg =

14+ gLg=1+gK.(1-Kz)'g=1+ba

is invertible. By Remark!.9, the operatot +ab = 1+ ¢*K (1 — K1)~ ! is also invertible.
The identity ¢.79 now yields

Korg=gK (1 — K1) 'g(1+gKL(1—Kp)~'g)™"
=gK,(1-K) "1+ K, (1-K) ")y

=gK.(1 - K, +¢°Kr)™ g,

which is the desired identity. The proof is complete. O

4.4 A preliminary version of Theorem 4.9

As usual, given a functioh defined orR*, we define the multiplicative functional[h) :
Conf(R*) — R by the following formula

U[h)(X) = [] h(z), X € Conf(R"), (4.80)

zeX

provided the right-hand side converges absolutely.

Proposition 4.10. Let L be an operator satisfying Conditioh If ¢ is a bounded real
function defined ofiR* such thatsupp(g* — 1) has a positive distance from the origin.
Then )
HgLg = \Il[g ] CHL-
E..(Y]g%)
Proof. By general theory on determinantal measures, it sufficegdoepthat for any
continuous real functioh such thasupp(h — 1) has a positive distance from the origin,

we have
B, (W) E,, (Uhe?)
W) ="E W) B, ) @8
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Fix such a functiorh, setA = supp(h — 1) Usupp(g? — 1). ThenA also has a positive
distance from the origin. Obviouslyupp(hg? — 1) C A. By definition of determinantal
point process and Theorem/, we have

E,,.,(V[h]) =det(1 + (h — 1)xa - Kgrg - Xa);
E,, (¥[hg’]) = det(1 + (hg® — 1)xa - K- xa);
E,, (V]g?]) = det(1 + (¢* — D)xa - KL - xa)-

Recall that by by Lemmad.7, the operatois (g) satisfies all the conditions of Theorem
1.3and is given byK,;, = g K1 (1+ (¢ — 1)K1)"'g. By (2.29), we have

K2 =ya KL xa € Lp(L2(R)) C ZA(LA(R)).
By Remark ¢.9), we get

Xa - Koy xa = gxaKr(1+ (¢* — 1)KL) 'xag
= gxa Ky [(1 + Xxa

Observe that we can write

Kp(1+ (¢ - 1)Kp)™
=|Kp(1+ (- DKD)+ K21 — @)K |(1+ (¢° = DKR) ™!
=Kp + Kp(1— ¢)Kp(1+ (¢ = 1)KD) ™,

then by Holder inequality, we have
IK2 (1= g ) K2l < IKR1all(1 = g*) K2 ll2 < llg” = UlwIK2 I < o0,
that is, the operatak 2 (1 — ¢>) K2 (1 + (g% — 1) K2)~lis in trace-class. It follows that
Kp(1+(¢* = DED) ™" € Lp(L*(R)).
Thus we have

det(1 + (h —1)xaKyrgxa) = det(1+ (h = 1)gKp (1 + (¢° = DKL) 'g)
=det(1 4 (h — 1)g*K&(1 + (¢* — DK™,

An application of the identity

L+ (h =D KE(1+ (9 = DEE) ™ = [1+ (hg = DEE] (1 + (¢ — DEE) ™
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yields that

det(1 + (hg* — 1)K%)

det(1+ (h — 1)xaKyrgxa) = det(1+ (g2 —1)K§)
L

This shows the desired identit.81). The proof of Propositiod.10is complete. [
The following lemma will be useful for us.
Lemma 4.11. Assume thaL is an operator satisfying Conditiof

e Leta : R* — C be any measurable function with non-zero constant modiihen
aLa~' induces a determinantal measurg;, 1 = Px  _,andpara—1 = pir.

e Let )\ # 0 be a numerical constant and let be the function defined by
e = AXr, + A ye . (4.83)
ThenCALC)\ = L.

