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5 J-Hermitian determinantal point processes:

balanced rigidity and balanced Palm equivalence

Alexander I. Bufetov, Yanqi Qiu

Abstract

We study Palm measures of determinantal point processes with J-Hermitian cor-
relation kernels. A point processP on the punctured real lineR∗

= R+ ⊔R− is said
to bebalanced rigidif for any precompact subsetB ⊂ R∗, thedifferencebetween the
numbers of particles of a configuration insideB ∩ R+ andB ∩ R− is almost surely
determined by the configuration outsideB. The point processP is said to have the
balanced Palm equivalence propertyif any reduced Palm measure conditioned at2n

distinct points,n in R+ andn in R−, is equivalent to theP.
We formulate general criteria for determinantal point processes withJ-Hermitian

correlation kernels to be balanced rigid and to have the balanced Palm equivalence
property and prove, in particular, that the determinantal point processes with Whit-
taker kernels of Borodin and Olshanski are balanced rigid and have the balanced
Palm equivalence property.

Keywords. Determinantal point processes;J-Hermitian kernel; Whittaker kernels;
L-processes; Palm measures; balanced rigidity; balanced Palm equivalence property.
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1 Introduction

1.1 Palm measures of determinantal point processes

The present paper is the first one devoted to the equivalence and mutual singularity rela-

tions between reduced Palm measures of determinantal pointprocesses withJ-Hermitian

correlation kernels.

A a concrete model, we consider the family of determinantal point processes on the

punctured real lineR∗ = R \ {0} with Whittaker kernels of Borodin and Olshanski

[Bor, Ols], scaling limits of the so-calledz-measures of partitions [BO00, BO05]. For

these determinantal point processes, we observe a new effect: the reduced Palm measure

conditioned at2n points,n on the positive,n on the negative semi-axis, is equivalent to
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the initial determinantal measure; while ifn 6= k, then the initial measure and the reduced

Palm measure conditioned atn + k points,n on the positive,k on the negative semi-

axis, are mutually singular. In the former case, the Radon-Nikodym derivatives between

the reduced Palm measures and the initial determinantal measure are found explicitly as

regularized multiplicative functionals.

In the case of determinantal measures with kernels given by Hermitian projection op-

erators, the statement that two such measures differ by a multiplicative functional can be

checked on the level of the corresponding subspaces, the ranges of our projections: in

fact, it suffices to verify that these subspaces differ by multiplication by a function, see

[Buf12, Buf13] for precise statements.

Although J-Hermitian operators considered in this paper are closely related to cer-

tain Hermitian projection operators, it does not seem possible to work with their ranges.

Instead, we use the fact that the determinantal point processes with the Whittaker ker-

nels admit so-calledL-kernels. Following Borodin and Olshanski, such processeswill

be calledL-processes. TwoL-processes differ by a multiplicative functional once corre-

spondingL-kernels themselves differ by multiplication by a functionon the left and on

the right.

The realization of this scheme requires some effort. First,Palm measures of anL-

process, generally speaking, do not admit anL-kernel (this can be seen already on the

level of discrete phase spaces: indeed, Borodin and Rains [BR05] shown that any deter-

minantal point process can be obtained from anL-process by conditioning). Second, in

developing the formalism of the regularized multiplicative functionals, we are not able to

use the standard linear statistics as in [Buf14, BQ]. We use thetwistedones instead (see

(3.28) and (4.84) below for the definitions); in particular, an extended version of Fredholm

determinants is used.

1.2 Main results for Whittaker kernels

We start by formulating our main results for a concrete model: the family of the deter-

minantal point processes with Whittaker kernels of Borodinand Olshanski. The reader

is referred to [BO00, Bor, Ols] for the origin of these point processes in the problem of

harmonic analysis on the infinite symmetric group and to§2 below for a reminder of the

main definitions related to determinantal point processes.

Let R∗ = R \ {0} be the punctured real line. By aconfigurationon R∗, we mean a

locally finitesubsetX ⊂ R∗, that is,X is a subset ofR∗ such that for any compact subset

B ⊂ R∗, the cardinality#(X ∩ B) of the intersection of the subsetsX andB is finite.

Define thespace of configurationsonR∗ by

Conf(R∗) := {X ⊂ R
∗ : for any compact subsetB ⊂ R

∗, #(X ∩ B) <∞}.
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The space of configurationsConf(R∗) is naturally equipped with a Borel structure, see

§2. A point process onR∗ is by definition a Borel probability onConf(R∗).

The family of the determinantal point processes with Whittaker kernels of Borodin

and Olshanski is a 2-parameter familyPz,z′
4 of determinantal point processes onR∗. The

two parametersz, z′ ∈ C satisfy one of the following conditions:

• eitherz′ = z̄ andz ∈ C \ Z,

• or z, z′ ∈ R and their existsm ∈ Z such thatm < z, z′ < m+ 1.

Following [BO00, formula (5.6)], we now write the correlation kernel of the determinantal

point processPz,z′ explicitly. Fix two parametersz, z′ ∈ C such that one of the two

conditions as above is satisfied. Set

P±(x) =
(zz′)1/4

(Γ(1± z)Γ(1 ± z′)x)1/2
W±(z+z′)+1

2
, z−z′

2

(x),

Q±(x) =
(zz′)3/4

(Γ(1± z)Γ(1 ± z′)x)1/2
W±(z+z′)−1

2
, z−z′

2

(x),

(1.1)

whereΓ(·) is the Euler Gamma-function andWa,b(·) is the Whittaker function with pa-

rametera, b ∈ C, see [EMOT53, 6.9] for the definition of Whittaker functions. The cor-

relation kernel ofPz,z′ is given by

Kz,z′(x, y) =





P+(x)Q+(y)− Q+(x)P+(y)

x− y
, for x > 0, y > 0;

P+(x)P−(−y) + Q+(x)Q−(−y)
x− y

, for x > 0, y < 0;

P−(−x)P+(y) + Q−(−x)Q+(y)

x− y
, for x < 0, y > 0;

P−(−x)Q−(−y)− Q−(−x)P−(−y)
y − x

, for x < 0, y < 0.

(1.2)

These kernelsKz,z′ are called Whittaker kernels.

Recall that given a finite setS, we denote its cardinality by#(S). Denote byR+

the positive semi-axis andR− the negative semi-axis. Our first main result, in case of

Whittaker kernel model, is

Theorem A.Assume that the parameters(z, z′) are such thatz′ = z̄ andz ∈ C \ R. Then

for any subsetB ⊂ R∗ having a positive distance from the origin, the difference

#(B ∩X ∩ R+)−#(B ∩X ∩ R−)

4It was denoted as̃Pz,z′ in [BO00].
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is Pz,z′-almost surely determined byX ∩ (R∗ \ B), the configuration outsideB. That

is, there exists a measurable functionNout
B : Conf(R∗) → Z, such that forPz,z′-almost

every configurationX ∈ Conf(R∗), we have

#(B ∩X ∩ R+)−#(B ∩X ∩ R−) = Nout
B (X \B).

In particular, ifB ⊂ R+ is a subset in the positive semi-axis with a positive distance

from the origin, then#(B ∩X) is Pz,z′-almost surely determined byX ∩ (R∗ \B). If B

is in the negative semi-axis, the same result holds.

Remark1.1. When the subsetB is either in positive semi-axis or in negative semi-axis,

we recover the usualnumber rigidity propertyof Ghosh [Gho14], Ghosh and Peres [GP].

If P is a point process onR∗ and ifp = (p1, . . . , pm) ∈ (R∗)m is anm-tuple of distinct

points inR∗, then we denotePp thereducedPalm measure ofP conditioned at the points

p1, . . . , pm. See§2.1for the formal definition of the reduced Palm measures.

Using a variant of Proposition 8. 1 in [BQ], we derive from Theorem A the following

corollary.

Corollary 1.1. Assume that the parameters(z, z′) are such thatz′ = z̄ andz ∈ C \ R.

Let n, k be two non-negative integers such thatn 6= k. Then for Lebesgue-almost every

p = (p+1 , . . . , p
+
n ; p

−
1 , . . . , p

−
k ) ∈ Rn

+ × Rk
− of distinct points, the reduced Palm measure

P
p

z,z′ and the initial determinantal measurePz,z′ are mutually singular.

We now proceed to formulating our second main result which gives equivalence of

the reduced Palm measuresP
p

z,z′ and Pz,z′, under the conditions that the parameters

z, z′ ∈ C are such that|z + z′| < 1 andp = (p+1 , . . . , p
+
n ; p

−
1 , . . . , p

−
n ) ∈ Rn

+ × Rn
− is a

2n-tuple of distinct points inR∗ with equal numbers of points from positive and negative

semi-axis. The Radon-Nikodym derivativedPp

z,z′/dPz,z′ is computed explicitly.

We start with an auxiliary proposition

Proposition 1.2. Assume that the two parametersz, z′ ∈ C are such that|z + z′| < 1.

Then the following limit

Sp(X) : = lim
δ→0+

{ n∑

i=1

( ∑

x∈X∩(δ,∞)

log

∣∣∣∣
x/p+i − 1

x/p−i − 1

∣∣∣∣
2

−
∑

x∈X∩(−∞,−δ)

log

∣∣∣∣
x/p−i − 1

x/p+i − 1

∣∣∣∣
2 )

− EPz,z′

n∑

i=1

( ∑

x∈X∩(δ,∞)

log

∣∣∣∣
x/p+i − 1

x/p−i − 1

∣∣∣∣
2

−
∑

x∈X∩(−∞,−δ)

log

∣∣∣∣
x/p−i − 1

x/p+i − 1

∣∣∣∣
2 )}

exists forPz,z′-almost every configurationX ∈ Conf(R∗). Moreover, we have

exp(Sp) ∈ L1(Conf(R∗),Pz,z′).
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Theorem B.Assume that the two parametersz, z′ ∈ C are such that|z+z′| < 1. Then the

determinantal point processPz,z′ possesses the following property: for Lebesgue almost

everyp = (p+1 , . . . , p
+
n ; p

−
1 , . . . , p

−
n ) ∈ Rn

+ × Rn
− of distinct points, the reduced Palm

measurePp

z,z′ is equivalent to the initial determinantal measurePz,z′. For the Radon-

Nikodym derivative, we have thePz,z′-almost sure equality

dPp

z,z′

dPz,z′
(X) =

exp(Sp(X))

EPz,z′

[
exp(Sp)

] .

Remark1.2. In [Ols11], the determinantal point processesPz,z′ are obtained as scaling

limits of determinantal point processes onConf(Z′) with hypergeometric kernel mea-

sures, whereZ′ = 1
2
+ Z is the set of half-integers. Being point processes all concentrate

on the set ofbalanced configurationswith a finite number of particles:

{X ∈ Conf(Z′) : #(X ∩ Z
′
+) = #(X ∩ Z

′
−) <∞},

the determinantal point processes with hypergeometric kernels are of coursebalanced

rigid in the sense of Theorem A. However, as already shown in Hermitian kernel case,

the rigidity property is not stable under taking limits. Indeed, orthogonal polynomial en-

sembles, having a fixed number of particles, are rigid in the sense of Ghosh [Gho14] and

Ghosh-Peres [GP], while in general this is not the case for their scaling limits. For exam-

ple, as Holroyd and Soo [HS13] showed, the determinantal point process on the unit disk

D with Bergman kernel:

KBerg(z, w) =
1

π(1− zw̄)2
, z, w ∈ D,

is not rigid (the Radon-Nikodym derivatives between this measure and its Palm measures

are computed in [BQ]), but is nonetheless the limit of the following sequence ofrigid de-

terminantal point processes whose kernels are given by finite rank orthogonal projections:

K
(n)
Berg(z, w) =

1

π

n−1∑

k=0

(k + 1)(zw̄)k, z, w ∈ D.

1.3 Main results for generalJ-Hermitian kernels

Our proofs of Theorem A and Theorem B do not proceed by limit transition from pro-

cesses with finitely many particles and work for more generalJ-Hermitian kernels.

We briefly recall the necessary definitions. LetP+, P− denote the orthogonal projec-

tions onL2(R) = L2(R, dx) whose ranges are the subspacesL2(R+) andL2(R−) respec-

tively. Define a bounded linear operatorJ onL2(R) by

J := P+ − P−.
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Introduce an indefiniteJ-scalar product[·, ·] onL2(R) by the formula

[f, g] := (Jf, g) = (P+f, P+g)− (P−f, P−g), f, g ∈ L2(R),

where(·, ·) denotes the usual scalar product inL2(R). A bounded linear operatorK on

L2(R) is calledJ-self-adjoint if[Kf, g] = [f,Kg] for any pairf, g ∈ L2(R). By slightly

abusing the notation, the kernel of an integral operatorK will denote again byK. A kernel

K is called aJ-Hermitian kernel, if the corresponding operatorK is J-self-adjoint. More

precisely,K(x, y) is J-Hermitian if it induces a bounded linear operator and if

K(x, y) = sgn(x)sgn(y)K(y, x), x, y ∈ R
∗, (1.3)

wheresgn(x) is the sign of the real numberx ∈ R∗.

By convention, a bounded measurable functionf : R∗ → C will be identified with the

bounded linear operatorMf onL2(R) defined by

Mf(g) = fg, for anyg ∈ L2(R).

The notationfK (or f ·K) andKf (orK ·f ) stands for the composition operatorsMf ◦K
andK ◦Mf respectively.

Given a bounded linear operatorK onL2(R), we set

K̂ := sgn ·K + χR− = P+K + P−(1−K). (1.4)

An operatorK is J-self-adjoint if and only if the operator̂K is self-adjoint in the usual

sense.

The following Theorem of Lytvynov gives a necessary and sufficient condition for the

existence of a determinantal point process with a givenJ-Hermitian kernel.

Theorem 1.3(E. Lytvynov [Lyt13]). Let K be aJ-self-adjoint bounded linear opera-

tor onL2(R). Assume that the operatorsP+KP+ andP−KP− are non-negative. Assume

also that, for any bounded subsets∆1,∆2 ofR such that∆1 ⊂ R+ and∆2 ⊂ R−, the op-

eratorsχ∆i
Kχ∆i

(i = 1, 2) are in trace-class, whileχ∆2Kχ∆1 is Hilbert-Schmidt. Then

the integral kernelK(x, y) of the operatorK is the correlation kernel of a determinantal

point process onR if and only if0 ≤ K̂ ≤ 1.

The determinantal point process induced by a correlation kernelK as in Theorem1.3

will be denoted byPK .

1.3.1 Theorem A for generalJ-Hermitian kernels

We now formulate a general variant of Theorem A, namely, a sufficient condition on

theJ-Hermitian kernelK for the determinantal point processPK to be balanced rigid.
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For the purpose of our later use of Fourier analysis, we stateour result in this part only

for determinantal point processes with a singularity at infinity. The case with a single

singularity at the origin, such as the determinantal point processes with Whittaker kernels,

can be easily transformed to this case by the change of variablesx 7→ 1/x.

We need the following two conditions on the kernelK : Condition1 guarantees that

theJ-Hermitian kernelK is indeed a correlation kernel of a certain determinantal point

process and the variance of the linear statistics
∑

x∈X

sgn(x)ϕ(x), (whereX ∈ Conf(R)),

can be expressed by a simple formula, see Lemma3.2below. Condition2 guarantees that

the diagonal coefficientK(x, x) is locally integrable onR and controls the rate of decay of

off-diagonal coefficientsK(x, y) when|x− y| is large. The former condition onK(x, x)

implies in particular that the associated determinantal point process has no accumulation

point at any point of the real line.

