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Kernels of conditional determinantal measures

Alexander I. Bufetov, Yanqi Qiu and Alexander Shamov

Abstract

For determinantal point processes governed by self-adjoint kernels, we prove in Theorem 1.2 that conditioning
on the configuration in a subset preserves the determinantal property. In Theorem 1.3 we show the tail sigma-
algebra for our determinantal point processes is trivial, proving a conjecture by Lyons. If our self-adjoint kernel is
a projection, then, establishing a conjecture by Lyons and Peres, we show in Theorem 1.5 that reproducing kernels
corresponding to particles of almost every configuration generate the range of the projection. Our argument is
based on a new local property for conditional kernels of determinantal point processes stated in Lemma 1.7.
Keywords: Determinantal point processes, conditional measures, tail triviality, Palm measures, measure-valued
martingales, operator-valued martingales.

1 Introduction

1.1 Outline of the main results
Let E be a locally compact σ -compact Polish space, let Conf(E) be the space of configurations on E. A point
process on E is a Borel probability measure on Conf(E). For such a measure P and any Borel subset C ⊂ E, the
measure P(·|X ;C) on Conf(E \C) is defined as the conditional measure of P with respect to the condition that the
restriction of our random configuration onto C coincides with X ∩C (see §2 below for the detailed definition).

Let µ be a sigma-finite Radon measure on E, let K be the kernel of a locally trace class positive contraction
acting in the complex Hilbert space L2(E,µ), and let PK be the corresponding determinantal measure on Conf(E).
Theorem 1.2 establishes that the conditional measures PK(·|X ;C) are themselves determinantal and governed by
self-adjoint kernels. For precompact B, the determinantal property for PK(·|X ;B) follows from the characterization
of Palm measures for determinantal processes due to Shirai-Takahashi [27] and the characterization of induced
determinantal processes [3], [6]. For X ∈ Conf(E), in Definition 1.1 below we introduce a specific self-adjoint
kernel K[X ,B] governing the measure PK(·|X ;B).

In order to prove that conditioning preserves the determinantal property, we shall prove that, along an increasing
or a decreasing sequence of precompact subsets B, the kernels K[X ,B] form a martingale. The martingale property
for spanning trees is due to Benjamini, Lyons, Peres and Schramm [1] and for processes on general discrete phase
spaces to Lyons [16]. It seems to be essential for the argument of Benjamini, Lyons, Peres and Schramm [1], Lyons
[16] that the phase space be discrete; we do not see how to extend their argument to continuous phase spaces.

Instead, our proof relies on a new local property for the kernels K[X ,B] which we now informally explain. If
B ⊂C ⊂ E, then conditioning on the restriction of the configuration onto B commutes with the natural projection
map X → X ∩C from Conf(E) to Conf(C). This commutativity manifests itself on the level of the kernels chosen
in Definition 1.1 below: we have χCK[X∩B,B]χC = (χCKχC)

[X∩C,B]. Our local property claims that instead of χC one
can take an (almost) arbitrary projection Q, and the relation still holds. More precisely, let Q : L2(E,µ)→ L2(E,µ)
be an orthogonal projection such that Ran(Q) ⊂ L2(E \B,µ) and that QKQ is locally trace-class. In Lemma 1.7
below we shall see that (

(Q+χB)K(Q+χB)
)[X ,B]

= (Q+χB)K[X ,B](Q+χB) = QK[X ,B]Q (1.1)

(the second equality in (1.1) is clear since χBK[X ,B] = K[X ,B]χB = 0).
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Applying (1.1) to a one-dimensional projection operator Q, we obtain that, for an arbitrary ϕ ∈ L2(E \B,µ),
the quantity 〈K[X ,B]ϕ,ϕ〉 is a martingale indexed by B, cf. (4.3) below. Using the Radon-Nikodym property for
the space of trace-class operators, we obtain an operator-valued martingale that converges, along an increasing
sequence of bounded subsets of E, almost surely in the space of locally trace-class operators. As an immediate
consequence, we prove that for determinantal point processes governed by self-adjoint kernels, conditioning on the
configuration in any Borel subset preserves the determinantal property, see Theorem 1.2.