Proof. By assumptior = a7y with a = |«| > 0 a numerical constant anda measurable
function with values in the unit circle. We shall see thdtn~! satisfies also Conditiof
Indeed,

_ [ 0 ytVA~
—(y'VyT)r 0

Hence the determinantal measutg -: is well-defined. The coincidence gpf,; -1 and
Lz is an easy consequence of the fact thigf,, + = a Ko~ ! and

+ _
oLl — 0 YV }

VLIV = _,y—v*,7+ O

det(a(z:) Kp (2, z;)a(r;) ™ icijen = det(Kp (2, 25))1<ij<n

The second assertion is an easy consequence of the folladéntty

oan Lol A=l 0]

4.5 Regularization of additive and multiplicative functionals

45.1 Additive functionals

Assume now thalL is a kernel satisfying Conditioh Recall that we set

Hr = ]P)KL‘
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Let f : R* — C be a Borel function. Then we write

TIFI(X) = S[fF)X) = > sen(x) f (=), (4.84)

provided the right hand side converges absolutely, otlseni| f] is not defined at the
configurationX.
If T[f] is pr-almost surely defined arifl[f] € L, (Conf(R*), 1), then we set

Tolf]:= T = Eu (T1F)- (4.85)

Following the idea inf ], we will now provide a sufficient condition such tHaf [ f]
can be defined even whérjf] is not. Set

1

3 /1) = PP KL, )Pdady, (4.86)

”VL(f):Q

Note that for any\ € C, we have?,(f + \) = 7.(f). Note also that
N [ 1F@PKe.2)d. (4.87)
R
By Lemma3.2, if T[f] € Ly(Conf(R*), ur), then?.(f) < oo and

Vary,, (T[f]) = By, [TLLfI* = 72(f). (4.88)

Definition 4.3. Let .45(L) be the linear space of Borel functioris: R* — C such that
there exist > 0, depending oryf, so that

supp(f) C{z €R: |z| > ¢} and / |f(2)|PKL(z, x)dr < co.
R

Definition 4.4. Let 4" (L) be the linear space of Borel functiofis R* — C such that

=5 [ 1) - PR ity <0 489)
/ |f(z) 2K (z,x)dx < oo, forall e > 0; (4.90)
ja] >
lim // ) P| K1 (2, y)[Pdedy = 0. (4.91)
=0 Jjal<e, \y|>a

We endow the linear spacé’ (L) with a Hilbert space structuré ;) by the formula

v (fr9) = =gl = V7L = 9)-
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Remark4.10 If f € Ay(L), then by Cauchy-Buniakovsky-Schwarz inequality and the
first inequality in .75, we have

AIf(@I&(%CE)dx < (/RIf(x)lzKL(fU,x)d%/supp(f) KL(LCC)dfC) " < 00,

This means thaf’[f] € L;(Conf(R*),ur), henceT[f] is well-defined by formula
(4.895. Moreover, by the relationg!(87) and ¢.88, we actually have

TL[f] € LQ(COHf(R*), ,UL)
Proposition 4.12. We have the inclusion
(L) C A (L).

Moreover, 4;,(L) is dense in4(L). More precisely, iff is a function in.4"(L), then for
anye > 0, the truncated functioff xg\ (- ) iS in .44(L) and we have

lim 77 (fXRr\(-ce) — f) = 0. (4.92)

e—0t

Proof. The inclusiontq(L) C A7 (L) follows from their definitions and the following
inequality

/ / ) PIK L (2, ) Pdady < / (@) 2K, )da,
|| <e, \y|>€ |z|<e
By definition of _4"(L), we havef xg\(—c.) € Ao(L). Since

V(e — f) / FXea (@) = e () PIKL (2, ) [Pddy

/ / @)K (2, y)Pdady + / / (2)P| Koz, y)Pddy
|z|<e, \y|<€ |z|<e, |y\>€
/ / Y)PIK L (z, y)Pdedy

|z|>e, |y\<a

- ) — fy)P|KL(z,y) Pdady + 2 2) 2| KL (z, y)|*dady.
/] |§av|y\ga'f” PP Pdady+2 [ @K ) Py

By the assumptiorfz(f) < oo and the relation4.91), we get the desired relatiod.02).
]

Proposition 4.13. The isometric embedding

T : (L) — Lo(Conf(R*), uy)
f = TL[f]

extends uniquely to an isometric embeddifig L) < Lo(Conf(R*), pur.).
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Definition 4.5. Given a functionf € .4(L), by slightly abusing the notation, we de-
note by7T';[f] the image off under the embedding mag” (L) — Lo(Conf(R*), uz)

in Propositior4.13 We will call T'.[f] the normalized twisted additive functional corre-
sponding tof and ;..