Condition 1. Assume thatK is the integral kernel of a bounded linear operator onL2(R)

such that

• the operatorsP+KP+ andP−KP− are non-negative. Moreover, for any bounded

subsets∆1,∆2 of the real line such that∆1 ⊂ R+ and∆2 ⊂ R−, the opera-

torsχ∆i
Kχ∆i

(i = 1, 2) are in trace-class, and the operatorχ∆2Kχ∆1 is Hilbert-

Schmidt.

• the following operator

K̂ := sgn ·K + χR−

defines anorthogonal projectiononL2(R, dx).

Condition 2. Fix M > 0. Assume that the kernelK satisfies the following conditions:

• LetK(x, x) be the diagonal value of the kernelK, then for anyR > 0, we have
∫

|x|≤R

K(x, x)dx <∞; (1.5)

• There exists a non-negative integrable functionΦ ∈ L1(R, dt) satisfying
∫

|t|≥R

Φ(t)dt = O(R−1) asR → ∞, (1.6)

such that if|x| ≥M, |y| ≥M , then

|K(x, y)|2 ≤ Φ(x− y); (1.7)
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The general variant of Theorem A is

Theorem 1.4(A sufficient condition for balanced rigidity). LetK be aJ-Hermitian ker-

nel satisfying Conditions1 and2. Then the determinantal point processPK possesses the

following rigid property: for any bounded Borel subsetB ⊂ R, there exists a measurable

functionNout
B : Conf(R) → Z, such that forPK-almost everyX ∈ Conf(R), we have

#(B ∩X ∩ R+)−#(B ∩X ∩ R−) = Nout
B (X \B).

In particular, ifB ⊂ R+ is a bounded subset in the positive semi-axis, then#(B ∩X)

is PK-almost surely determined byX ∩ (R \ B). If B ⊂ R− is a bounded subset in the

negative semi-axis, the same result holds.

Using a variant of Proposition 8. 1 in [BQ], we derive from Theorem1.4the following

corollary.

Corollary 1.5. Let K be aJ-Hermitian kernel satisfying Conditions1 and 2. Let n, k

be two non-negative integers such thatn 6= k. Then for Lebesgue-almost everyp =

(p+1 , . . . , p
+
n ; p

−
1 , . . . , p

−
k ) ∈ Rn

+ × Rk
− of distinct points, the reduced Palm measureP

p

K

and the initial determinantal measurePK are mutually singular.

1.3.2 Theorem B for generalJ-Hermitian kernels

We now formulate a general variant of Theorem B, namely, a sufficient condition for the

determinantal point process to havebalanced Palm equivalence propertyin the sense of

Theorem B, see also Definition4.1 below. In this part, let us state the result in the case

where there is a single singularity at the origin (rather than a singularity at infinity).

We first need the definition ofL-processes of Borodin and Olshanski.

Definition 1.1 (L-kernel). Given a bounded linear operatorK on L2(R), if 1 − K is

invertible, then we define theL-operator ofK by

L = K(1−K)−1.

In order to emphasize that the operatorK depends onL, we will sometimes writeKL

instead ofK, thus having

KL = L(1 + L)−1.

Condition 3. Assume thatL is a bounded operator onL2(R∗, dx) having the following

block form:

L(x, y) =

[
0 V

−V ∗ 0

]
=

[
0 A+(x)A−(y)

x−y
A−(x)A+(y)

x−y
0

]
, (1.8)
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whereA ∈ C1(R∗) ∩ L2(R∗, dx) is a real-valued function and

A+ := AχR+ andA− := AχR−.

In other words, the operatorL admits an integral kernel given by

L(x, y) =
A+(x)A−(y) + A−(x)A+(y)

x− y
, x, y ∈ R

∗. (1.9)

We will also assume that the support of the funcitionA is the whole punctured lineR∗.

Lemma 1.6. Let L be an operator satisfying Condition3. Then the operatorKL is a

J-self-adjoint operator satisfying all the conditions of the Lytvynov’s Theorem1.3. In

particular,KL is the correlation kernel of a determinantal point process onR∗.

Definition 1.2 (L-processes). We denote byµL the determinantal point process onR∗

whose correlation kernel isKL = L(1 + L)−1, that is

µL := PKL
. (1.10)

Following Borodin and Olshanski, such processes will be calledL-processes.

We need the following auxiliary propositions.

Let p = (p+1 , . . . p
+
n ; p

−
1 , . . . , p

−
n ) be a2n-tuple of real numbers such thatp+i > 0 and

p−i < 0 for i = 1, . . . , n. Moreover, assume thatp+i 6= p+j , p
−
i 6= p−j wheni 6= j. Define

fp(x) =

n∏

i=1

(
x/p+i − 1

x/p−i − 1
χR+(x) +

x/p−i − 1

x/p+i − 1
χR−(x)

)
. (1.11)

Proposition 1.7.LetL be an operator satisfying Condition3. LetµL be the determinantal

point process onR∗ whose correlation kernel isKL = L(1+L)−1. Then the reduced Palm

measureµp

L conditioned at a2n-tuple of distinct points

p = (p+1 , . . . , p
+
n ; p

−
1 , . . . , p

−
n ) ∈ R

n
+ × R

n
−, (1.12)

is again anL-process and is given by

µp

L = µfpLfp. (1.13)

Proposition 1.8. LetL be an operator satisfying Condition3 and letp be a2n-tuple of

distinct points inR∗ given as in(1.12), the functionfp is defined by formula(1.11). Then

the following limit

Sp(X) : = lim
δ→0+

{ n∑

i=1

( ∑

x∈X∩(δ,∞)

log

∣∣∣∣
x/p+i − 1

x/p−i − 1

∣∣∣∣
2

−
∑

x∈X∩(−∞,−δ)

log

∣∣∣∣
x/p−i − 1

x/p+i − 1

∣∣∣∣
2 )

− EµL

n∑

i=1

( ∑

x∈X∩(δ,∞)

log

∣∣∣∣
x/p+i − 1

x/p−i − 1

∣∣∣∣
2

−
∑

x∈X∩(−∞,−δ)

log

∣∣∣∣
x/p−i − 1

x/p+i − 1

∣∣∣∣
2 )}
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exists forµL-almost every configurationX ∈ Conf(R∗). Moreover, we have

exp(Sp) ∈ L1(Conf(R∗), µL).

Theorem 1.9(A sufficient condition to have balanced Palm equivalence property). Let

L be an operator satisfying Condition3 and letp be a2n-tuple of distinct points inR∗

given as in(1.12), let fp denote the function defined by formula(1.11). Then the reduced

Palm measureµp

L is equivalent toµL. For the Radon-Nikodym derivative, we have the

µL-almost sure equality:
dµp

L

dµL
(X) =

exp(Sp(X))

EµL

[
exp(Sp)

] .

1.4 Olshanski’s Problem

Olshanski [Ols11] posed the following

Problem. LetP1 andP2 be two determinantal point processes on a common phase space

with correlation kernelsK1(x, y) andK2(x, y) respectively. Decide the equivalence and

the mutual singularity relations betweenP1 and P2 by inspection of their correlation

kernelsK1(x, y) andK2(x, y). WhenP1 and P2 are equivalent, calculate the Radon-

Nikodym derivative between them.

We now briefly mention the previous works on this problem for projection kernels and

note the particle-hole duality relation, in the case of discrete phase spaces, of these results

to the results of the present paper.

• The Gamma-kernel.

Olshanski [Ols11] obtained the quasi-invariance of the so-called Gamma kernel

determinantal point processes on the spaceZ′ of half-integers under the action of the

groupS(∞) of finite permutations of arbitrary size. The groupS(∞) acts naturally

onZ′ and hence on the space of configurations overZ′. LetP1 be the Gamma kernel

determinantal point process onZ′ with the correlation kernel denoted byK1, see

[BO05] for the precise definition. Take an elementσ ∈ S(∞), denoteP2 = σ∗(P1)

the determinantal point process obtained by the transformation σ on the space of

configurationsConf(Z′) = 2Z
′
. ThenP2 has a correlation kernel given by

K2(x, y) = K1(σ
−1(x), σ−1(y)) x, y ∈ Z

′.

By limit transition from finite particle systems, Olshanski proved the equivalence

of P1 andP2 and calculated the Radon-Nikodym derivative between them as a mul-

tiplicative functional.
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• Determinantal point processes with integrable kernels.

In [Buf14], it has been proved that all determinantal point processeson R (or Z)

whose correlation kernelsK are Hermitian orthogonal projections and have an in-

tegrable form as follows:

K(x, y) =
A(x)B(y)−A(y)B(x)

x− y
, x, y ∈ R( orx, y ∈ Z), (1.14)

are quasi-invariant, under the action of the group of compactly supported diffeo-

morphisms onR (or under the action ofS(∞) on Z). The equivalence between

reduced Palm measures of the same orderplays a central rôle in the proof, which

proceeds by the method, further developed in this paper, ofregularized multiplica-

tive functionals.

• Determinantal point processes associated with Hilbert spaces of holomorphic
functions.

Holroyd and Soo [HS13] have shown that the determinantal point process with

the Bergman kernel on the unit disk has the property ofinsertion tolerance: its

Palm measures are equivalent to itself. For the Ginibre point process on the com-

plex plane, using its finite-dimensional approximations byorthogonal polynomial

ensembles, Osada and Shirai [OS14] have shown that Palm measures of different

orders are singular, while Palm measures of the same orders are equivalent and the

Radon-Nikodym derivative is a regularized multiplicativefunctional. In [BQ], the

method ofregularized multiplicative functionalshas been further elaborated for ob-

taining in a unified way, on one hand, the equivalence of reduced Palm measuresof

the same orderof the determinantal point processes on the complex planeC with

correlation kernels given by the reproducing kernels of generalized Fock spaces on

C, and on the other hand, the equivalence of reduced Palm measuresof all orders

of the determinantal point processes on the open unit diskD ⊂ C with correla-

tion kernels given by the reproducing kernels of generalized Bergman spaces onD.

Specifically, the Radon-Nikodym derivative between the determinantal point pro-

cess with the Bergman kernel on the unit disk and its Palm measures is computed

explicitly as a regularized Blaschke product.

As a consequence, we also obtained the quasi-invariance property of these deter-

minantal point processes, under the action of the group of compactly supported

diffeomorphisms on the complex planeC and on the open unit diskD respectively.

• Relations with rigidity of determinantal point processes.

Recall that a point process on a Euclidean spaceRd is said to be rigid in the

sense of Ghosh [Gho14] and Ghosh-Peres[GP], if for any bounded open subset
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B ⊂ Rd, such that the topological boundary∂B is negligible with respect to thed-

dimensional Lebesgue measure, the number of particles of this point process inside

the subsetB is almost surely determined by the configuration outside of the subset

B. Olshanski’s problem is closely related to this rigidity property of determinantal

point processes. In particular, if a determinantal point process is rigid in the above

sense, then its reduced Palm measuresof different ordersare almost surely singular,

see [BQ, Prop. 8.1]. Note that for processes withJ-Hermitian kernels we encounter

a rather different notion of rigidity. In the case of discrete phase spaces, however,

the new notion can be reduced to the old one, as we shall now demonstrate.

• Discrete phase spaces and the particle-hole duality

Analogues of our main results, Theorem1.4 and Theorem1.9, can be formulated

and proved in similar way when the phase spaceR∗ is replaced byZ orZ′ = 1
2
+Z

or any other discrete subsets inR. In particular, in the case where the phase space is

a discrete subsets ofR, our results are related to previous works [Ols11, Buf14] by

doingparticle-hole dualityas follows: LetP be a determinantal point process, say

onZ′. Assume thatP has a Hermitian correlation kernelK. Define the particle-hole

duality onZ′
− = Z′ ∩ R− as a mapdual : Conf(Z′) → Conf(Z′) given by

dual(X) := (X ∩ Z
′
+) ⊔ (Z′

− \X).

Then this particle-hole duality transformP to a new point processdual∗(P), which

is again a determinantal point process. A correlation kernel of this new point process

can be provided by

K◦ := sgn ·K + χZ′
−
.

Note thatK◦ is J-Hermitian with respect to the partitionZ′ = Z′
+ ⊔ Z′

− and the

orthogonal decompositionℓ2(Z′) = ℓ2(Z′
+)⊕ ℓ2(Z′

−). In general, the particle-hole

duality transforms a rigid point process (see Definition3.1) to a balanced rigid

one and vice-versa. It transforms a quasi-invariant point process to a point process

having balanced Palm equivalence property and vice-versa.In terms of correlation

kernels, the particle-hole duality transforms Hermitian kernels toJ-Hermitian ones

and vice-versa.

At the same time, we would like to note that the particle-holeduality argument only

works in the case where the phase spaces are discrete. This can be already seen on

the level of correlation kernels, indeed, the kernelK̂ defined in (1.4) corresponds

to K◦ as above. Observe that̂K can not be used to define (extended) Fredholm

determinants, and it is not the correlation kernel of any determinantal point process.

Thus when the phase space isR∗, processes withJ-Hermitian kernels can not be

transformed to processes with Hermitian kernels.
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1.5 Organization of the paper and schemes of proofs

The paper is organized as follows.

In the preliminary part,§2, we briefly recall the definition of determinantal point pro-

cesses and theory of reduced Palm measures. In particular, we collect the necessary results

from [Lyt13] on the general determinantal point processes withJ-Hermitian correlation

kernels. Some standard properties of extended Fredholm determinants are also collected

in §2. The proofs for these properties are postponed to the appendix in the end of the

paper.

The main body of the paper is separated into two parts. The first part,§3, is devoted to

the proofs of Theorem1.4 and Theorem A; the second part,§4, is devoted to the proofs

of Theorem1.9 and Theorem B. These two parts are essentially independent from each

other.

First part §3: proofs of Theorem1.4and Theorem A.Here we follow the scheme of

Ghosh and Peres [GP]. Let PK be the determinantal point process as in Theorem1.4.

Our main task is to construct, after fixing an arbitrarily large intervalUR = [−R,R], a

sequence ofcompactly supportedcontinuous functions(ϕn)n≥1 defined onR, such that

ϕn(x) tends to1 uniformly onUR whenn tends to infinity. Moreover, the following limit

relation holds:

VarPK

(∑

x∈X

sgn(x)ϕn(x)

)
n→∞−−−→ 0.

See also [BDQ, BQ, Buf15] for the use of the same method in the Hermitian case.

Second part§4: proofs of Theorem1.9and Theorem B.There are three main ingredi-

ents in the proofs of our main results in this part:

(i) TheJ-Hermitian kernels for the determinantal point processes under consideration

haveL-kernels, that is, the determinantal point processes areL-processes;

(ii) Under certain assumptions on theL-kernel of the initial determinantal point process

µL, all the reduced Palm measures conditionned at an equal number of positions at

both sides ofR∗ = R+ ⊔ R− are againL-processes, and theL-kernels for these

reduced Palm measures have the formfLf , wheref is certain bounded measurable

function defined onR∗.