Theorem 1.3 establishes the triviality of the tail sigma-algebra for determinantal point processes governed by
self-adjoint kernels. Lyons proved tail-triviality in the discrete setting in [16], extending the argument of Benjamini-
Lyons-Peres-Schramm [1] for spanning trees and conjectured that tail triviality holds in full generality [17, Con-
jecture 3.2]. The argument of Benjamini-Lyons-Peres-Schramm [1] and of Lyons [16] relies on an estimate for
the decay of the variance of the conditional kernel; using the local property of Lemma 1.7, we establish a similar
variance estimate in full generality, see Lemma 6.3, and obtain the desired triviality of the tail sigma-algebra. The
local property of conditional kernels thus allows us to carry out the proof of tail triviality in a unified way for both
the continuous and the discrete setting.

The triviality of the tail sigma-algebra for general determinantal point processes with self-adjoint kernels is the
main result of the independent and simultaneous work by Osada and Osada [20]. The argument of Osada-Osada
[20] is completely different from ours: Osada-Osada [20] construct a special family of discrete approximations of
continuous determinantal point processes and derive the triviality of the tail sigma-algebra in the continuous setting
from the theorem of Lyons by approximation.

Theorem 1.5 establishes a conjecture by Lyons and Peres. Let K be a locally trace-class orthogonal projection
onto a closed subspace H of L2(E,µ); in other words, let H ⊂ L2(E,µ) be a reproducing kernel Hilbert space, and
let K be the reproducing kernel for H. For x ∈ E, introduce a function Kx ∈ L2(E,µ) by the formula

Kx(t) := K(t,x), t ∈ E. (1.2)

The Lyons-Peres Conjecture ( [17, Conjecture 4.6]). For PK-almost every X ∈ Conf(E), we have

spanL2(E,µ){Kx;x ∈ X}= H.

Lyons [16, Theorem 7.11] proved the Conjecture in the discrete setting. In the continuous setting, Ghosh [11]
established the Conjecture under the important additional assumption that the determinantal point process PK has
the Ghosh-Peres number rigidity property, which states that for a bounded Borel subset B ⊂ E, the number of
particles #B of a configuration inside B is almost surely determined by the restricition of this configuration on E \B.
While many determinantal point processes are indeed rigid in the sense of Ghosh and Peres (cf. e.g. [11], [12], [4],
[7], [8]), a natural example without number rigidity is the zero set of the Gaussian analytic function on the unit disk
D. By the Peres–Virág Theorem [21], our zero set is the the determinantal point process induced by the Bergman
kernel

KD(z,w) =
1

π(1− zw̄)2

corresponding to the orthogonal projection onto the Bergman space of analytic square-integrable functions on D.
By a theorem of Holroyd and Soo [14], the process governed by KD has the property of insertion and deletion
tolerance, the opposite of number rigidity; in the setting of generalized Bergman spaces, insertion and deletion
tolerance is established in [8].

1.2 Statement of the main results
Let E be a locally compact σ -compact Polish space, equipped with a metric such that any bounded set is relatively
compact, and endowed with a positive σ -finite Radon measure µ . Let Conf(E) be the space of locally finite
configurations on E. Let K be a bounded self-adjoint locally trace class operator K : L2(E,µ)→ L2(E,µ) such
that the spectrum spec(K)⊂ [0,1]. A theorem obtained by Macchi [18] and Soshnikov [30], as well as Shirai and
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Takahashi [26], gives a unique point process on E, denoted by PK , such that for any compactly supported bounded
measurable function g : E→ C, we have

EPK

[
∏
x∈X

(1+g(x))
]
= det

(
1+ sgn(g)|g|1/2 ·K · |g|1/2

)
L2(µ)

, sgn(g) =
g
|g|

.