Remarkd.11 Forall f € 4(L), we haveE,,, (T[f]) = 0.

Remark4.12 If f € .47(L), then up to passing to a sequengdending to zero if nec-
essary, we may write the followingpintwiserelation: foru,-almost every configuration
X € Conf(R"),

Tr[f)(X) = lim( Y. sen(@)f(z) — B, Y Sgn(x)f(x))- (4.93)

e—0t
zeX,|z|>e zeX, |z|>e

4.5.2 Multiplicative functionals

Notation. Let f : R* — C be a measurable function, denote

ff=fxr.andf~ = fxr_.

If the essential suppostipp(f~) of the functionf~ is the whole negative semi-axis_,
then we may define

Fi@) = ) + (f (@) (4.94)

Definition 4.6. Given a functiong : R* — [0, 00] such that{z € R* : g(z) = 0} is
Lebesgue negligible anidg g € .4"(L), then we set

U, [g] = exp(T[log(g")]),

where by definition4.94), ¢ (z) := g(z)xr, (¥)+g(x) *xr_(z). If moreoverE,,, U, [g]
is finite, then we define

= . CI}L[Q]
Yall = EHL{IV]L[Q].

Remark4.13 If g is a function such thdbg g € .4°(L), thenE,,, Ulg] € [1, oc]. Indeed,
by Jensen’s inequality and Rematk.1, we have

E,, U1lg] = E,, exp(Tr[log(g")]) > exp(E,, (T1logg")) = 1. (4.95)

2

The formalism of regularized multiplicative functiondil,[g] now allows us state the
following
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Theorem 4.14.Letg : R* — [0,00) be a non-negative bounded function. Assume that
there exists € (0,1) such thatt. = {x € R* : |g(x)? — 1] > ¢} has a positive distance
from the origin and

/ lg(x) — 1> K (z, 2)dx < oco. (4.96)
R

Thenlog g € A4 (L) and ¥ [g% € Li(Conf(R*), su;.). Moreover, we have

fgrg = Vilg?] - pir. (4.97)

4.6 Proof of Theorem4.14
Definition 4.7. Let .#-(L) denote the set of functionson R such that
(1) 0 < infr g < supg g < 00;
@) Jlo(x) = 1PEL(x,2)dr < co.
Recall that by definition4.94), to a functiong, we asigng" in the following way:
9" () = g(@)xr. (2) + ()" xr_(2).

Proposition 4.15. Let g € .#,(L). Thenlog g andlog(g") are functions in4"(L). In
particular, the functionall’ , [g] = exp(T . [log(g")]) is well-defined. Moreover, we have

fgrg = Vilg?] - pir. (4.98)

We postpone its proof to the next section.

Now we are in a position to prove Theoreni4 But first, let us note that for a function
g as in Propositiod. 10 the regularized multiplicative functional, [¢*] defined as above
is also expressed by [¢%] = C'¥[g? for a certain constard > 0.

Proof of Theorem#.14 Lete € (0,1) be such thafz € R* : |g(z) — 1] > ¢} has a
positive distance from the origin. Set, g, to be two positive functions determined by

91 = (9 — 1) X{werm|g(z)-1)<} + 1. (4.99)

92 = (9 — D) X{eereijg@)—1/>e} + 1. (4.100)

By definition,g = g1g2. Note thatl — ¢ < infg g1 < supg g1 < 1 + €. This combining
with assumption4.96) shows that the functiop; is in .#>(L). Hence by Proposition
4.15 we have

HgiLg1 = ﬁlx[gf] CHL- (4101)
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Now sincesupp(g, — 1) has a positive distance from the origin ajplly = g2(g1Lg1) g2,
by Proposition4.10 we have