(iii) Under suitable assumptions on the kernelL andf , the two determinantal point pro-

cessesµfLf andµL are proved to be equivalent and the Radon-Nikodym derivative

dµfLf/dµL can be computed explicitly as aregularized multiplicative functional.

The verification of part (ii) will be given in§4.1. The proof relies heavily on the alge-

braic structures of theL-kernels, see Condition4 in §4.1.
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Let us now explain part (iii). We will first prove a preliminary and abstract version

in Proposition4.10: under a certain condition on theL-kernel, if supp(f − 1) ⊂ R∗

has a positive distance from the origin , thenµfLf andµL are equivalent and the Radon-

Nikodym derivative is given by a normalized multiplicativefunctional:

dµfLf

dµL
(X) =

∏
x∈X

|f(x)|2

EµL

∏
x∈X

|f(x)|2 . (1.15)

But forfp defined by (1.11), supp(fp−1) = R∗, it does not have positive distance from the

origin. Moreover, the usual multiplicative functional
∏
x∈X

|fp(x)|2 on the right-hand side

of (1.15) does not converge absolutely. For overcoming this difficulty, we are led to use a

new version ofregularized multiplicative functionals. One ingredient in the formalism of

this new version of regularized multiplicative functionals is the use of the twisted linear

statistics: ∑

x∈X

sgn(x)ϕ(x), (whereX ∈ Conf(R∗)).

Extra efforts are also required in dealing with the extendedversion of Fredholm determi-

nants. The reader is referred to [Buf14, BQ] for the use of another version of regularized

multiplicative functionals in computing Radon-Nikodym derivatives between determinan-

tal point processes whose correlation kernels are Hermitian.

2 Preliminaries

Let E be a locally compact complete metrizable separable space. Assume that onE is

equipped with a positiveσ-finite Borel measureµ. A configurationon E is defined to

be anN ∪ {0}-valued Radon measure onE ; in other words, a configuration onE is a

collection ofparticles, possibly with multiplicity, that admits no accumulation points in

E . LetConf(E ) denote the space of all configurations onE . With respect to the topology

induced by the vague topology on the space of Radon measures on E , the spaceConf(E )

is itself a complete metrizable separable space. Apoint processon E is by definition a

Borel probability measure onConf(E ). For further background on point processes, see,

e.g., [DVJ08].

We now briefly recall the definition ofdeterminantal point processes, see, e.g., [Mac75,

Sos00, Lyo03]. Fix a Radon measureµ onE . A determinantal point process onE is deter-

mined by a correlation kernelK, that is, a certain two-variable complex-valued function

K(x, y) on E × E . More precisely, if we denote the determinantal point process with a

correlation kernelK by PK , then this measurePK is completely determined by the fol-

lowing: for any positive integerk ≥ 1 and any disjoint bounded subsetsD1, · · · , Dk of
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E , we have
∫

Conf(E )

k∏

i=1

#(X ∩Di)PK(dX) =

∫

D1×···×Dk

det(K(xi, xj))1≤i,j≤kdµ
⊗k(x1 · · ·xk). (2.16)

The equality (2.16) implies that ifD1, · · · , Dr are disjoint bounded subsets ofE andki
are positive integers,k = k1 + · · ·+ kr, then

∫

Conf(E )

r∏

i=1

#(X ∩Di)(#(X ∩Di)− 1) · · · (#(X ∩Di)− ki + 1)PK(dX)

=

∫

D
k1
1 ×···×Dkr

r

det(K(xi, xj))1≤i,j≤kdµ(x1) · · ·dµ(xk).

See, e.g., [HKPV09, Remark 1.2.3 ]. By definition, determinantal measures are always

supported on the subset ofsimpleconfigurations, that is, configurations all of whose par-

ticles have multiplicity one.

In this paper, we are particularly interested in the determinantal point processes with

J-Hermitian correlation kernels, see§1.3and§2.2for a brief introduction onJ-Hermitian

kernels. The reader is referred to [Lyt13] for the general theory of such point processes.

2.1 Palm measures of determinantal point processes

In what follows, by Palm measures of a point process, we always mean itsreducedPalm

measures. Let us briefly recall the definition of Palm measures of determinantal point

processes. For further details on Palm measures of general point processes, the reader is

referred to [Kal86, DVJ08]

Let P be a point process onE (later, we will focus on the caseE = R or R∗). Assume

that for any positive integerk, the point processP admits thek-th correlation measureρk
on E k, that is,ρk is a positive measure onE k such that for any disjoint bounded subsets

D1, · · · , Dk of E , the following identity

∫

Conf(E )

k∏

i=1

#(X ∩Di)P(dX) =

∫

D1×···×Dk

ρk(dx1 · · · dxk) (2.17)

holds. Then forρk-almost everyk-tuple q = (q1, . . . , qk) ∈ E k of distinctpoints inE ,

one can define a point processPq on E by the following disintegration formula: for any

non-negative Borel test functionu : Conf(E )× E k → R,
∫

Conf(E )

∗∑

q1,...,qk∈X

u(X ; q)P(dX) =

∫

E k

ρk(dq)

∫

Conf(E )

u(X ∪ {q1, . . . , qk}; q)Pq(dX),

(2.18)
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where
∗∑

denotes the sum over all distinct pointsq1, . . . , qk ∈ X. The point processPq is

called the Palm measure ofP conditioned atq1, . . . , qk.

In the above situation, if thek-th correlation measureρk for the point processP is

absolutely continuous with respect to the product measureµ⊗k on E k, then the Radon-

Nikodym derivative

fk(x1, · · · , xk) :=
dρk
dµ⊗k

(x1, · · · , xk)

is called thek-th correlation function ofP. In terms of correlation functions, the Palm

measurePq can be described as follows: it is a point process onE such that itsn-th

correlation function is given by

f q

n(x1, · · · , xn) = fn+k(q1, · · · , qk, x1, · · · , xn).

Informally, if X is a random configuration onE whose probability distribution is given

by the point processP, thenPq is the conditional distribution of the random configuration

X\{q1, . . . , qk} conditioned to the event that all particlesq1, . . . , qk are in the configuration

X.

A Theorem of Shirai and Takahashi [ST03] states that the Palm measures of a de-

terminantal measure are again determinantal measures. Letus formulate this result more

precisely. Assume nowP is a determinantal point process onE induced by a correlation

kernelK, that is,P = PK . Let q ∈ E and assume thatK(q, q) > 0. Set

Kq(x, y) = K(x, y)− K(x, q)K(q, y)

K(q, q)
. (2.19)

If K(q, q) = 0, we setKq = K. More generally, ifq = (q1, . . . , qk) ∈ E k is ak-tuple of

distinct points inE , then we define by iteration

Kq = (· · · (Kq1)q2 · · · )qk . (2.20)

Observe that the order of the pointsq1, q2, · · · qk has no effect in the above iteration.

Theorem 2.1(Shirai and Takahashi [ST03]). LetP = PK be a determinantal point pro-

cess onE induced by a correlation kernelK. Let k ∈ N be a positive integer. Then for

ρk-almost everyk-tupleq ∈ E k of distinct points inE , the Palm measurePq

K of PK con-

ditioned atq is again a determinantal point process onE . Moreover,Pq

K is induced by the

kernelKq defined in(2.20), that is, we have

P
q

K = PKq.

Remark2.1. Theorem2.1was proved by Shirai and Takahashi in [ST03] for determinantal

point processes with Hermitian correlation kernels. This result was independently proved
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by Lyons in [Lyo03] in the case where the phase space is a discrete countable setand the

correlation kernel corresponds to a Hermitian orthogonal projection. The proof in [ST03]

can be generalized word by word for determinantal point processes without requiring that

the correlation kernels are Hermitian.

2.2 J-Hermitian kernels and extended Fredholm determinants

Recall that in§1.3, we have defined theJ-Hermitian kernels onR∗ = R+⊔R− as follows:

a kernelK : R∗ × R∗ → C is called aJ-Hermitian kernel if it defines a bounded linear

operator onL2(R) and if

K(x, y) = sgn(x)sgn(y)K(y, x), x, y ∈ R
∗.

In Theorem1.3, we recalled the Lytvynov’s characterization of the correlation kernels

of determinantal point process inJ-Hermitian case in our particular situation with the

phase spaceR∗ = R+ ⊔ R−. We shall need a slight reformulation of Theorem1.3.

Remark2.2. Note that the determinantal point processPK induced by the kernelK as in

Theorem1.3 accumulates at infinity (both+∞ and−∞), in this situation, we will say

that thesingularity of the kernelK is at infinity. The change of variablesx 7→ 1/x on

R∗ transformsPK to a new determinantal point process onR∗ induced by the new kernel
1

|xy|
K(1/x, 1/y). This new determinantal point process has a single accumulation point at

the origin0 ∈ R of the real line, and in this situation, we call that the abovenew kernel

has a singularity at the origin. Now it is clear how to formulate a version of Theorem1.3

when the kernelK has a singularity at the origin (and there is no singularity at infinity):

we just need to replace the conditions on∆1,∆2 required in Theorem1.3by the following

new condition:

∆1 and∆2 are two measurable subsets ofR both having positive distances from0.

Note that in the case of singularity at origin, the two subsets ∆1,∆2 ⊂ R∗ can be un-

bounded.

Let L1(L
2(R)) denote the space of trace-class operators onL2(R) and letL2(L

2(R))

denote the space of Hilbert-Schmidt operators onL2(R). For further details on trace-class

and Hilbert-Schmidt operators, the reader is referred to [Sim05]. Following [Lyt13], we

denote byL1|2(L
2(R)) the space of all bounded linear operators onL2(R) = L2(R+) ⊕

L2(R−) such that when written in the following block forms
[
a b
c d

]
,

we havea, d ∈ L1(L
2(R)) andb, c ∈ L2(L

2(R)). Clearly,

L1(L
2(R)) ⊂ L1|2(L

2(R)) ⊂ L2(L
2(R)). (2.21)
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LetK be a bounded linear operator onL2(R). Then for any subset∆ ⊂ R, we denote

K∆ the compressed operator defined by

K∆ := χ∆Kχ∆.

By [Lyt13, Prop. 12], ifK satisfies all the conditions in Theorem1.3, including the con-

dition that0 ≤ K̂ ≤ 1, then for any bounded subset∆ ⊂ R, we have

K∆ ∈ L1|2(L
2(R)). (2.22)

Similarly, if K satisfies all the conditions of the origin-singularity version of Theorem

1.3as explained in Remark2.2, then for any measurable subset∆ ⊂ R having a positive

distance from the origin, the compressed operatorK∆ belongs toL1|2(L
2(R)).

The spaceL1|2(L
2(R)) is a Banach space equipped with a norm‖ · ‖L1|2

defined by

the following formula
∥∥∥∥
[
a b
c d

]∥∥∥∥
L1|2

:= ‖a‖1 + ‖d‖1 + ‖b‖2 + ‖c‖2,

where‖ · ‖1 is the trace-class norm while‖ · ‖2 is the Hilbert-Schmidt norm. Observe that

L1|2(L
2(R)) is not an ideal in theC∗-algebraL (L2(R)) of all bounded linear operators

onL2(R).

We collect a few standard facts needed in what follows; for the reader’s convenience,

we include their proofs in the Appendix.

Proposition 2.2. LetA,B be two operators inL1|2(L
2(R)). We have

‖AB‖L1|2
≤ 2‖A‖L1|2

‖B‖L1|2
.

More generally, ifA1, · · · , An are operators inL1|2(L
2(R)), then

‖A1 · · · · · An‖L1|2
≤ 2n−1

n∏

i=1

‖Ai‖L1|2
.

Proposition 2.3.Letf : R → C be a bounded measurable function and letK be an oper-

ator in L1|2(L
2(R)). Then the operatorsfK andKf are both inL1|2(L

2(R)). Moreover,

max(‖fK‖L1|2
, ‖Kf‖L1|2

) ≤ ‖f‖∞‖K‖L1|2
,

where‖f‖∞ means theL∞-norm off .

Proposition 2.4. LetA,B be two operators inL1|2(L
2(R)). Assume that1+A is invert-

ible. Then the operators(1+A)−1B andB(1+A)−1 both belong to the classL1|2(L
2(R)).
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Recall that the trace of an operatorA ∈ L1(L
2(R)) is given by

tr(A) =

∞∑

n=1

(Aen, en),

where{en}∞n=1 is an orthonormal basis ofL2(R).

Let m be a positive integer. Denote by∧m(L2(R)) them-th antisymmetric tensor

power of the Hilbert spaceL2(R). For anyA ∈ L (L2(R)), denote by∧m(A) the unique

bounded linear operator on∧m(L2(R)) determined by

∧m(A)(v1 ∧ · · · ∧ vm) = (Av1) ∧ · · · ∧ (Avm), v1, · · · , vm ∈ L2(R).

Definition 2.1 (Fredholm determinant, Grothendieck [Gro56]). LetA ∈ L1(L
2(R)), then

the Fredholm determinantdet(1 + A) is defined by

det(1 + A) :=

∞∑

m=0

tr(∧m(A)).

In [BOO00], it is proven that the functionA 7→ det(1 +A) admits a unique extension

toL1|2(L
2(R)) which is continuous in the topology ofL1|2(L

2(R)). We will use the same

notationdet(1 + A) for this extended Fredholm determinant whenA ∈ L1|2(L
2(R)).

Proposition 2.5. LetA,B be two operators inL1|2(L
2(R)), then

det((1 + A)(1 +B)) = det(1 + A) det(1 +B). (2.23)

Proposition 2.6. Let A ∈ L1|2(L
2(R)) and letf : R → C be a bounded measurable

function. Then

det(1 + fA) = det(1 + Af). (2.24)

We also need the following characterization of determinantal point processes withJ-

Hermitian correlation kernels in terms of multiplicative functionals.

Theorem 2.7(E. Lytvynov[Lyt13]). LetK be a kernel as in Theorem1.3. Then the de-

terminantal point processPK is uniquely determined by the following property: for any

compactly supported bounded measurable functionf : R → R, if ∆ ⊂ R is a bounded

subset such thatsupp(f) ⊂ ∆, then we have

∫

Conf(R)

∏

x∈X

(1 + f(x))PK(dX) = det(1 + fK∆).
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3 Balanced rigidity

For any bounded Borel subsetB ⊂ E , let#B : Conf(E ) → N be defined by

#B(X) := #(B ∩X).

Fix a Borel subsetC ⊂ E , let

FC = σ({#B : B ⊂ C,B Borel})

be the smallestσ-algebra making all functions from{#B : B ⊂ C,B Borel} measurable.

If P is a point process onE , then we denoteFP
C for theP-completion ofFC .

Definition 3.1 (Ghosh [Gho14], Ghosh-Peres[GP]). A point processP on R is called

rigid if for any bounded measurable subsetB ⊂ R, the random variable#B∩R is F
P
R\B-

measurable.

Definition 3.2 (Singularity at infinity version). A point processP onR∗ is calledbalanced

rigid with respect to the partitionR∗ = R+ ⊔ R− if for any bounded measurable subset

B ⊂ R∗, the random variable

#B∩R+ −#B∩R−

isFP
R∗\B-measurable.

3.1 A sufficient condition for balanced rigidity

This section is devoted to the proof of Theorem1.4.