Here det(1+S) denotes the Fredholm determinant of the operator 1+S, see, e.g., Simon [29].
The locally trace class self-adjoint operator K is an integral operator. Following Soshnikov [30], we fix a Borel

subset E0 ⊂ E with µ(E \E0) = 0 and fix a Borel function K : E0×E0→ C, our kernel, in such a way that for any
k ∈ N and any bounded Borel subset B⊂ E, we have

tr((χBKχB)
k) =

∫
Bk

K(x1,x2)K(x2,x3) · · ·K(xk,x1)dµ(x1) · · ·dµ(xk). (1.3)

Definition 1.1. For any bounded Borel subset B ⊂ E, we define canonical conditional kernels K[X ,B] with respect
to the conditioning on the configuration in B as follows:

• For p ∈ E0, define a kernel K p, for (x,y) ∈ E0×E0, by the formula

K p(x,y) :=

 K(x,y)− K(x, p)K(p,y)
K(p, p)

if K(p, p)> 0

0 if K(p, p) = 0
.

• For an n-tuple (p1, · · · , pn) ∈ En
0 , define a kernel K p1,··· ,pn = (· · ·(K p1)p2 · · ·)pn as follows (cf. Shirai-

Takahashi [27, Corollary 6.6]). Given x,y ∈ E0, write p0 = x,q0 = y, qi = pi for 1≤ i≤ n, and set

K p1,··· ,pn(x,y) :=


det[K(pi,qi)]0≤i, j≤n

det[K(pi, p j)]1≤i, j≤n
if det[K(pi, p j)]1≤i, j≤n > 0

0 if det[K(pi, p j)]1≤i, j≤n = 0
(1.4)

• For a bounded Borel subset B⊂ E and X ∈ Conf(E) such that X ∩B = {p1, . . . , pl} ⊂ E0, define

K[X ,B] =

{
χE\BK p1,...,pl (1−χBK p1,...,pl )−1χE\B if 1−χBK p1,...,pl is invertible

0 if 1−χBK p1,...,pl is not invertible
. (1.5)

We will see later, from the inequalities (3.5) and (3.6), that if 1− χBK p1,...,pl is invertible, then the operator
χBK p1,...,pl is strictly contractive. Therefore, the series

K[X ,B] = χE\B

∞

∑
n=0

K p1,...,pl (χBK p1,...,pl )n
χE\B

converges in the operator norm topology. In particular, for (x,y) ∈ E0×E0, we will use the formula

K[X ,B](x,y) =χE\B(x)χE\B(y)K
p1,...,pl (x,y)

+χE\B(x)χE\B(y)
〈( ∞

∑
n=1

(χBK p1,...,pl )n−1
)
(χB(·)K p1,...,pl (·,y)), K p1,...,pl (·,x)

〉
L2(E,µ)

(1.6)

as our specific Borel realization of the kernel for the operator K[X ,B].

Remark. We will see in Proposition 2.5 below that K[X ,B] is the correlation kernel for the conditional measure of
PK , the condition being that the configuration on B coincides with X ∩B. In particular, for PK-almost every X, we
have X ∩B = {p1, · · · , pl} ⊂ E0 and 1− χBK p1,...,pl is invertible. The second case K[X ,B] = 0 has probability zero.
Note that the range of K[X ,B] is contained in L2(E \B,µ) and we have

K[X ,B] = χE\BK[X ,B]
χE\B.
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For any Borel subset W ⊂ E, not necessarily bounded, consider the Borel surjection πW : Conf(E)→ Conf(W )
given by X 7→ X ∩W . Fibres of this mapping can be identified with Conf(E \W ). For a Borel probability measure
P on Conf(E), the measure P(·|X ;W ) on Conf(E \W ) is defined as the conditional measure of P with respect to
the condition that the restriction of our random configuration onto W coincides with πW (X). More formally, the
measures P(·|X ;W ) are conditional measures, in the sense of Rohlin [25], of our initial measure P on fibres of the
measurable partition induced by the surjection πW .

Denote by L1(L2(E,µ)) the space of trace class operators on L2(E,µ) and by L1,loc(L2(E,µ)) the space of
bounded and locally trace class operators on L2(E,µ). The space L1,loc(L2(E,µ)) is equipped with the topology
induced by the semi-norms T 7→ ‖χBT χB‖1, where ‖ · ‖1 is the trace class norm, B ranges over bounded Borel
subsets of E.

For any Borel subset W ⊂ E, we denote by F(W ) := σ(#A : A ⊂W ) the σ -algebra on Conf(E) generated by
the mappings #A : Conf(E)→ R defined by #A(X) := #(X ∩A), where A ranges over all bounded Borel subsets of
W . We are now ready to formulate our main results.