Ug3]
== . : 4.102
HgLg Eugngl [g%] gy Lgy ( )
Combining ¢.101) and ¢.102, we get
‘I’[QS] T2
fgrg = —————— W lgi] - pr. (4.103)
T

Since

W[g5]

= Urlgi] = C1UL[g3] - Colp[gf] = C1CaW[gig3] = C1Ca W [g7),
Ellzgl Lg, ‘11[92]

and
/0102‘I’L[92]dML =1,
we get
U[g3] T 021 — T (2
m Vilgr] = Vilg],
hence we complete the proof of the desired relatiba?). O

4.7 Proof of Proposition4.15

Let us endow#, (L) with a metricd 4,1y by setting

A1) (91, G2) = \//]R 91(x) — go(x)|PK L (x, x)dz.

By definition, .#,(L) is a semigroup under pointwise multiplication. Clearlygifs a
function in.#,(L), then so ig}".
We shall first prove the following

Lemma 4.16.Letg € .#>(L). Thenlog g andlog(g") are functions in4"(L).

Proof of Lemmat.16 Assume thaty € .#>(L). Then there exist,C > 0 such that
¢ < g(x) < C. The boundedness of the functitsg ¢ combining with the assumption
(4.79 yields the inequality4.90 for log g.

Now since the functionlogt — (¢t — 1)|/(t — 1)? is bounded on the intervét, C1,
there exist€” > 0 such that

[log g(x) — (g(x) — 1) < C'(g(z) — 1)*. (4.104)
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By takingC"” = 1 4+ C' max(|C — 1], |c — 1|), we have
| log g(x)| < C”"|g(x) — 1. (4.105)

It follows that
/ |log g(z) 2K (x, 2)dx < (C’")Z/ lg(z) — 1°K (2, 2)dz < oco.
R R
Hence by applying4.87), we have?; (log g) < oo. Following from @.109, we also have

iimsup [ [logg(a) P Ko, g) Py
|z|<e,|ly|>e

e—0t

< lim (C") 2// — 1P|K (2, y)|*dxdy
|z|<e, \y|>€

a—)O+

< lim (C")? / lg(x) — 12K (2, 2)dx = 0.
|z|<e

e—0t

This completes the proof thadg g € .47 (L). The same argument fasg(g") sinceg €
(L) implies thatg” € #5(L). O

Proposition 4.17.1f g € .#,(L), thenW,[g] € Ly(Conf(R*), 11,). Moreover, the map-
pings
g — Vrlglandg — W;[g]

are both continuous from#(L) to L, (Conf (R*), 11.).

Proof of Propositiont.15 Let F,, C R* be a sequence of compact subsets exhaugting
and set

g =1+ (g—1)xg,.

Clearly, we have? = 1+ (¢> — 1)xg, and

g, — g~ (4.1006)

Claim: K (g,) converges tdi(g) in the space of locally?;,-operators. Indeed, by
the block forms ofK (g,) and K'(g) as in @.74), we need to show that for any compact
subset\;, A, of R* such thatA; ¢ R, andA, C R_, we have

X2 9nVV (1 + 9.V V*0,) " XA, Xa gVVEg(1+ gVV*g) "xay;

(4.107)

in trace class

X, VIRV (L 4+V*2V) ' ay ———— xa, VPV (1 +V*¢*V) " xa,;  (4.108)

in trace class
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Xar V(L +V*2V) ™ xa, ——— xa, gV (1 + V*g* V) " xa,. (4.109)

in trace class

Let us prove the first relationt(107), the proof of second and third relations are similar
to that of the first one. First of alll,

n—oo n— o0

gnv s.o.t. gv andv*gn s.o.t. v*g7

where s.o.t. stands for the strong operator topology. Hemckave

n—oo

V*QTZLV t V*g2v

by continuity of the inverse mapping with respect to stropgrator topology (cf. e.g.
[ , Lem. 3.2.]), we have

(1+V*g2V)™ 2225 (1 + V¥g?V) L

s.o.t.