Assume thatK is a J-Hermitian kernel onR satisfying Conditions1 and 2. The

operatorsK and K̂ have the following block forms with respect to the decomposition

L2(R) = L2(R+, dx)⊕ L2(R−, dx):

K =

[
K++ K+−

K−+ K−−

]
andK̂ =

[
K++ K+−

−K−+ 1R− −K−−

]
, (3.25)

where for instanceK+− : L2(R−, dx) → L2(R+, dx) stands for the operatorK+− =

P+KP− and1R− stands for the identity operator onL2(R−, dx). Note that the operator

K+− admits the following integral kernel

K+−(x, y) = χR+(x)K(x, y)χR−(y).

Recall that in Condition1, we assume that the operator

K̂ := sgn ·K + χR− = P+K + P−(1−K)

defines an orthogonal projection onL2(R).
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Lemma 3.1. For anyx ∈ R∗, we have

K(x, x) =

∫

R

|K(x, y)|2dy. (3.26)

Proof. By assumption,̂K is an orthogonal projection, hencêK2 = K̂. By substituting

(3.25) into this identity and considering the diagonal blocks, wededuce that
{
K++ = K2

++ −K+−K−+

K−− = K2
−− −K−+K+−

.

The above first identity combined with (1.3) implies (3.26) for x > 0 while the second

one combined with (1.3) implies (3.26) whenx < 0.

Given a Borel functionϕ : R → R, we defineϕ◦ : R → R by

ϕ◦(x) := sgn(x)ϕ(x). (3.27)

By definition, the linear statisticS[ϕ] corresponding toϕ is the following function on

Conf(R):

S[ϕ](X) :=
∑

x∈X

ϕ(x), (3.28)

provided the right-hand side converges absolutely. For simplifying the notation, we set

T [ϕ] := S[ϕ◦]. (3.29)

Recall that by Theorem1.3, the kernelK satisfying Condition1 induce a determinan-

tal point process onR, denoted byPK .

Lemma 3.2. Letf : R → R be a Borel function such that
∫

R

f(x)2K(x, x)dx <∞.

Then we have

VarPK
(T [f ]) =

1

2

∫∫

R2

|f(x)− f(y)|2|K(x, y)|2dxdy, (3.30)

whereVarPK
(T [f ]) stands for the variance of the random variableT [f ] defined on the

probability space(Conf(R),PK) equipped with the Borelσ-algebra.

Proof. By definition of correlation functions of determinantal point process, we have

VarPK
(T [f ]) =

∫

R

f ◦(x)2K(x, x)dx−
∫∫

R2

f ◦(x)f ◦(y)K(x, y)K(y, x)dxdy

=

∫

R

f(x)2K(x, x)dx−
∫∫

R2

f(x)f(y)|K(x, y)|2dxdy.

Substituting the formula (3.26) into the above identity, we get the desired formula (3.30).
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Lemma 3.3. LetK be a kernel satisfying Conditions1 and2. Then for any fixedR > 0,

there exists a sequence(ϕn)n∈N of real-valued Schwartz functions, such that|ϕn(x)| ≤ 1

and

lim
n→∞

sup
x∈[−R,R]

|ϕn(x)− 1| = 0 and lim
n→∞

VarPK
(T [ϕn]) = 0.

Proof. It suffices to prove that given any positive integern ∈ N, we can construct a

real-valued Schwartz functionϕn such that

|ϕn(x)| ≤ 1, sup
x∈[−R,R]

|ϕn(x)− 1| ≤ 1/n andVarPK
(T [ϕn]) ≤ 1/n.

LetM > 0 be the number given in Condition2. Fix a real numberN > 1 which will

be specified later. Given a real-valued Schwartz functionf , denote

F (x, y) :=
1

2
|f(x)− f(y)|2|K(x, y)|2.

We defineIi(f), i = 1, 2, 3, 4 as follows:

VarPK
(T [f ]) ≤

∫∫

|x|≤NM,|y|≤NM

F

︸ ︷︷ ︸
=:I1(f)

+

∫∫

|x|≤M,|y|≥NM

F

︸ ︷︷ ︸
=:I2(f)

+

+

∫∫

|x|≥NM,|y|≤M

F

︸ ︷︷ ︸
=:I3(f)

+

∫∫

|x|≥M,|y|≥M

F

︸ ︷︷ ︸
=:I4(f)

.

(3.31)

Step 1:Control ofI2 andI3.

We claim that

lim
N→∞

∫∫

{|x|≤M,|y|≥N ·M}

|K(x, y)|2dxdy = 0. (3.32)

Indeed, by Lemma3.1and condition (1.5), we have
∫∫

{|x|≤M,|y|≥N ·M}

|K(x, y)|2dxdy ≤
∫

|x|≤M

K(x, x)dx <∞.

Then the claim in (3.32) follows from above inequality and bounded convergence theo-

rem. Now let us chooseN ≥ R + 1 large enough, such that
∫∫

{|x|≤M,|y|≥NM}

|K(x, y)|2dxdy =

∫∫

{|x|≥NM,|y|≤M}

|K(x, y)|2dxdy ≤ 1

40n
.

It follows that for any functionf such that|f | ≤ 1, we have

I2(f) + I3(f) ≤
1

10n
.
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In what follows, we fixN chosen as above.

Step 2:Control ofI1.

Note thatN being fixed, the numberNM is also fixed. For any functionf , we have

I1(f) ≤
(

sup
|x|≤NM,|y|≤NM

|f(x)− f(y)|2
)∫∫

|x|≤NM,|y|≤NM

|K(x, y)|2dxdy

≤ 4
(

sup
|x|≤NM

|f(x)− 1|2
)∫

|x|≤NM

|K(x, x)|dx.

It follows that for anyf such that

sup
|x|≤NM

|f(x)− 1| ≤ min
{
n−1,

(
20n ·

∫

|x|≤NM

K(x, x)dx

)−1/2 }
,

we have

I1(f) ≤
1

10n
.

For future use, let us denote

δn := min
{
n−1,

(
20n ·

∫

|x|≤NM

K(x, x)dx

)−1/2 }
. (3.33)

Step 3:Control ofI4.

By (1.7), we may write

I4(f) ≤
∫∫

R2

|f(x)− f(y)|2Φ(x− y)dxdy

=

∫∫

R2

|f(x+ t)− f(x)|2Φ(t)dxdt

=

∫∫

R2

|f̂(ξ)|2|ei2πtξ − 1|2Φ(t)dξdt

=

∫

R

|f̂(ξ)|2(2Φ̂(0)− Φ̂(ξ)− Φ̂(−ξ))dξ,

(3.34)

wheref̂ andΦ̂ are the Fourier transforms off andΦ respectively. Now we will apply a

result from [Boa67], which says that for a positive integrable functionΦ, condition (1.6)

is equivalent to

Φ̂(ζ + ξ) + Φ̂(ζ − ξ)− 2Φ̂(ζ) = O(|ξ|), uniformly in ζ , as|ξ| → 0. (3.35)

Takeζ = 0 in (3.35) and note that̂Φ is bounded, we see that there exists a numerical

constantC which only depends onΦ, such that

2Φ̂(0)− Φ̂(ξ)− Φ̂(−ξ) ≤ C|ξ|, for all ξ ∈ R.
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Substitue this inequality into the estimate (3.34), we obtain

I4(f) ≤ C

∫

R

|ξ||f̂(ξ)|2dξ.

Step 4:Construction ofϕn.

Recall the definition ofδn in (3.33). Let k ≥ n be large enough such that for any

|t| ≤ NMk−1, we have

|ei2πt − 1| ≤ δn.

We claim that there exists a non-negative even functionψn ∈ C∞
c (R) supported in a

( 1
k
)-neighbourhood of0, such that

∫

R

ψn(ξ)dξ = 1 and
∫

R

|ξ|ψn(ξ)
2dξ ≤ 1

10Cn
. (3.36)

Indeed, since the function 1
10Cn|ξ|

χ|ξ|≤1/k is not integrable, we can easily construct a

Schwartz functionψn such that
∫

R

ψn = 1 andψn(ξ) ≤
1

10Cn|ξ|χ|ξ|≤1/k, for anyξ ∈ R.

This last pointwise inequality implies thatsupp(ψn) ⊂ [−1/k, 1/k] and
∫

R

|ξ|ψn(ξ)
2dξ ≤

(
sup
ξ

|ξ|ψn(ξ)
)
·
∫

R

ψn(ξ)dξ ≤
1

10Cn
.

Now set

ϕn(x) = ψ̌n(x) =

∫

R

ψn(ξ)e
i2πxξdξ.

Thenϕn ∈ S (R), ϕn(0) = 1 and|ϕn(x)| ≤ 1. Moreover, sinceψn is an even real-valued

function,ϕn is real-valued. By construction, we have

I4(ϕn) ≤ C

∫

R

|ξ||ϕ̂n(ξ)|2dξ ≤
1

10n
.

Moreover, by our choice ofk, we know that if|ξ| ≤ k−1 and|x| ≤ NM , then we have

|ei2πxξ − 1| ≤ δn. Hence for any|x| ≤ NM ,

|ϕn(x)− 1| = |ϕn(x)− ϕn(0)| ≤
∫

R

|ei2πxξ − 1||ψn(ξ)|dξ

=

∫

|ξ|≤k−1

|ei2πxξ − 1||ψn(ξ)|dξ ≤ δn ≤ n−1.

By Step 2, the above inequality implies thatI1(ϕn) ≤ 1
10n

. It is readily seen that we also

haveIi(ϕn) ≤ 1
10n
, i = 2, 3, hence

VarPK
(T [ϕn]) ≤

4∑

i=1

Ii(ϕn) ≤
1

n
.

This completes the proof of the proposition.
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Remark3.1. The construction in (3.36) relies heavily on the non-integrability of1
|ξ|

in any

neighbourhood of the origin. Indeed, given a positive function a(ξ),
(∫

R

a(ξ)−1dξ

)−1

= inf

{∫

R

a(ξ)ψ(ξ)2dξ : ψ positive and
∫

R

ψ(ξ)dξ = 1

}
,

with the understanding that the left hand side equals to 0 ifa(ξ)−1 is not integrable.

Now we can prove Theorem1.4. Our proof follows the line of that of [GP, Thm. 6.1].

Proof of Theorem1.4. Let B ⊂ R be any bounded measurable subset. ChooseR > 0

large enough such thatB ⊂ [−R,R]. Let ϕn be a sequence of Schwartz functions con-

structed as in Lemma3.3. We have

T [ϕn](X) =
∑

x∈X∩B

ϕn(x)sgn(x) +
∑

x∈X\B

ϕn(x)sgn(x) =: I(n) + II(n).

First note that

‖I(n)−
∑

x∈X∩B

sgn(x)‖1 ≤ EPK

∑

x∈X

|1− ϕn(x)|χB(x)

≤ sup
x∈[−R,R]

|1− ϕn(x)| ·
∫

B

K(x, x)dx,

we have, passing to a subsequence if necessary,

I(n)
n→∞−−−−−−−−→

PK -almost surely
#B∩R+ −#B∩R− . (3.37)

By construction,limn→∞VarPK
(T [ϕn]) = 0, passing to a subsequence if necessary, we

have

I(n) + II(n)− EPK
T [ϕn]

n→∞−−−−−−−−→
PK -almost surely

0. (3.38)

Combining (3.37) and (3.38), for PK-almost every configurationX ∈ Conf(R), we get

#B∩R+(X)−#B∩R−(X) = lim
n→∞

(EPK
T [ϕn]− II(n)(X)) .

Since all the functionsEPK
T [ϕn]− II(n) areFR\B-measurable, thePK-almost sure limit

function#B∩R+−#B∩R− isFPK

R\B-measurable. The proof of Theorem1.4is complete.

3.2 Proof of Theorem A

Following [BO00, Thm. 5.3], whenz, z′ are fixed, we denote the Whittaker kernelKz,z′

simply byK. The change of variablesx 7→ 1/x transforms the Whittaker kernel to the

following new kernel

Knew(x, y) =
1

|xy|K(1/x, 1/y). (3.39)
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Note that the kernelKnew satisfies Condition1. Indeed, it is known in [BO00] that the

Whittaker kernelK is such that the operatorsP+KP+ andP−KP− are non-negative and

for any subsets∆1,∆2 both with positive distance from the origin such that∆1 ⊂ R+ and

∆2 ⊂ R−, the operatorsχ∆i
Kχ∆i

(i = 1, 2) are in trace-class, and the operatorχ∆2Kχ∆1

is Hilbert-Schmidt. Moreover the operator

K̂ := sgn ·K+ χR−

defines anorthogonal projectiononL2(R, dx). By the change of variablex 7→ 1/x, these

properties imply exactly that the kernelKnew satisfies Condition1.

Lemma 3.4.Assume that the parametersz, z′ satisfy the conditionsz′ = z̄ andz ∈ C\R.

ThenKnew satisfies Condition2.

Proof. From the explicit formula (1.2) for the Whittaker kernel, we see that the diagonal

valueK(x, x) is given by

K(x, x) = ±(P′
±(|x|)Q±(|x|)− Q

′
±(|x|)P±(|x|)), (3.40)

the sign± depends on the signsgn(x) of the real numberx ∈ R∗. Since the Whittaker

function converges to 0 exponentially fast at infinity, it isreadily seen that
∫

|x|>δ

K(x, x)dx <∞. (3.41)

This in turn implies the condition (1.5) for Knew around the origin.

As in the proof of [Bor, Prop. 4.1.3], forx > 0 near the origin, by expressing the

Whittaker functions in terms of confluent hypergeometric functions, the functionsP+ and

Q+ can be written as

P+(x) = x
z−z′

2 A1(x) + x
z′−z

2 B1(x)

Q+(x) = x
z−z′

2 A2(x) + x
z′−z

2 B2(x)
(3.42)

whereAi(x), Bi(x), i = 1, 2, are analytic in a neighbourhood of the origin. At infinity,

both functions tend to 0. HenceP+ andQ+ are bounded onR+. The fact thatP− andQ−

are bounded onR− can be proved similarly. It follows that there existsC > 0, such that

for anyx, y ∈ R
∗, |K(x, y)| ≤ C

|x− y| ,

or, equivalently,

for anyx, y ∈ R, |Knew(x, y)| ≤
C

|x− y| . (3.43)
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Now fix M > 0, let δ′ be a fixed number such that0 < δ′ < M/4. We claim that there

existsC ′ > 0, such that

if |x| ≥M, |y| ≥M and|x− y| ≤ δ′, then|Knew(x, y)| ≤ C ′. (3.44)

Indeed, by the choice ofδ′, any pair(x, y) verifying the hypothesis in (3.44) satisfies

sgn(x)sgn(y) > 0. If x > 0, y > 0, then

Knew(x, y) =
P+(

1
x
)Q+(

1
y
)− Q+(

1
x
)P+(

1
y
)

y − x

= −P+

(
1

x

)
Q
′
+

(
1

ξx,y

)
1

ξ2x,y
+ Q+

(
1

x

)
P
′
+

(
1

ξx,y

)
1

ξ2x,y
,

(3.45)

whereξx,y ∈ (min(x, y),max(x, y)). By (3.42), it is readily seen that

P
′
+(1/x) = O(x), Q

′
+(1/x) = O(x), asx→ ∞. (3.46)

From (3.45) and (3.46), it is readily seen that (3.44) holds forx > 0, y > 0. Similarly, by

analyzingP−,Q−, we also obtain (3.44) for x < 0, y < 0. Combining (3.43) and (3.44),

we see that the condition (1.7) in Condition2 holds forKnew, that is

if |x| ≥M, |y| ≥M , then|Knew(x, y)|2 ≤ Φ(x− y),

where

Φ(t) = (C ′)2χ|t|≤δ′ +
C2

t2
χ|t|≥δ′ ,

is a function satisfying the required condition (1.6).