Theorem 1.2. Let W ⊂ E be a Borel subset, let B1 ⊂ ·· · ⊂ Bn ⊂ ·· · ⊂W be an increasing exhausting sequence
of bounded Borel subsets of W. For PK-almost every X ∈ Conf(E) there exists a positive self-adjoint contraction
K[X ,W ] ∈L1,loc(L2(E \W,µ)) such that

χE\W K[X ,Bn]χE\W
n→∞−−−−−−−−−−−−→

in L1,loc(L2(E \W,µ))
K[X ,W ]

and
PK(·|X ,W ) = PK[X ,W ] .

Remark. For fixed W, the kernel-valued function X 7→ K[X ,W ] almost surely does not depend on the choice of the
approximating sequence B1 ⊂ ·· · ⊂ Bn ⊂ ·· · ⊂W.

Theorem 1.3. Let B1 ⊂ ·· · ⊂ Bn ⊂ ·· · ⊂ E be an increasing exhausting sequence of bounded Borel subsets of E.
The σ -algebra

⋂
n∈NF(E \Bn) is trivial with respect to PK .

Corollary 1.4. The point process PK has trivial tail σ -algebra.

Assume additionally that K is an orthogonal projection onto a closed subspace H ⊂ L2(E,µ) and consider the
functions Kx defined in (1.2) .

Theorem 1.5. Let K be a locally trace-class orthogonal projection onto a subspace H of L2(E,µ). For PK-almost
every X ∈ Conf(E), the functions Kx defined by (1.2) satisfy

spanL2(E,µ){Kx;x ∈ X}= H.

If we fix a realization for each h ∈ H in such a way that the equation h(x) = 〈h,Kx〉 holds for every x ∈ E0 and
every h ∈ H, then Theorem 1.5 can equivalently be reformulated as follows:

Corollary 1.6. For PK-almost every X ∈ Conf(E), if h ∈ H satisfies h�X = 0, then h = 0.

1.2.1 The local property and the martingale lemma

At the centre of our argument lies

Lemma 1.7 (First local property of conditional kernels). Let B ⊂ E be a bounded Borel subset and let Q be an
orthogonal projection, acting in L2(E,µ), such that Ran(Q)⊂ L2(E \B,µ) and the operator QKQ is locally trace
class. For PK-almost every X ∈ Conf(E), we have(

(Q+χB)K(Q+χB)
)[X ,B]

= (Q+χB)K[X ,B](Q+χB) = QK[X ,B]Q. (1.7)

4



Remark. The formula (1.7) is a strengthening, on the level of kernels, of the general property of point processes
that conditioning on the restriction to a subset commutes with the forgetting projection onto a larger subset; see
Proposition 2.4 below. The local property can be interpreted in terms of Neretin’s formalism in [19]: a determinan-
tal measure is viewed as a “determinantal state” on a specially constructed algebra, and in order that conditional
states themselves be determinantal the local property must take place. The local property can thus be seen as the
noncommutative analogue of the fact that the operation of conditioning commutes with the operation of restriction
of a configuration onto a subset.

Let A,B be two disjoint bounded Borel subsets of E. It is a general property of point processes that conditioning
first on A and then on B amounts to a single conditioning on A∪B. A manifestation of this general property on the
level of kernels is

Lemma 1.8 (Second local property of conditional kernels). Let A,B be two disjoint bounded Borel subsets of E.
For PK-almost every X ∈ Conf(E), we have

(K[X ,A])[X ,B] = (K[X ,B])[X ,A] = K[X ,A∪B].

Using the local properties, we establish the following key martingale property of the kernels K[X ,B].

Lemma 1.9. Let W ⊂ E be a Borel subset, let B1 ⊂ ·· · ⊂ Bn ⊂ ·· · ⊂W be an increasing exhausting sequence of
bounded Borel subsets of W. The sequence of random variables(

χE\W K[X ,Bn]χE\W

)
n∈N

is an (F(Bn))n∈N-adapted operator-valued martingale defined on the probability space (Conf(E),F(E),PK).

