Kernels of conditional determinantal measures - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

Kernels of conditional determinantal measures

Résumé

For determinantal point processes governed by self-adjoint kernels, we prove in Theorem 1.2 that conditioning on the configuration in a subset preserves the determinantal property. In Theorem 1.3 we show the tail sigma-algebra for our determinantal point processes is trivial, proving a conjecture by Lyons. If our self-adjoint kernel is a projection, then, establishing a conjecture by Lyons and Peres, we show in Theorem 1.5 that reproducing kernels corresponding to particles of almost every configuration generate the range of the projection. Our argument is based on a new local property for conditional kernels of determinantal point processes stated in Lemma 1.7.
Fichier principal
Vignette du fichier
1612.06751.pdf (345.6 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01483603 , version 1 (06-03-2017)

Identifiants

Citer

Alexander I. Bufetov, Yanqi Qiu, Alexander Shamov. Kernels of conditional determinantal measures. 2016. ⟨hal-01483603⟩
564 Consultations
169 Téléchargements

Partager

More