4 Balanced Palm equivalence property

Recall that for a point processP on E and a positive integerk ∈ N, thek-th correlation

measureρk of P is a positive measure onE k, which is defined by the relation (2.17).

Definition 4.1. A point processP onE is said to havebalanced Palm equivalence prop-

erty with respect to the partitionE = E1 ⊔ E2, if for any positive integern ∈ N, for

ρ2n-almost every2n-tuplep ∈ E n
1 × E n

2 of distinct points, in other words,p is a2n-tuple

of distinct points ofE with a equal number of points fromE1 andE1, the Palm measure

Pp is equivalent toP.

For processes governed byJ-Hermitian kernels, the balanced Palm equivalence prop-

erty is the natural analogue of equivalence of Palm measuresof the same order for pro-

cesses with Hermitian kernels.
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4.1 Palm measures ofL-processes

In this section, we will study the correlation kernels of Palm measures forL-processes.

Recall the definition ofL-kernels in Definition1.1. Let µL be the determinantal mea-

sure induced by a kernelKL = L(1+L)−1, whereL is a kernel satisfying Condition3. By

Lemma1.6, the kernelKL is J-Hermitian. WhenL is fixed, we simply writeK = KL.

Shirai-Takahashi’s Theorem2.1 says that for almost everyp ∈ R∗ (with respect to the

measureK(x, x)dx), the Palm measureµp
L is a determinantal point process with the fol-

lowing kernel:

Kp(x, y) = K(x, y)− K(x, p)K(p, y)

K(p, p)
= K(x, y)− sgn(p)sgn(y)

K(x, p)K(y, p)

K(p, p)
.

(4.47)

Let p+ > 0 andp− < 0, our aim is to describe the correlation kernel of the Palm measure

µ
(p+,p−)
L , that is, the kernel

K(p+,p−) := (Kp+)p
−

= (Kp−)p
+

.

More generally, we are going to describe the kernelKp defined by the formula (2.20)

whenp = (p+1 , . . . p
+
n ; p

−
1 , . . . , p

−
n ) with p+i > 0 andp−i < 0 for i = 1, . . . , n. While it

is easily seen thatKp is aJ-Hermitian kernel satisfying Condition1 (transformed to the

version with singularity at origin), it is a priori not clearwhetherKp admits anL-kernel.

We now check that it does and that theL-kernel ofKp also satisfies Condition3.

Definition 4.2. Givenp = (p+, p−), wherep+ > 0, p− < 0, we define aboundedfunction

onR∗ by the formula

gp(x) =
x− p+

x− p−
χ{x>0} +

x− p−

x− p+
χ{x<0}. (4.48)

More generally, ifp = (p+1 , . . . p
+
n ; p

−
1 , . . . , p

−
n ) with p+i > 0 andp−i < 0 for i = 1, . . . , n,

we set

gp(x) =

n∏

i=1

(
x− p+i
x− p−i

χ{x>0} +
x− p−i
x− p+i

χ{x<0}

)
. (4.49)

Proposition 4.1. LetL be an operator satisfying Condition3. If p = (p+, p−) such that

p+ > 0, p− < 0, then we have

Kp

L = KgpLgp.

Corollary 4.2. LetL be an operator satisfying Condition3. Let

p = (p+1 , . . . p
+
n ; p

−
1 , . . . , p

−
n )

be a2n-tuple of real numbers such thatp+i > 0 andp−i < 0 for i = 1, . . . , n, then

Kp

L = KgpLgp.
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Proof. Whenp = (p+1 , p
−
1 ), this is just Proposition4.1. Now since the new kernel

g(p+1 ,p−1 )(x)L(x, y)g(p+1 ,p−1 )(y)

has a similar structure asL(x, y), that is, it satisfies Condition3, we can continue our

procedure and complete the proof of the corollary.

Proof of Proposition1.7. Note that in Corollary4.2, we obtainKp

L = KgpLgp. However,

by the special form ofL, we have (see Lemma4.11below for this fact)

gpLgp = fpLfp,

wheregp andfp are functions defined in (4.49) and (1.11) respectively. Hence we obtain

that

µp

L = µfpLfp.

Lemma 4.3. Let p ∈ R∗. Then the kernelKp(x, y) defined in(4.47) is J-Hermitian and

K̂p is an orthogonal projection. Moreover, ifp+ > 0, then

Ran(K̂p+) = Ran(K̂)⊖ Csgn(·)K(·, p+);

if p− < 0, then

Ran(K̂p−) = Ran(K̂)⊕ Csgn(·)K(·, p−).

Proof. It is clear that the kernelKp(x, y) is J-Hermitian. By Lemma3.1, we see that, for

anyp ∈ R∗, the following kernel

ℓp(x, y) = sgn(x)sgn(y)
K(x, p)K(y, p)

K(p, p)

induces the orthogonal projection onto the one dimensionalsubspaceCsgn(·)K(·, p). Let

us denote this one dimensional projection again byℓp. By definition, it is easy to see that

K̂p = K̂ − sgn(p)ℓp.

That is, ifp+ > 0, thenK̂p+ = K̂ − ℓp+ and if p− < 0, thenK̂p− = K̂ + ℓp−. Thus for

proving Lemma4.3, we only need to show that

sgn(·)K(·, p+) ∈ Ran(K̂) andsgn(·)K(·, p−) ∈ Ran(K̂)⊥. (4.50)

The first relation in (4.50) is equivalent to
∫

R

K(x, y)sgn(y)K(y, p+)dy + χR−(x)K(x, p+) = K(x, p+); (4.51)
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while the second is equivalent to
∫

R

K(x, y)sgn(y)K(y, p−)dy + χR−(x)K(x, p−) = 0. (4.52)

By using the fact that̂K2 = K̂ and comparing all the block coefficients of the operator

K̂2 andK̂, both written in the block form as in (3.25), we get





K++ = K2
++ −K+−K−+

K−− = K2
−− −K−+K+−

K++K+− = K+−K−−

K−+K++ = K−−K−+

.

The above first identity implies (4.51) for x > 0; the second one implies (4.52) for x < 0;

the third one implies (4.52) for x > 0 and the last one implies (4.51) for x < 0.

Remark4.1. AlthoughK̂ is not the reproducing kernel of the Hilbert subspaceRan(K̂),

the spaceRan(K̂) still possesses certain reproducing feature. Indeed, ifϕ ∈ Ran(K̂),

then we have the following identity of functions inL2(R):

χR+(x)ϕ(x) =

∫

R

K(x, y)ϕ(y)dy =

∫

R

sgn(y)K(y, x)ϕ(y)dy

= 〈ϕ, sgn(·)K(·, x)〉L2(R).

Now we can apply Lemma4.3toKp+ andKp− respectively and get the following

Proposition 4.4. Letp = (p+, p−) with p+ > 0, p− < 0, then

Ran(K̂p) =
(
Ran(K̂)⊖ Csgn(·)K(·, p+)

)
⊕ Csgn(·)Kp+(·, p−) (4.53)

=
(
Ran(K̂)⊕ Csgn(·)K(·, p−)

)
⊖ Csgn(·)Kp−(·, p+). (4.54)

We also need an explicit description of subspaces asRan(K̂L). It is convenient for us

to introduce a general condition on the kernelL.

Condition 4. TheL-operator is assumed to have the following block form with respect

to the decompositionL2(R∗, dx) = L2(R+, dx)⊕ L2(R−, dx):

L =

[
0 V

−V ∗ 0

]
, (4.55)

whereV : L2(R−) → L2(R+) is a bounded linear operator. Moreover, assume that the

operatorV is such that for anyε > 0, the operatorsχ(ε,∞)V andV χ(−∞,−ε) are Hilbert-

Schmidt.
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L-kernels satisfying Condition4 appear naturally in many contexts, see e.g. [BOO00].

Proposition 4.5 ([BO05], Prop. 5. 1). Let L be an operator as in Condition4, then the

operatorK̂L is an orthogonal projection, the rangeRan(K̂L) and its orthogonal comple-

ment are given by

Ran(K̂L) =
{
V h⊕ h : h ∈ L2(R−, dx)

}
; (4.56)

Ran(K̂L)
⊥ =

{
f ⊕ (−V ∗f) : f ∈ L2(R+, dx)

}
. (4.57)

Remark4.2. Let f : R∗ → C be a bounded function, then

fLf =

[
0 fχR+V fχR−

−fχR−V
∗fχR+ 0

]
=

[
0 f+V f−

−f−V ∗f+ 0

]
.

Proof of Proposition4.1. SinceK ↔ K̂ is a bijection, to showKp

L = KgpLgp is equiva-

lent to show the coincidence of two orthogonal projections:

K̂p

L = K̂gpLgp. (4.58)

By Proposition4.5and Remark4.2, we have

Ran(K̂gpLgp) =
{
g+p V (g−p h)⊕ h : h ∈ L2(R−, dx)

}
.

Hence to show the identity (4.58), it suffices to show the coincidence of the following two

subspaces

Ran(K̂p

L) =
(
Ran(K̂L)⊖ Csgn(·)KL(·, p+)

)
⊕ Csgn(·)Kp+

L (·, p−)

and

Ran(K̂gpLgp) =
{
g+p V (g−p h)⊕ h : h ∈ L2(R−, dx)

}
. (4.59)

Step 1: If ϕ ∈ Ran(K̂L)⊖ Csgn(·)KL(·, p+), thenϕ ∈ Ran(K̂gpLgp).

Recall that

Ran(K̂L) =
{
V h⊕ h : h ∈ L2(R−, dx)

}
.

Hence the hypothesisϕ ∈ Ran(K̂L)⊖Csgn(·)KL(·, p+) is equivalent to the existence of

a functioinh ∈ L2(R−) such that

ϕ = h+ V (h) andϕ ⊥ sgn(·)KL(·, p+).

By Remark4.1, this last condition can be translated to the conditionV (h)(p+) = 0, that

is

A(p+)

∫

R−

A(y)h(y)

p+ − y
dy = 0.
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SinceA is assumed to have full support, the set{p ∈ R∗ : A(p) = 0} is negligible, hence

we may assume thatA(p+) 6= 0. Thus we have

∫

R−

A(y)h(y)

p+ − y
dy = 0.

Now we want to show that there existsh1 ∈ L2(R−) such that

h+ V (h) = h1 + g+p V (h1g
−
p ).

The above identity is equivalent to

h = h1 andV (h) = g+p V (h1g
−
p ).

Hence what we need to show is: once we haveV (h)(p+) = 0, then

V (h) =
x− p+

x− p−
V (
x− p−

x− p+
h).

The above assertion is equivalent to

1

x− p+
V (h)(x) = V (

1

x− p+
h)(x). (4.60)

If we denotek = h
x−p+

, then the identity (4.60) is equivalent to

[x, V ]k = 0, (4.61)

where[x, V ] is the commutator between the multiplicationx andV . Since the commuta-

tor [x, V ] has a kernel given by the formulaχR+(x)A(x)A(y)χR−(y), hence the identity

(4.61) can be checked as follows:

([x, V ]k)(x) = χR+(x)A(x)

∫

R−

A(y)k(y)dy = χR+(x)A(x)

∫

R−

A(y)h(y)

y − p+
dy = 0.

Step 2: If ϕ = sgn(·)Kp+

L (·, p−), thenϕ ∈ Ran(K̂gpLgp).

By (4.59), what we need to show is that

ϕ(x)χR+(x) =
x− p+

x− p−
V

(
x− p−

x− p+
ϕ(x)χR−(x)

)
(x). (4.62)

This is in turn equivalent to the following assertion: forx > 0, we have

Kp+

L (x, p−) = −x− p+

x− p−
V

(
x− p−

x− p+
Kp+

L (·, p−)
)
(x). (4.63)
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By a result in [IIKS90, Section II], under Condition3, the kernelK(x, y) = KL(x, y)

has the following integrable form

K(x, y) =
F1(x)G1(y) + F2(x)G2(y)

x− y
,

where 



(1 + L)F1 = A+

(1 + L)F2 = A−

(1 + L∗)G1 = A−

(1 + L∗)G2 = A+

.

Note thatL = V − V ∗, and sinceV, V ∗ has range inL2(R+), L
2(R−) respectively, the

above equation system is equivalent to




(F1)− − V ∗F1 = 0, (F1)+ + V F1 = A+

(F2)− − V ∗F2 = A−, (F2)+ + V F2 = 0
(G1)− + V ∗G1 = A−, (G1)+ − V G1 = 0
(G2)− + V ∗G2 = 0, (G2)+ − V G2 = A+

. (4.64)

Moreover, we have

F1(x)G1(x) + F2(x)G2(x) = 0. (4.65)

From this, by l’Hôpital’s rule, we have

K(x, x) = F ′
1(x)G1(x) + F ′

2(x)G2(x). (4.66)

Forx > 0 andx 6= p+, we have

1

A+(x)
V

(
F1

x− p+

)
(x) =

∫

R−

A−(y)F1(y)

(x− y)(y − p+)
dy

=
1

x− p+

∫

R−

(
A−(y)F1(y)

x− y
− A−(y)F1(y)

p+ − y

)
dy

=
1

x− p+

[(V F1)(x)

A+(x)
− (V F1)(p

+)

A+(p+)

]

=
1

x− p+

(A+(x)− F1(x)

A+(x)
− A+(p+)− F1(p

+)

A+(p+)

)

=
1

x− p+

(−F1(x)

A+(x)
+
F1(p

+)

A+(p+)

)
.

Similarly, if x > 0 andx 6= p+, then

1

A+(x)
V

(
F2

x− p+

)
(x) =

1

x− p+

[(V F2)(x)

A+(x)
− (V F2)(p

+)

A+(p+)

]

=
1

x− p+

(−F2(x)

A+(x)
+
F2(p

+)

A+(p+)

)
.
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We thus get

V

(
x− p−

x− p+
K(x, p−)

)
(x) = −x− p−

x− p+
K(x, p−) +

p+ − p−

x− p+
K(p+, p−)

A+(p+)
A+(x). (4.67)

Now note that we have

y − p−

(x− y)(y − p+)2
=

x− p−

(x− p+)2
1

x− y
− x− p−

(x− p+)2
1

p+ − y
+
p+ − p−

x− p+
1

(p+ − y)2
.

(4.68)

Givenf ∈ L2(R−, dx), we have
∫

R−

A−(y)f(y)

(x− y)2
dy = − d

dx

∫

R−

A−(y)f(y)

x− y
dy = − d

dx

[
V (f)

A+

]
(x). (4.69)

Applying identities (4.68) and (4.69) and by denoting

H(x) = F1(x)G1(p
+) + F2(x)G2(p

+),

we get

V
(

x−p−

x−p+
K(x, p+)

)
(x)

A+(x)
=

∫

R−

(y − p−)A−(y)H(y)

(x− y)(y − p+)2
dy

=
x− p−

(x− p+)2

∫

R−

A−(y)H(y)

x− y
dy − x− p−

(x− p+)2

∫

R−

A−(y)H(y)

p+ − y
dy

+
p+ − p−

x− p+

∫

R−

A−(y)H(y)

(p+ − y)2
dy

=
x− p−

(x− p+)2

[V (H)(x)

A+(x)
− V (H)(p+)

A+(p+)

]
− p+ − p−

x− p+
d

dx

[
V (H)

A+

]
(p+).