By definition, we have K[X ,B] = K[X∩B,B]. Hence the mapping X 7→ K[X ,B] is an F(B)-measurable operator-
valued random variable defined on the probability space (Conf(E),F(E),PK). Lemma 1.9 is equivalent to the
claim that, for any ϕ ∈ L2(E \W,µ), the sequence

(〈
χE\W K[X ,Bn]χE\W ϕ,ϕ〉

)
n∈N is an (F(Bn))n∈N-adapted real-

valued martingale defined on the probability space (Conf(E),F(E),PK). This notion of being a martingale is
equivalent to the general notion of Frechet space valued martingales, cf. Pisier [24].

Remark. The proof of Lemma 1.9 below in fact yields a stronger statement: the sequence of exterior power
operators ((

χE\W K[X ,Bn]χE\W
)∧m
)

n∈N

is an (F(Bn))n∈N-adapted operator-valued martingale, defined on the probability space (Conf(E),F(E),PK) and
almost surely convergent to

(
χE\W K[X ,W ]χE\W

)∧m
.

2 Conditional processes and martingales

2.1 Martingales and the Radon-Nikodym property
2.1.1 Vector-valued and measure-valued martingales

Let (Ω,F ,(Fn)
∞
n=1,P) be a filtered probability space. Let B be a Banach space. A map F : Ω→ B is called

Bochner measurable, if there exists a sequence Fn of measurable, in the usual sense, step functions such that
Fn(ω)→ F(ω) almost everywhere. For any 1 ≤ p < ∞, we denote by Lp(Ω,F ,P;B) the set of all Bochner
measurable functions F : Ω→B, such that

∫
Ω
‖F(ω)‖p

BP(dω)< ∞. The space Lp(Ω,F ,P;B) is a Banach space
with the norm

‖F‖Lp(B) := (
∫

Ω

‖F(ω)‖p
BP(dω))1/p.
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The algebraic tensor product Lp(Ω,F ,P)⊗B is dense in Lp(Ω,F ,P;B). The operator

E[·|Fn]⊗ IdB : Lp(Ω,F ,P)⊗B→ Lp(Ω,F ,P)⊗B

extends uniquely to a bounded linear operator on Lp(Ω,F ,P;B), for which we keep the name “conditional ex-
pectation” and the notation, thus obtaining the operator E[·|Fn] : Lp(Ω,F ,P;B)→ Lp(Ω,F ,P;B). A sequence
(Rn)

∞
n=1 in Lp(Ω,F ,P;B) is called an (Fn)

∞
n=1-adapted martingale if Rn = E[Rn+1|Fn] for any n ∈ N.

Assume now that B is a separable space. Then there exists a countable subset D of the unit ball of the dual
space B∗ such that for any x ∈B, we have ‖x‖= supξ∈D |ξ (x)|. We will need the Pettis measurability theorem for
separable Banach spaces.

Proposition 2.1 ([22, p. 278]). A function F : Ω→ B is Bochner measurable with respect to F if and only if
for any ξ ∈ D, the scalar function ω → ξ (F(ω)) is F -measurable. A sequence (Rn)

∞
n=1 in Lp(Ω,F ,P;B) is

an (Fn)
∞
n=1-adapted martingale if and only if for any ξ ∈ D, the sequence (ξ (Rn))

∞
n=1 is an (Fn)

∞
n=1-adapted

martingale.

In this paper, we apply Proposition 2.1 in the particular case when B = L1(L2(E,µ)) and D is the set of
contractive finite rank operators on L2(E,µ). Martingales in L1,loc(L2(E,µ)) are reduced to the previous case by
restricting onto L2(B,µ) with B a bounded Borel subset of E.

Let (T,A ) be topological space equipped with the σ -algebra of Borel subsets of T . We denote by P(T,A ) the
set of probability measures on (T,A ). A map M : Ω→P(T,A ) is called a random probability measure if for any
A ∈A , the map ω 7→M(ω,A) := M(ω)(A) is measurable. A sequence of random probability measures (Mn)

∞
n=1

is called an (Fn)
∞
n=1-adapted measure-valued martingale on (T,A ) if for any A ∈A , the sequence (Mn(·,A))n∈N

is a usual (Fn)
∞
n=1-adapted martingale.