Note also that we have

—00
y 7 V.
XaInY Hivertschmidr V219

Combining the above facts and {73 Thm. 1], we obtain that

X2, gnV (L4 VEgaV) ™ =2y y gV (L4 VEg?V)
Hilbert-Schmidt

Now by using the following identity
X192V V7 Gu (14 0.V V ) " Xy = X, 92V (1 + V72 V) 'V gaxa,

and the triangular inequalities, we conclude the proof efdésired relation4(107).
As a consequence of our claim, we have the weak convergenite glequence of
measureg.,, 1., to the measurg,;,. By Proposition4.10, we also have

Lgnrg, = Vilg2] - pir-

By Proposition4.17and ¢.106, ¥ [¢2] converges tal [¢?] in Li(Conf(R*), uz). As a
consequence, we get the desired relatiofg). O

The rest of this section is devoted to the proof of Propasuid 7.

Lemma 4.18.Let f : R* — C be a Borel function such that, | f(z)|* K (z, z)dz < oc.
Thenf K, f is a Hilbert-Schmidt operator and

IFELFIZ < / (@) K (z, 2)d.
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Proof. We have

VKL = / / @)1 () PIK (. ) Pdady
R2

1/2 1/2
<</ f(x)A‘KL(x,y)dedy) (/ f(y)“KL(x,y)dedy)

R2 R2

= ([ 1@ Kol o) " (f \f<y>|4KL<y,y>dy)l/2

- / @) K, 2)de

The proof is complete. O

Remark4.14 By definition, if g; and g, are two functions such thabg g;,log g, €
A (L), then

U1 [g192) = U1[9:1] P 1[go)-

Lemma4.19.Foranys > 0, M > 0sothate < 1 < M, there exists a constant ,; > 0
such that ify € .#,(L) satisfies < infg g < supg g < M, then

logE,., (1T 1[g][?) < Cen / l9(x) — 12K (x, 7)dz.
R
Proof. By multiplicativity, it suffices to prove
logE,, (V.[g]) < Cenr / lg(x) — 112K (z, z)dz. (4.110)
R

Sinceg" € .,(L), by Lemma4.16 log(¢¥) € .#(L), hence by Remark.12, passing
to a sequencé, if necessary, the functiondl,,,, can be approximated pointwisely by

T(log(gv DXR\(=5,6) TlOg(g\/XR\(—é,é) +X[=5,6])"

Thus by Fatou’s lemma, it suffices to establighl(LQ in the case wherupp(g — 1) is
contained in som®& \ (—d,9). In this case, the usual multiplicative functioni|g| is
well-defined and we have

U[g]

\AI}L[Q] = exp(Sflogg] — E,, Sllogyg]) = exp(E,,, S[log g])”

Now by the very definition of determinantal point process= Py, , we have

ENLSIOgg:/Rlogg(x)K(x,x)dx
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and

E,, V[g] = det(1 + /g — 1K1\/g — 1).
By [ , Thm. 6.4], if we denotel = /g — 1K /g — 1, we have

| det(1 + A) exp(—tr(A))] < exp(5 ~Al).

Hence by Lemmd.18 we have
1
log ., W[g] < tr(A) + S [|Allz

< /R(g(x) — V)Kp(z,z)dr + % /]R lg(x) — 12K (x, z)dx.

An application of ¢.104 to the functiong yields the existence of a constaiit, > 0,
such that

/R log g() K1 (i, 2)dr — / (9(z) — 1)K, (. 2)dz

By settingC’ ,, = C- a + 3, We obtain

<Ciu / 9(2) — 12K, (x, 2)dz.
R

logEuL\TfL[g] =logE,, ¥[g] — E,, S[logg] < C’;M/ lg(x) — 1> K (x, z)dx.
R

The proof is complete. O

Lemma 4.20.Lete > 0, M > 0 be two positive numbers such thiak 1 < M. There
exists a constant’ > 0 depending om, M, such that ifg;, go € .#>(L) satisfy

e<infgy <supgy < M, e<infg, <supg, < M,
R R R R

then we have

(EHL|¢IL[91] ‘I’L[gz . V2K (z, 2)dr ) — 1.
B, (P1lonl?) »(€ [ Inte) oot )
Proof. Setg = g»/¢1. SinceV,[g1] — ¥, [go] = ¥1[g1](1 — ¥, [g]), we have
(Bup[¥elo] = Urlgo])* < By (0ifgi]P) - By (|¥2]g] = 1) (4.111)