By (4.64), for x > 0, we have




d
dx

(
V (F1)
A+

)
(x) =

F ′
1(x)A

+(x)−F1(x)
d
dx

A+(x)

A+(x)2

d
dx

(
V (F2)
A+

)
(x) =

F ′
2(x)A

+(x)−F2(x)
d
dx

A+(x)

A+(x)2

.

Keeping in mind that the identities (4.65) and (4.66) hold, we obtain

V

(
x− p−

x− p+
K(x, p+)

)
(x) =− x− p−

x− p+
K(x, p+) +

p+ − p−

x− p+
K(p+, p+)

A+(p+)
A+(x). (4.70)

Combining identities (4.67) and (4.70), we get

V

(
x− p−

x− p+

[
K(p+, p+)K(x, p−)−K(x, p+)K(p+, p−)

])
(x)

= −x− p−

x− p+

{
K(p+, p+)K(x, p−)−K(x, p+)K(p+, p−)

}
.

(4.71)



36 Alexander I. Bufetov, Yanqi Qiu

Since

K(p+, p+)Kp+(x, p−) = K(p+, p+)K(x, p−)−K(p+, p−)K(x, p+),

the identities (4.63) and (4.71) are equivalent. Thus we complete the proof of Step 2.

Remark4.3. Denote

ψ(x) :=
x− p−

x− p+
ϕ(x) =

x− p−

x− p+
sgn(·)Kp+

L (·, p−),

then we can show that the identity (4.62) is equivalent toψ+ = KL(ψ), which is in turn

equivalent toψ = K̂L(ψ). Hence in Step 2, we in fact proved that

x− p−

x− p+
sgn(·)Kp+

L (·, p−) ∈ Ran(K̂L).

Step 3:Now we want to prove thatRan(K̂p

L) ⊃ Ran(K̂gpLgp) , this is equivalent to

Ran(K̂p

L)
⊥ ⊂ Ran(K̂gpLgp)

⊥. (4.72)

By using (4.54), we have

Ran(K̂p

L)
⊥ =

(
Ran(K̂L)

⊥ ⊖ Csgn(·)KL(·, p−)
)
⊕ Csgn(·)Kp−

L (·, p+).

From (4.57), we know that

Ran(K̂L)
⊥ =

{
f1 ⊕ (−V ∗f1) : f1 ∈ L2(R+, dx)

}
,

Ran(K̂gpLgp)
⊥ =

{
f2 ⊕

(
− g−p V

∗(g+p f2)
)
: f2 ∈ L2(R+, dx)

}
.

Now after switching the rôles ofL2(R−, dx) andL2(R+, dx); the kernelsV and−V ∗; the

pairs(p+, p−) and(p−, p+); the functionsx−p+

x−p−
and x−p−

x−p+
; and also the pairs of vectors

(sgn(·)KL(·, p+), sgn(·)Kp+

L (·, p−)) and (sgn(·)KL(·, p−), sgn(·)Kp−

L (·, p+)), we arrive

exactly at the same situation as above in provingRan(K̂p

L) ⊂ Ran(K̂gpLgp). Hence we

may obtain (4.72) by repeating the same arguments in Step 1 and Step 2.

4.2 Sufficient condition for equivalence of twoL-processes

In this section, we formulate a sufficient condition for twoL-processes to be equivalent

on the level of theirL-kernels.

Lemma 4.6. LetL be an operator satisfying Condition4. Then the operatorKL is a J-

self-adjoint operator satisfying all the conditions of Theorem1.3. In particular,KL is the

correlation kernel of a determinantal point process onR∗.
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Lemma 4.7. LetL be an operator satisfying Condition4. Let g : R → R be a bounded

Borel function. Then the operatorgLg satisfies also Condition4. Moreover, the operator

KgLg = gLg(1 + gLg)−1 is given by

KgLg = gKL(1 + (g2 − 1)KL)
−1g. (4.73)

Condition 5. Assume thatL is a kernel given as in (4.55) such that the operatorV :

L2(R−) → L2(R+) satisfying the following condition: for anyε > 0, the operators

χ(ε,∞)V , V χ(−∞,−ε), χ(0,ε)xV andV yχ(−ε,0) are Hilbert-Schmidt.

Lemma 4.8. AnL-kernel satisfying Condition3 is anL-kernel satisfying Condition5.

Recall that we denote byµL the determinantal point process onR∗ whose correlation

kernel isKL = L(1 + L)−1.

Theorem 4.9. LetL be a kernel satisfying Condition5. Assume thatg is a bounded real

function such that|g(x) − 1| ≤ C|x| and there existsε ∈ (0, 1) such that the subset

{x ∈ R∗ : |g(x)− 1| > ε} has a positive distance from0. Then the following limit

SL[log g
2](X) := lim

δ→0+

∑

x∈X,|x|≥δ

log g(x)2 − EµL


 ∑

x∈X,|x|≥δ

log g(x)2




exists forµL-almost every configurationX ∈ Conf(R∗). Moreover, we have

exp(SL[log g
2]) ∈ L1(Conf(R∗), µL)

and we have

µgLg(dX) =
exp(SL[log g

2](X))

EµL

[
exp(SL[log g2])

] · µL(dX).

4.3 Remarks on Conditions3, 4, 5 and Proofs of Lemmas4.6, 4.7, 4.8

Remark4.4. Let L be an operator as in Condition4, thenKL has the following block

form:

KL =

[
V V ∗(1 + V V ∗)−1 V (1 + V ∗V )−1

−V ∗(1 + V V ∗)−1 V ∗V (1 + V ∗V )−1

]
. (4.74)

Remark4.5. By the block form (4.74) of the operatorKL and the following elementary

order inequalities for positive operators

1

1 + ‖V ‖2V V
∗ ≤ V V ∗(1 + V V ∗)−1 ≤ V V ∗
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and
1

1 + ‖V ‖2V
∗V ≤ V ∗V (1 + V ∗V )−1 ≤ V ∗V,

we may formulate Condition5 in terms of the kernelKL as follows: for anyε > 0, we

have
∫

|x|≥ε

KL(x, x)dx <∞ and
∫

|x|≤ε

x2KL(x, x)dx <∞. (4.75)

In particular, by [Sos00, Thm. 4], the first inequality in (4.75) implies that the relation

#R\(−ε,ε)(X) <∞ (4.76)

holds forPKL
-almost every configurationX ∈ Conf(R∗).

Remark4.6. Finite rank perturbation of the kernelKL will not affect the inequalities

(4.75).

Remark4.7. In Condition3, we require the boundedness ofL and hence ofV . In general,

an operatorV given by a kernel

V (x, y) =
A+(x)A−(y)

x− y

such thatA ∈ L2(R∗, dx), is not necessarily bounded. See e.g., Propositions 2.2 and2.3

in [Ols].

Remark4.8. The operator norm of the operatorKL given in (4.74) satisfies

‖KL‖ < 1. (4.77)

Indeed, by Proposition4.5, the operatorKL is J-self-adjoint andK̂ is an orthogonal

projection, by [Lyt13, Prop. 7], we have‖KL‖ ≤ 1. We shall exclude the possibility

‖KL‖ = 1. Indeed, if this were the case (i.e.,‖KL‖ = 1), then by [Lyt13, Prop. 8], we

would get
∥∥∥∥∥

[
V V ∗(1 + V V ∗)−1 0

0 V ∗V (1 + V ∗V )−1

]∥∥∥∥∥ = 1. (4.78)

However, by functional calculus, we have

‖V V ∗(1 + V V ∗)−1‖ = ‖V ∗V (1 + V ∗V )−1‖ =
‖V ‖2

1 + ‖V ‖2 < 1.

Hence (4.78) is not valid. This completes the proof of (4.77).

We will often use
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Remark4.9. Let a, b be two bounded linear operator on a Hilbert space. If1 + ab is

invertible, then so is1 + ba. We have

a(1 + ba)−1 = (1 + ab)−1a. (4.79)

Proof of Lemma4.8. Let L be a kernel satisfying Condition3. Let ε > 0. The simple

estimate:

max
(∫ ∞

ε

dx

∫ 0

−∞

∣∣∣∣
A+(x)A−(y)

x− y

∣∣∣∣
2

dy,

∫ ∞

0

dx

∫ −ε

−∞

∣∣∣∣
A+(x)A−(y)

x− y

∣∣∣∣
2

dy
)

≤ ‖A+‖22‖A−‖22
ε2

shows that the operators with the kernels

χ(ε,∞)(x)
A+(x)A−(y)

x− y
and

A+(x)A−(y)

x− y
χ(−∞,−ε)(y)

are Hilbert-Schmidt.

The inequality:

max

(∫ ε

0

dx

∫ 0

−∞

x2
∣∣∣∣
A+(x)A−(y)

x− y

∣∣∣∣
2

dy,

∫ ∞

0

dx

∫ 0

−ε

y2
∣∣∣∣
A+(x)A−(y)

x− y

∣∣∣∣
2

dy

)

≤ ‖A+‖22‖A−‖22

implies thatχ(0,ε)xV andV yχ(−ε,0) are also Hilbert-Schmidt.

The Lemma4.8is proved completely.

Proof of Lemma4.6. By Proposition4.5, the operatorK̂L is self-adjoint, henceKL is

J-self-adjoint. By Remark4.4, the operatorsP+KLP+ andP−KLP− are non-negative.

Let ∆1,∆2 be compact subsets ofR∗ such that∆1 ⊂ R+ and∆2 ⊂ R−. We now

check that the operatorsχ∆i
KLχ∆i

(i = 1, 2) are in trace-class. Let us verify this for

i = 1. SinceV V ∗ is positive, we have

V V ∗(1 + V V ∗)−1 ≤ V V ∗,

it follows that

0 ≤ χ∆1KLχ∆1 = χ∆1V V
∗(1 + V V ∗)−1χ∆1 ≤ χ∆1V V

∗χ∆1 .

The assumption thatχ∆1V is a Hilbert-Schmidt operator now implies thatχ∆1KLχ∆1 is

a trace-class operator. The case ofi = 2 is similar.

Finally, let us verify thatχ∆2KLχ∆1 is a Hilbert-Schmidt operator. Indeed, we have

χ∆2KLχ∆1 = −χ∆2V
∗(1 + V V ∗)−1χ∆1 = −χ∆2(1 + V ∗V )−1V ∗χ∆1 .
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Since the space of Hilbert-Schmidt operators is an ideal of the algebraL (L2(R)) of all

bouned linear operators, the assumption thatV ∗χ∆1 = (χ∆1V )
∗ is a Hilbert-Schmidt

operator implies thatχ∆2KLχ∆1 is a Hilbert-Schmidt operator. The proof is complete.

Proof of Lemma4.7. We have

gLg =

[
0 gχR+V gχR−

−gχR−V
∗gχR+ 0

]
.

Sinceg is bounded, the operatorgχR+V gχR− satisfies all the conditions in Condition4

imposed on the operatorV .

Seta = g andb = gKL(1−KL)
−1. The

1 + gLg = 1 + gKL(1−KL)
−1g = 1 + ba

is invertible. By Remark4.9, the operator1+ab = 1+g2KL(1−KL)
−1 is also invertible.

The identity (4.79) now yields

KgLg = gKL(1−KL)
−1g(1 + gKL(1−KL)

−1g)−1

= gKL(1−KL)
−1(1 + g2KL(1−KL)

−1)−1g

= gKL(1−KL + g2KL)
−1g,

which is the desired identity. The proof is complete.

4.4 A preliminary version of Theorem 4.9

As usual, given a functionh defined onR∗, we define the multiplicative functionalΨ[h] :

Conf(R∗) → R by the following formula

Ψ[h](X) =
∏

x∈X

h(x), X ∈ Conf(R∗), (4.80)

provided the right-hand side converges absolutely.

Proposition 4.10. Let L be an operator satisfying Condition5. If g is a bounded real

function defined onR∗ such thatsupp(g2 − 1) has a positive distance from the origin.

Then

µgLg =
Ψ[g2]

EµL
(Ψ[g2])

· µL.

Proof. By general theory on determinantal measures, it suffices to prove that for any

continuous real functionh such thatsupp(h− 1) has a positive distance from the origin,

we have

EµgLg
(Ψ[h]) =

EµL
(Ψ[h]Ψ[g2])

EµL
(Ψ[g2])

=
EµL

(Ψ[hg2])

EµL
(Ψ[g2])

. (4.81)
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Fix such a functionh, set∆ = supp(h − 1) ∪ supp(g2 − 1). Then∆ also has a positive

distance from the origin. Obviously,supp(hg2 − 1) ⊂ ∆. By definition of determinantal

point process and Theorem2.7, we have

EµgLg
(Ψ[h]) = det(1 + (h− 1)χ∆ ·KgLg · χ∆);

EµL
(Ψ[hg2]) = det(1 + (hg2 − 1)χ∆ ·KL · χ∆);

EµL
(Ψ[g2]) = det(1 + (g2 − 1)χ∆ ·KL · χ∆).

Recall that by by Lemma4.7, the operatorK(g) satisfies all the conditions of Theorem

1.3and is given byKgLg = gKL(1 + (g2 − 1)KL)
−1g. By (2.22), we have

K∆
L = χ∆ ·KL · χ∆ ∈ L1|2(L

2(R)) ⊂ L2(L
2(R)).

By Remark (4.9), we get

χ∆ ·KgLg · χ∆ = gχ∆KL(1 + (g2 − 1)KL)
−1χ∆g

= gχ∆KL

[
(1 + χ∆(g

2 − 1)χ∆KL)
−1χ∆

]
g

= gχ∆KL

[
χ∆(1 + (g2 − 1)χ∆KLχ∆)

−1
]
g

= gK∆
L (1 + (g2 − 1)K∆

L )
−1g.

(4.82)

Observe that we can write

K∆
L (1 + (g2 − 1)K∆

L )
−1

=
[
K∆

L (1 + (g2 − 1)K∆
L ) +K∆(1− g2)K∆

L

]
(1 + (g2 − 1)K∆

L )
−1

=K∆
L +K∆

L (1− g2)K∆
L (1 + (g2 − 1)K∆

L )
−1,

then by Hölder inequality, we have

‖K∆
L (1− g2)K∆

L ‖1 ≤ ‖K∆
L ‖2‖(1− g2)K∆

L ‖2 ≤ ‖g2 − 1‖∞‖K∆
L ‖22 <∞,

that is, the operatorK∆
L (1− g2)K∆

L (1 + (g2 − 1)K∆
L )

−1 is in trace-class. It follows that

K∆
L (1 + (g2 − 1)K∆

L )
−1 ∈ L1|2(L

2(R)).

Thus we have

det(1 + (h− 1)χ∆KgLgχ∆) = det(1 + (h− 1)gK∆
L (1 + (g2 − 1)K∆

L )
−1g)

= det(1 + (h− 1)g2K∆
L (1 + (g2 − 1)K∆

L )
−1).

An application of the identity

1 + (h− 1)g2K∆
L (1 + (g2 − 1)K∆

L )
−1 =

[
1 + (hg2 − 1)K∆

L

]
(1 + (g2 − 1)K∆

L )
−1
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yields that

det(1 + (h− 1)χ∆KgLgχ∆) =
det(1 + (hg2 − 1)K∆

L )

det(1 + (g2 − 1)K∆
L )

.

This shows the desired identity (4.81). The proof of Proposition4.10is complete.

The following lemma will be useful for us.

Lemma 4.11.Assume thatL is an operator satisfying Condition4.

• Letα : R∗ → C be any measurable function with non-zero constant modulus.Then

αLα−1 induces a determinantal measureµαLα−1 = PK
αLα−1

andµαLα−1 = µL.

• Letλ 6= 0 be a numerical constant and letcλ be the function defined by

cλ = λχR+ + λ−1χR−. (4.83)

ThencλLcλ = L.

Proof. By assumptionα = aγ with a = |α| > 0 a numerical constant andγ a measurable

function with values in the unit circle. We shall see thatαLα−1 satisfies also Condition4.

Indeed,

αLα−1 = γLγ̄ =

[
0 γ+V γ̄−

−γ−V ∗γ̄+ 0

]
=

[
0 γ+V γ̄−

−(γ+V γ̄−)∗ 0

]
.

Hence the determinantal measureµαLα−1 is well-defined. The coincidence ofµαLα−1 and

µL is an easy consequence of the fact thatKαLα−1 = αKLα
−1 and

det(α(xi)KL(xi, xj)α(xj)
−1)1≤i,j≤n = det(KL(xi, xj))1≤i,j≤n.

The second assertion is an easy consequence of the followingidentity

[
λ 0
0 λ−1

] [
0 V

−V ∗ 0

] [
λ 0
0 λ−1

]
=

[
0 V

−V ∗ 0

]
.

4.5 Regularization of additive and multiplicative functionals

4.5.1 Additive functionals

Assume now thatL is a kernel satisfying Condition5. Recall that we set

µL = PKL
.
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Let f : R∗ → C be a Borel function. Then we write

T [f ](X) = S[f ◦](X) =
∑

x∈X

sgn(x)f(x), (4.84)

provided the right hand side converges absolutely, otherwise,T [f ] is not defined at the

configurationX.

If T [f ] is µL-almost surely defined andT [f ] ∈ L1(Conf(R
∗), µL), then we set

TL[f ] := T [f ]− EµL
(T [f ]). (4.85)

Following the idea in [Buf14], we will now provide a sufficient condition such thatTL[f ]

can be defined even whenT [f ] is not. Set

VL(f) =
1

2

∫∫

R2

|f(x)− f(y)|2|KL(x, y)|2dxdy. (4.86)

Note that for anyλ ∈ C, we haveVL(f + λ) = VL(f). Note also that

VL(f) ≤
∫

R

|f(x)|2KL(x, x)dx. (4.87)

By Lemma3.2, if T [f ] ∈ L2(Conf(R
∗), µL), thenVL(f) <∞ and

VarµL
(T [f ]) = EµL

|TL[f ]|2 = VL(f). (4.88)

Definition 4.3. Let N0(L) be the linear space of Borel functionsf : R∗ → C such that

there existε > 0, depending onf , so that

supp(f) ⊂ {x ∈ R : |x| ≥ ε} and
∫

R

|f(x)|2KL(x, x)dx <∞.

Definition 4.4. Let N (L) be the linear space of Borel functionsf : R∗ → C such that

VL(f) =
1

2

∫∫

R2

|f(x)− f(y)|2|KL(x, y)|2dxdy <∞; (4.89)
∫

|x|≥ε

|f(x)|2KL(x, x)dx <∞, for all ε > 0; (4.90)

lim
ε→0+

∫∫

|x|≤ε,|y|≥ε

|f(x)|2|KL(x, y)|2dxdy = 0. (4.91)

We endow the linear spaceN (L) with a Hilbert space structuredN (L) by the formula

dN (L)(f, g) = ‖f − g‖NL
:=
√

VL(f − g).
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Remark4.10. If f ∈ N0(L), then by Cauchy-Buniakovsky-Schwarz inequality and the

first inequality in (4.75), we have

∫

R

|f(x)|KL(x, x)dx ≤
(∫

R

|f(x)|2KL(x, x)dx ·
∫

supp(f)

KL(x, x)dx

)1/2

<∞.

This means thatT [f ] ∈ L1(Conf(R
∗), µL), henceTL[f ] is well-defined by formula

(4.85). Moreover, by the relations (4.87) and (4.88), we actually have

TL[f ] ∈ L2(Conf(R
∗), µL).

Proposition 4.12.We have the inclusion

N0(L) ⊂ N (L).

Moreover,N0(L) is dense inN (L). More precisely, iff is a function inN (L), then for

anyε > 0, the truncated functionfχR\(−ε,ε) is in N0(L) and we have

lim
ε→0+

VL(fχR\(−ε,ε) − f) = 0. (4.92)

Proof. The inclusionN0(L) ⊂ N (L) follows from their definitions and the following

inequality
∫∫

|x|≤ε,|y|≥ε

|f(x)|2|KL(x, y)|2dxdy ≤
∫

|x|≤ε

|f(x)|2KL(x, x)dx,

By definition ofN (L), we havefχR\(−ε,ε) ∈ N0(L). Since

VL(fχR\(−ε,ε) − f) =
1

2

∫∫

R2

|fχ[−ε,ε](x)− fχ[−ε,ε](y)|2|KL(x, y)|2dxdy

≤
∫∫

|x|≤ε,|y|≤ε

|f(x)− f(y)|2|KL(x, y)|2dxdy +
∫∫

|x|≤ε,|y|≥ε

|f(x)|2|KL(x, y)|2dxdy

+

∫∫

|x|≥ε,|y|≤ε

|f(y)|2|KL(x, y)|2dxdy

=

∫∫

|x|≤ε,|y|≤ε

|f(x)− f(y)|2|KL(x, y)|2dxdy + 2

∫∫

|x|≤ε,|y|≥ε

|f(x)|2|KL(x, y)|2dxdy.

By the assumptionVL(f) <∞ and the relation (4.91), we get the desired relation (4.92).

Proposition 4.13.The isometric embedding

T : N0(L) →֒ L2(Conf(R
∗), µL)

f 7→ TL[f ]

extends uniquely to an isometric embeddingN (L) →֒ L2(Conf(R
∗), µL).
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Definition 4.5. Given a functionf ∈ N (L), by slightly abusing the notation, we de-

note byTL[f ] the image off under the embedding mapN (L) →֒ L2(Conf(R
∗), µL)

in Proposition4.13. We will call TL[f ] the normalized twisted additive functional corre-

sponding tof andµL.

Remark4.11. For allf ∈ N (L), we haveEµL
(TL[f ]) = 0.

Remark4.12. If f ∈ N (L), then up to passing to a sequenceεn tending to zero if nec-

essary, we may write the followingpointwiserelation: forµL-almost every configuration

X ∈ Conf(R∗),

TL[f ](X) = lim
ε→0+


 ∑

x∈X,|x|≥ε

sgn(x)f(x)− EµL

∑

x∈X,|x|≥ε

sgn(x)f(x)


 . (4.93)

4.5.2 Multiplicative functionals

Notation. Let f : R∗ → C be a measurable function, denote

f+ = fχR+ andf− = fχR−.

If the essential supportsupp(f−) of the functionf− is the whole negative semi-axisR−,

then we may define

f∨(x) := f+(x) + (f−(x))−1. (4.94)

Definition 4.6. Given a functiong : R∗ → [0,∞] such that{x ∈ R∗ : g(x) = 0} is

Lebesgue negligible andlog g ∈ N (L), then we set

Ψ̃L[g] = exp(TL[log(g
∨)]),

where by definition (4.94), g∨(x) := g(x)χR+(x)+g(x)
−1χR−(x). If moreover,EµL

Ψ̃L[g]

is finite, then we define

ΨL[g] =
Ψ̃L[g]

EµL
Ψ̃L[g]

.

Remark4.13. If g is a function such thatlog g ∈ N (L), thenEµL
Ψ̃L[g] ∈ [1,∞]. Indeed,

by Jensen’s inequality and Remark4.11, we have

EµL
Ψ̃L[g] = EµL

exp(TL[log(g
∨)]) ≥ exp(EµL

(TLlog g
∨)) = 1. (4.95)

The formalism of regularized multiplicative functionalΨL[g] now allows us state the

following
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Theorem 4.14.Let g : R∗ → [0,∞) be a non-negative bounded function. Assume that

there existsε ∈ (0, 1) such thatEε = {x ∈ R∗ : |g(x)2 − 1| > ε} has a positive distance

from the origin and
∫

R

|g(x)− 1|2KL(x, x)dx <∞. (4.96)

Thenlog g ∈ N (L) andΨ̃L[g
2] ∈ L1(Conf(R

∗), µL). Moreover, we have

µgLg = ΨL[g
2] · µL. (4.97)

4.6 Proof of Theorem4.14

Definition 4.7. Let M2(L) denote the set of functionsg onR such that

(1) 0 < infR g ≤ supR g <∞;

(2)
∫
R
|g(x)− 1|2KL(x, x)dx <∞.

Recall that by definition (4.94), to a functiong, we asigng∨ in the following way:

g∨(x) := g(x)χR+(x) + g(x)−1χR−(x).

Proposition 4.15. Let g ∈ M2(L). Thenlog g and log(g∨) are functions inN (L). In

particular, the functional̃ΨL[g] = exp(TL[log(g
∨)]) is well-defined. Moreover, we have

µgLg = ΨL[g
2] · µL. (4.98)

We postpone its proof to the next section.

Now we are in a position to prove Theorem4.14. But first, let us note that for a function

g as in Proposition4.10, the regularized multiplicative functionalΨL[g
2] defined as above

is also expressed byΨL[g
2] = CΨ[g2] for a certain constantC > 0.

Proof of Theorem4.14. Let ε ∈ (0, 1) be such that{x ∈ R∗ : |g(x) − 1| > ε} has a

positive distance from the origin. Setg1, g2 to be two positive functions determined by

g1 = (g − 1)χ{x∈R∗:|g(x)−1|≤ε} + 1. (4.99)

g2 = (g − 1)χ{x∈R∗:|g(x)−1|>ε} + 1. (4.100)

By definition,g = g1g2. Note that1 − ε ≤ infR g1 ≤ supR g1 ≤ 1 + ε. This combining

with assumption (4.96) shows that the functiong1 is in M2(L). Hence by Proposition

4.15, we have

µg1Lg1 = ΨL[g
2
1] · µL. (4.101)
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Now sincesupp(g2 − 1) has a positive distance from the origin andgLg = g2(g1Lg1)g2,

by Proposition4.10, we have

µgLg =
Ψ[g22]

Eµg1Lg1
Ψ[g22]

· µg1Lg1. (4.102)

Combining (4.101) and (4.102), we get

µgLg =
Ψ[g22]

Eµg1Lg1
Ψ[g22]

·ΨL[g
2
1] · µL. (4.103)

Since

Ψ[g22]

Eµg1Lg1
Ψ[g22]

·ΨL[g
2
1] = C1Ψ̃L[g

2
2] · C2Ψ̃L[g

2
1] = C1C2Ψ̃L[g

2
1g

2
2] = C1C2Ψ̃L[g

2],

and ∫
C1C2Ψ̃L[g

2]dµL = 1,

we get
Ψ[g22]

Eµg1Lg1
Ψ[g22]

·ΨL[g
2
1] = ΨL[g

2],

hence we complete the proof of the desired relation (4.97).

4.7 Proof of Proposition4.15

Let us endowM2(L) with a metricdM2(L) by setting

dM2(L)(g1, g2) =

√∫

R

|g1(x)− g2(x)|2KL(x, x)dx.

By definition, M2(L) is a semigroup under pointwise multiplication. Clearly, ifg is a

function inM2(L), then so isg∨.

We shall first prove the following

Lemma 4.16.Let g ∈ M2(L). Thenlog g and log(g∨) are functions inN (L).

Proof of Lemma4.16. Assume thatg ∈ M2(L). Then there existc, C > 0 such that

c ≤ g(x) ≤ C. The boundedness of the functionlog g combining with the assumption

(4.75) yields the inequality (4.90) for log g.

Now since the function| log t − (t − 1)|/(t − 1)2 is bounded on the interval[c, C],

there existsC ′ > 0 such that

| log g(x)− (g(x)− 1)| ≤ C ′(g(x)− 1)2. (4.104)
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By takingC ′′ = 1 + C ′max(|C − 1|, |c− 1|), we have

| log g(x)| ≤ C ′′|g(x)− 1|. (4.105)

It follows that
∫

R

| log g(x)|2KL(x, x)dx ≤ (C ′′)2
∫

R

|g(x)− 1|2KL(x, x)dx <∞.

Hence by applying (4.87), we haveVL(log g) <∞. Following from (4.105), we also have

lim sup
ε→0+

∫∫

|x|≤ε,|y|≥ε

| log g(x)|2|KL(x, y)|2dxdy

≤ lim
ε→0+

(C ′′)2
∫∫

|x|≤ε,|y|≥ε

|g(x)− 1|2|KL(x, y)|2dxdy

≤ lim
ε→0+

(C ′′)2
∫

|x|≤ε

|g(x)− 1|2KL(x, x)dx = 0.

This completes the proof thatlog g ∈ N (L). The same argument forlog(g∨) sinceg ∈
M2(L) implies thatg∨ ∈ M2(L).

Proposition 4.17. If g ∈ M2(L), thenΨ̃L[g] ∈ L1(Conf(R
∗), µL). Moreover, the map-

pings

g → Ψ̃L[g] and g → ΨL[g]

are both continuous fromM2(L) toL1(Conf(R
∗), µL).

Proof of Proposition4.15. LetEn ⊂ R∗ be a sequence of compact subsets exhaustingR∗

and set

gn = 1 + (g − 1)χEn
.

Clearly, we haveg2n = 1 + (g2 − 1)χEn
and

g2n
n→∞−−−−→
dM2(L)

g2. (4.106)

Claim:K(gn) converges toK(g) in the space of locallyL1|2-operators. Indeed, by

the block forms ofK(gn) andK(g) as in (4.74), we need to show that for any compact

subsets∆1,∆2 of R∗ such that∆1 ⊂ R+ and∆2 ⊂ R−, we have

χ∆1gnV V
∗gn(1 + gnV V

∗gn)
−1χ∆1

n→∞−−−−−−→
in trace class

χ∆1gV V
∗g(1 + gV V ∗g)−1χ∆1 ;

(4.107)

χ∆2V
∗g2nV (1 + V ∗g2nV )

−1χ∆2

n→∞−−−−−−→
in trace class

χ∆2V
∗g2V (1 + V ∗g2V )−1χ∆2; (4.108)
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χ∆1gnV (1 + V ∗g2nV )−1χ∆2

n→∞−−−−−−→
in trace class

χ∆1gV (1 + V ∗g2V )−1χ∆2 . (4.109)

Let us prove the first relation (4.107), the proof of second and third relations are similar

to that of the first one. First of all,

gnV
n→∞−−−→
s.o.t.

gV andV ∗gn
n→∞−−−→
s.o.t.