By the inequality 4.95, we have
Euy (1WLlg) = 1) = By, (192 [g]1°) — 2B, [Wilg)l + 1 < By, ((We[g)) — 1. (4.112)
Sinces /M < infg g < supg g < M/e, by Lemmad.19 there exist€, 5, > 0, such that

B (2lo]P) < exp (Cor [ lote) ~ 1PKu(o,2)de ).
R
Hence there exists! ;, > 0, such that

E,, (|.[g]]?) < exp< sM/ g1 (z )P K (x, a:)dx) (4.113)

Substituting the inequalitiegt(1129 and @.113 into (4.117), we obtain the desired in-
equality. O
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4.8 Proof of Theorem4.9

Proof of Theoremt.9. By Theoren¥.14 it suffices to check the inequalityt.©6) under
the assumption of Theorem14 Indeed, we have

/R|g(x)—1|2KL(x,x)dx
[ @) = PRy e+ [ lgle) = 1Py o)
|x|>e |z|<e

=:1+1I

The relation/ < oo follows from the boundedness gfand the assumptior(75. For
the second term, we have

11 < 02/ 22K (2, r)dr < 0.
|z|<e
This proof of Theorend.9is complete. O

4.9 Proof of Theorem B
By [Ols, Thm. 2.4] and [ , §6], if we assume that
1

Y

z+ 2

2

then the Whittaker kernek = X, .. admits a bounded-operator as in1(.8), such that
the bounded operatdf : L*(R_) — L*(R,) has as kernel:

z+zl
T 2 _zT—y
. . / - e 2
SINTTZSINTTZ ( —y)

2 x—y

, wherez > 0,y < 0.

In other words, the.-kernel£(x,y) = L. . (z,y) of the kernelK(z,y) = X, ..(z,y) is
given by

AT (2)A(y) + A (2)A™(y)

Lew(z,y) = p— , Yy €R”, (4.114)
where
i ] / z Z/ xT
Alz) = Vsinmzsin mz |x|sgn(1‘) + e_%, wherez £ 0.
T

This functionA satisfies the following conditions:
e the support ofd in R* is the whole punctured lin@*;

o A€ C®(R)NLAR).
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Thus we have shown the following

Lemma 4.21.1f |z + /| < 1, then theL-kernelL = £, ., in (4.119) satisfies Condition
3.

Recall thatifp = (pf,...p5;p1, ..., p,), then we set

n + —

T —D; T —P;

9p(7) = | | (x . X{z>0} + - _p+X{m<o}) .
i=1 7 7

Let \ := 1Pl and recall the formulad(83: ¢y = Axr, + A7 tyr_. Set

hy(2) = ex(@)]gp(2)] = ex(@)sgn(gp(2))gp ().

That is,

n

hy(z) = H x/p:r !

i=1 z/p; —1
The proof of the following lemma is immediate.

p; —1

T
X + R X
X{z>0} x/p* _ 1X{ <0}

2

Lemma 4.22. The functiom, is bounded and there exist5> 0 such that
|y () = 1] < Cla].
Moreover, for any > 0, the subse{z € R* : |h,(z) — 1| > ¢} is away fromD.

Proof of Propositiod..2and Theorem BBy Propositior4.1, we have@ﬁvz, = lg,rq,- BY
Lemma4.11, we haveug, ey, = fg,\clg0] = Hnpeh,- Finally, by Theoremt.9 and Lemma
4.22, the following limit

Sellog h2(X) := Jim. > loghy(z)? —E,, > loghy(z)?
zeX,|z|>0 zeX,|z|>0

exists foruc-almost every configuratioX € Conf(R*). Moreover, the function
X = exp(Se[log K] (X))

isin L!(Conf(R*), i) and we have

exp(S¢[log k2] (X))