V ∗g,

where s.o.t. stands for the strong operator topology. Hencewe have

V ∗g2nV
n→∞−−−→
s.o.t.

V ∗g2V

by continuity of the inverse mapping with respect to strong operator topology (cf. e.g.

[Kad68, Lem. 3.2.]), we have

(1 + V ∗g2nV )−1 n→∞−−−→
s.o.t.

(1 + V ∗g2V )−1.

Note also that we have

χ∆1gnV
n→∞−−−−−−−→

Hilbert-Schmidt
χ∆1gV.

Combining the above facts and [Grü73, Thm. 1], we obtain that

χ∆1gnV (1 + V ∗g2nV )
−1 n→∞−−−−−−−→

Hilbert-Schmidt
χ∆1gV (1 + V ∗g2V )−1.

Now by using the following identity

χ∆1gnV V
∗gn(1 + gnV V

∗gn)
−1χ∆1 = χ∆1gnV (1 + V ∗g2nV )−1V ∗gnχ∆1

and the triangular inequalities, we conclude the proof of the desired relation (4.107).

As a consequence of our claim, we have the weak convergence ofthe sequence of

measuresµgnLgn to the measureµgLg. By Proposition4.10, we also have

µgnLgn = ΨL[g
2
n] · µL.

By Proposition4.17and (4.106), ΨL[g
2
n] converges toΨL[g

2] in L1(Conf(R
∗), µL). As a

consequence, we get the desired relation (4.98).

The rest of this section is devoted to the proof of Proposition 4.17.

Lemma 4.18.Letf : R∗ → C be a Borel function such that
∫
R
|f(x)|4KL(x, x)dx <∞.

ThenfKLf is a Hilbert-Schmidt operator and

‖fKLf‖22 ≤
∫

R

|f(x)|4KL(x, x)dx.
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Proof. We have

‖fKLf‖22 =
∫∫

R2

|f(x)|2|f(y)|2|KL(x, y)|2dxdy

≤



∫∫

R2

|f(x)|4|KL(x, y)|2dxdy




1/2

∫∫

R2

|f(y)|4|KL(x, y)|2dxdy




1/2

=

(∫

R

|f(x)|4KL(x, x)dx

)1/2(∫

R

|f(y)|4KL(y, y)dy

)1/2

=

∫

R

|f(x)|4KL(x, x)dx.

The proof is complete.

Remark4.14. By definition, if g1 and g2 are two functions such thatlog g1, log g2 ∈
N (L), then

Ψ̃L[g1g2] = Ψ̃L[g1]Ψ̃L[g2].

Lemma 4.19.For anyε > 0,M > 0 so thatε < 1 < M , there exists a constantCε,M > 0

such that ifg ∈ M2(L) satisfiesε ≤ infR g ≤ supR g ≤M , then

logEµL
(|Ψ̃L[g]|2) ≤ Cε,M

∫

R

|g(x)− 1|2KL(x, x)dx.

Proof. By multiplicativity, it suffices to prove

logEµL
(Ψ̃L[g]) ≤ Cε,M

∫

R

|g(x)− 1|2KL(x, x)dx. (4.110)

Sinceg∨ ∈ M2(L), by Lemma4.16, log(g∨) ∈ N (L), hence by Remark4.12, passing

to a sequenceδn if necessary, the functionalT log(g∨) can be approximated pointwisely by

T (log(g∨))χR\(−δ,δ)
= T log(g∨χR\(−δ,δ)+χ[−δ,δ]).

Thus by Fatou’s lemma, it suffices to establish (4.110) in the case whensupp(g − 1) is

contained in someR \ (−δ, δ). In this case, the usual multiplicative functionalΨ[g] is

well-defined and we have

Ψ̃L[g] = exp(S[log g]− EµL
S[log g]) =

Ψ[g]

exp(EµL
S[log g])

.

Now by the very definition of determinantal point processµL = PKL
, we have

EµL
Slog g =

∫

R

log g(x)K(x, x)dx
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and

EµL
Ψ[g] = det(1 +

√
g − 1KL

√
g − 1).

By [Sim77, Thm. 6.4], if we denoteA =
√
g − 1KL

√
g − 1, we have

| det(1 + A) exp(−tr(A))| ≤ exp(
1

2
‖A‖22).

Hence by Lemma4.18, we have

logEµL
Ψ[g] ≤ tr(A) +

1

2
‖A‖22

≤
∫

R

(g(x)− 1)KL(x, x)dx+
1

2

∫

R

|g(x)− 1|2KL(x, x)dx.

An application of (4.104) to the functiong yields the existence of a constantCε,M > 0,

such that∣∣∣∣
∫

R

log g(x)KL(x, x)dx−
∫

R

(g(x)− 1)KL(x, x)dx

∣∣∣∣ ≤ Cε,M

∫

R

|g(x)− 1|2KL(x, x)dx.

By settingC ′
ε,M = Cε,M + 1

2
, we obtain

logEµL
Ψ̃L[g] = logEµL

Ψ[g]− EµL
S[log g] ≤ C ′

ε,M

∫

R

|g(x)− 1|2KL(x, x)dx.

The proof is complete.

Lemma 4.20. Let ε > 0,M > 0 be two positive numbers such thatε < 1 < M . There

exists a constantC > 0 depending onε,M , such that ifg1, g2 ∈ M2(L) satisfy

ε ≤ inf
R
g1 ≤ sup

R

g1 ≤M, ε ≤ inf
R
g2 ≤ sup

R

g2 ≤M,

then we have

(EµL
|Ψ̃L[g1]− Ψ̃L[g2]|)2

EµL
(|Ψ̃L[g1]|2)

≤ exp
(
C

∫

R

|g1(x)− g2(x)|2KL(x, x)dx
)
− 1.

Proof. Setg = g2/g1. SinceΨ̃L[g1]− Ψ̃L[g2] = Ψ̃L[g1](1− Ψ̃L[g]), we have

(EµL
|Ψ̃L[g1]− Ψ̃L[g2]|)2 ≤ EµL

(|Ψ̃L[g1]|2) · EµL
(|Ψ̃L[g]− 1|2). (4.111)

By the inequality (4.95), we have

EµL
(|Ψ̃L[g]− 1|2) = EµL

(|Ψ̃L[g]|2)− 2EµL
|Ψ̃L[g]|+ 1 ≤ EµL

(|Ψ̃L[g]|2)− 1. (4.112)

Sinceε/M ≤ infR g ≤ supR g ≤M/ε, by Lemma4.19, there existsCε,M > 0, such that

EµL
(|Ψ̃L[g]|2) ≤ exp

(
Cε,M

∫

R

|g(x)− 1|2KL(x, x)dx

)
.

Hence there existsC ′
ε,M > 0, such that

EµL
(|Ψ̃L[g]|2) ≤ exp

(
C ′

ε,M

∫

R

|g1(x)− g2(x)|2KL(x, x)dx

)
. (4.113)

Substituting the inequalities (4.112) and (4.113) into (4.111), we obtain the desired in-

equality.
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4.8 Proof of Theorem4.9

Proof of Theorem4.9. By Theorem4.14, it suffices to check the inequality (4.96) under

the assumption of Theorem4.14. Indeed, we have
∫

R

|g(x)− 1|2KL(x, x)dx

=

∫

|x|≥ε

|g(x)− 1|2KL(x, x)dx+

∫

|x|<ε

|g(x)− 1|2KL(x, x)dx

= : I + II.

The relationI < ∞ follows from the boundedness ofg and the assumption (4.75). For

the second term, we have

II ≤ C2

∫

|x|<ε

x2KL(x, x)dx <∞.

This proof of Theorem4.9 is complete.

4.9 Proof of Theorem B

By [Ols, Thm. 2.4] and [BO00, §6], if we assume that
∣∣∣∣
z + z′

2

∣∣∣∣ <
1

2
,

then the Whittaker kernelK = Kz,z′ admits a boundedL-operator as in (1.8), such that

the bounded operatorV : L2(R−) → L2(R+) has as kernel:

sin πz sin πz′

π2

(
x
−y

) z+z′

2
e−

x−y
2

x− y
, wherex > 0, y < 0.

In other words, theL-kernelL(x, y) = Lz,z′(x, y) of the kernelK(x, y) = Kz,z′(x, y) is

given by

Lz,z′(x, y) =
A+(x)A−(y) +A−(x)A+(y)

x− y
, x, y ∈ R

∗, (4.114)

where

A(x) =

√
sin πz sin πz′

π
|x|sgn(x) z+z′

2 e−
|x|
2 , wherex 6= 0.

This functionA satisfies the following conditions:

• the support ofA in R∗ is the whole punctured lineR∗;

• A ∈ C∞(R∗) ∩ L2(R).
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Thus we have shown the following

Lemma 4.21. If |z + z′| < 1, then theL-kernelL = Lz,z′ in (4.114) satisfies Condition

3.

Recall that ifp = (p+1 , . . . p
+
n ; p

−
1 , . . . , p

−
n ), then we set

gp(x) =
n∏

i=1

(
x− p+i
x− p−i

χ{x>0} +
x− p−i
x− p+i

χ{x<0}

)
.

Let λ :=
|p−1 ···p−n |

p+1 ···p+n
and recall the formula (4.83): cλ = λχR+ + λ−1χR−. Set

hp(x) = cλ(x)|gp(x)| = cλ(x)sgn(gp(x))gp(x).

That is,

hp(x) =

n∏

i=1

∣∣∣∣
x/p+i − 1

x/p−i − 1
χ{x>0} +

x/p−i − 1

x/p+i − 1
χ{x<0}

∣∣∣∣ .

The proof of the following lemma is immediate.

Lemma 4.22.The functionhp is bounded and there existsC > 0 such that

|hp(x)− 1| ≤ C|x|.

Moreover, for anyε > 0, the subset{x ∈ R∗ : |hp(x)− 1| > ε} is away from0.

Proof of Proposition1.2and Theorem B.By Proposition4.1, we havePp

z,z′ = µgpLgp. By

Lemma4.11, we haveµgpLgp = µ|gp|L|gp| = µhpLhp
. Finally, by Theorem4.9and Lemma

4.22, the following limit

SL[log h
2
p](X) := lim

δ→0+


 ∑

x∈X,|x|≥δ

log hp(x)
2 − EµL

∑

x∈X,|x|≥δ

log hp(x)
2




exists forµL-almost every configurationX ∈ Conf(R∗). Moreover, the function

X 7→ exp(SL[log h
2
p](X))

is inL1(Conf(R∗), µL) and we have

µhpLhp
(dX) =

exp(SL[log h
2
p](X))

EµL

[
exp(SL[log h2p])

] · µL(dX),

that is,

P
p

z,z′(dX) =
exp(SL[log h

2
p](X))

EµL

[
exp(SL[log h2p])

] · Pz,z′(dX).
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5 Appendix

Proof of Proposition2.2. By homogenity, we may assume, without loss of generality, that

‖A‖L1|2
≤ 1 and‖B‖L1|2

≤ 1. WriteA andB in block forms:

A =

[
a1 b1
c1 d1

]
, B =

[
a2 b2
c2 d2

]
,

then we have

AB =

[
a1a2 + b1c2 a1b2 + b1d2
c1a2 + d1c2 c1b2 + d1d2

]
.

By applying the operator ideal property‖ab‖1 ≤ ‖a‖1‖b‖, ‖ab‖1 ≤ ‖a‖2‖b‖ and the

Hölder inequality‖ab‖1 ≤ ‖a‖2‖b‖2, we get

‖AB‖L1|2
=‖a1a2 + b1c2‖1 + ‖c1b2 + d1d2‖1 + ‖a1b2 + b1d2‖2 + ‖c1a2 + d1c2‖2
≤‖a1‖1‖a2‖+ ‖b1‖2‖c2‖2 + ‖c1‖2‖b2‖2 + ‖d1‖1‖d2‖

+ ‖a1‖1‖b2‖+ ‖b1‖2‖d2‖+ ‖c1‖2‖a2‖+ ‖d1‖‖c2‖2
≤‖a1‖1 + ‖b1‖2 + ‖c1‖2 + ‖d1‖1 + ‖a1‖1 + ‖b1‖2 + ‖c1‖2 + ‖d1‖
≤2(‖a1‖1 + ‖b1‖2 + ‖c1‖2 + ‖d1‖1) ≤ 2.

Proof of Proposition2.3. The proof is easy from the definition ofL1|2(L
2(R)) and the

ideal property of trace-class and Hilbert-Schmidt class.

Proof of Proposition2.4. By the relation (2.21), under the hypothesis of Proposition2.4

onA,B, the two operatorsA,B are both inL2(L
2(R)), henceAB ∈ L1(L

2(R)). By

the ideal property ofL1(L
2(R)), the operator(1 + A)−1AB belongs toL1(L

2(R)) and

hence belongs toL1|2(L
2(R)). We can write

(1 + A)−1B = (1 + A)−1((1 + A)B −AB) = B − (1 + A)−1AB,

hence the operator(1 +A)−1B belongs toL1|2(L
2(R)). Similar argument yields the fact

that the operatorB(1 + A)−1 also belongs toL1|2(L
2(R)).

Proof of Proposition2.5. Fix a pair of operatorsA,B in L1|2(L
2(R)). Note first that by

Proposition2.2, the operatorA+B+AB is in the spaceL1|2(L
2(R)), hence the extended

Fredholm determinantdet((1+A)(1+B)) = det(1+A+B+AB) is well-defined. By

the multiplicativity property of the usual Fredholm determinant, the desired identity holds

wheneverA,B ∈ L1(L
2(R)), see, e.g. [Sim77, Thm. 3.8]. Thus by the continuity of the

functionA 7→ det(1 + A) on L1|2(L
2(R)), for proving the desired identity, it suffices
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to show that there exist two sequences(An)n∈N and(Bn)n∈N in L1(L
2(R)) such that we

have the following convergences in the spaceL1|2(L
2(R)):

An
n→∞−−−→ A, Bn

n→∞−−−→ B andAnBn
n→∞−−−→ AB. (5.115)

To this end, take any two sequences(Pn)n∈N and(Qn)n∈N of finite rank orthogonal pro-

jections onL2(R+) andL2(R−) respectively, assume thatPn andQn converge in the

strong operator topology to the orthogonal projectionsP+ andP− respectively. Now we

may set

An = (Pn +Qn)A, B = B(Pn +Qn).

Then it is clear that the finite rank operatorsAn andBn satisfy all the desired conditions

in (5.115). Note that we intentionally obtainAn andBn by multiplyingPn+Qn on the left

side ofA and on the right side ofB, so that the third condition in (5.115) is satisfied.

Proof of Proposition2.6. From Grothendieck’s definition of Fredholm determinant:

det(1 + T ) =

∞∑

k=0

tr(∧k(T )), T ∈ L1(L
2(R)),

and the fact that, onceA ∈ L1(L
2(R)) andf is a bounded function, then

tr(∧k(fA)) = tr(∧k(Mf) ◦ ∧k(A)) = tr(∧k(A) ◦ ∧k(Mf)) = tr(∧k(Af)),

we see that the identity (2.24) holds whenA ∈ L1(L
2(R)). ForA ∈ L1|2(L

2(R)), we

may argue similarly as in the proof of Proposition2.5. See also [Buf13] for the proof in

more general case.
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