Hhyehy (AX) = E,, [exp(gf, [log h%])} |

Mg;(dX),

that is, _
exp(Sg[log hy] (X))

P (dX) = B, [exp(& [log hﬁ])}

- P, (dX).
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5 Appendix

Proof of Propositior2.2. By homogenity, we may assume, without loss of generaligt, th
|All %, <1and| Bl ¢, < 1. Write A and B in block forms:

A:|:al b1:| B:{@ b2_

a cy do

then we have i
a1a2 + blCQ CL1b2 + b1d2
c1a9 + d1€2 Clbg + d1d2 } '

as-|

By applying the operator ideal propertyb||; < |lal/1]|b]], ||ablx < ||al|2]|b|| and the
Holder inequalityl|ab||; < ||al|2||b]2, we get

|AB|| 2, =[la1as + bica|ly + |lc1by + dida||y + [[a1bz + bidal2 + [|eraz + dical|2
<lla[llazll + [[oall2llc2ll2 + [lerl[2][b2l2 + [l [|1 |2l
+ llaa[l1][b2]l + [[o1ll2lldal + llerll2llazll + (Ida I 2]l
<llarfl + oall2 + lleallz + [ldalls + [[afls + [o1]l2 + [[eall2 + [|da ]
<2([larlls + [[orll2 + [lerll2 + (ldallr) < 2.

O

Proof of Propositior2.3. The proof is easy from the definition d¥;»(L*(R)) and the
ideal property of trace-class and Hilbert-Schmidt class. O

Proof of Propositior2.4. By the relation 2.21), under the hypothesis of Propositian}
on A, B, the two operatorsi, B are both in%,(L?(R)), henceAB € #(L*(R)). By
the ideal property of#; (L*(R)), the operatof1 + A)~' AB belongs ta%; (L*(R)) and
hence belongs & 5(L*(R)). We can write

(14+A4)"'B=(1+A)"((1+A)B—-AB)=B—(1+ A)'AB,

hence the operatdt + A)~' B belongs ta%»(L*(R)). Similar argument yields the fact
that the operatoB(1 + A)~! also belongs taZ;2(L*(R)). O

Proof of Propositior2.5. Fix a pair of operatorsi, B in .Z;2(L*(R)). Note first that by
Propositior2.2, the operatorl + B+ AB s in the spaceZ;»(L*(R)), hence the extended
Fredholm determinantet((1 + A)(1+ B)) = det(1 + A+ B + AB) is well-defined. By
the multiplicativity property of the usual Fredholm detémant, the desired identity holds
wheneverd, B € 4 (L*(R)), see, e.9.$ , Thm. 3.8]. Thus by the continuity of the
function A — det(1 + A) on £ 2(L*(R)), for proving the desired identity, it suffices
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to show that there exist two sequen¢és ),.cy and(B,,).ey in £ (L*(R)) such that we
have the following convergences in the spage,(L*(R)):

A, =2 A, B, =% B and A, B, === AB. (5.115)

To this end, take any two sequencés ),y and(Q,,).cn Of finite rank orthogonal pro-
jections onL?(R, ) and L*(R_) respectively, assume that, and Q,, converge in the
strong operator topology to the orthogonal projectidhsand P_ respectively. Now we
may set

A, = (P, +Qn)A, B=DB(P,+Q,).

Then it is clear that the finite rank operatots and B,, satisfy all the desired conditions
in (5.119. Note that we intentionally obtain,, and5B,, by multiplying P, +@,, on the left
side of A and on the right side aB, so that the third condition irb(115 is satisfied. [

Proof of Propositior2.6. From Grothendieck’s definition of Fredholm determinant:
det(1+T) = > tr(A"(T)), T € A(L*R)),
k=0

and the fact that, oncé € .%,(L?(R)) and f is a bounded function, then
tr(AF(fA)) = tr(A"(My) o A*(A)) = tr(A"(A) o A*(My)) = tr(A"(AF)),

we see that the identity2(24) holds whenA € % (L*(R)). For A € Z5(L*(R)), we
may argue similarly as in the proof of Propositiars. See alsoff ] for the proof in
more general case. 0
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