2.1.2 The Radon-Nikodym property

In proving convergence of conditional kernels, we will use the Radon-Nikodym property for the space of trace class
operators. Here we briefly recall the Radon-Nikodym property for Banach spaces; see Dunford-Pettis [10], Phillips
[23] and Chapter 2 in Pisier’s recent monograph [24] for a more detailed exposition.

Let B be a Banach space. Let (Ω,F ) be a measurable space. Any σ -additive map m : F →B is called a
(B-valued) vector measure. A vector measure m is said to have finite total variation if

sup
{ n

∑
i=1
‖m(Ai)‖B

∣∣Ω =
n⊔

i=1

Ai is a measurable partition of Ω

}
< ∞.

Given a probability measure P on (Ω,F ), we say that the vector measure m is absolutely continuous with respect
to P if there exists a non-negative function w ∈ L1(Ω,F ,P) such that

‖m(A)‖B ≤
∫

A
wdP for any A ∈F .

Definition 2.2. A Banach space B is said to have the Radon-Nikodym property if for any probability space
(Ω,F ,P) and any B-valued measure m on (Ω,F ), with m having finite total variation and being absolutely
continuous with respect to P, there exists a Bochner integrable function Fm ∈ L1(Ω,F ,P;B) such that

m(A) =
∫

A
FmdP for any A ∈F .

By Theorem 2.5 in Pisier [24], the Radon-Nikodym property is equivalent to either of the two requirements

1. Every B-valued martingale bounded in L1(B) converges almost surely;

2. Every uniformly integrable B-valued martingale bounded in L1(B) converges almost surely and in L1(B).

Corollary 2.11 in Pisier [24] states that if B is separable and is a dual space of another Banach space, then B
has the Radon-Nikodym property. The separable space L1(L2(E,µ)) of trace class operators on L2(E,µ) is the
dual space of the space of compact operators on L2(E,µ), and we have

Proposition 2.3. The space L1(L2(E,µ)) has the Radon-Nikodym property.
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2.2 Conditional measures of point processes
Let E be a locally compact σ -compact Polish space, endowed with a positive σ -finite Radon measure µ . We assume
that the metric on E is such that any bounded set is relatively compact, see Hocking and Young [13, Theorem 2-61].

A configuration X = {xi} on E is by definition a locally finite countable subset of E, possibly with multiplicities.
A configuration is called simple if all points in it have multiplicity one. Let Conf(E) denote the set of all configu-
rations on E. The mapping X 7→ NX := ∑i δxi embeds Conf(E) into the space of Radon measures on E. Under the
vague topology, Conf(E) is a Polish space, see, e.g., Daley and Vere-Jones [9, Theorem 9.1. IV]. By definition, a
point process on E is a Borel probability measure P on Conf(E). We call P simple if P({X : X is simple}) = 1.

For a Borel subset W ⊂ E, let F(W ) be the σ -algebra on Conf(E) generated by all mappings X 7→ #B(X) :=
#(X ∩B), where B⊂W are bounded Borel subsets; the algebra F(W ) coincides with the Borel σ -algebra.

Take a Borel subset W ⊂ E. A Borel probability measure P on Conf(E) can be viewed as a measure on
Conf(W )×Conf(W c); we shall sometimes write P= PW,W c to stress dependence on W .

Denote by (πW )∗(P) the image measure of P under the surjective mapping πW : Conf(E)→ Conf(W ) defined
by πW (X) =X∩W . By disintegrating the probability measure PW,W c , for (πW )∗(P)-almost every configuration X0 ∈
Conf(W ), there exists a probability measure, denoted by P(·|X0,W ), supported on {X0}×Conf(W c) ⊂ Conf(E),
such that

PW,W c =
∫

Conf(W )
P(·|X0,W )(πW )∗(P)(dX0).

The measure P(·|X0,W ) is referred to as the conditional measure on Conf(W c) or conditional point process on W c

of P, the condition being that the configuration on W coincides with X0. In what follows, we denote also

P(·|X ,W ) := P(·|X ∩W,W ), for P-almost every X ∈ Conf(E).

Moreover, for a random variable f ∈ L1(Conf(E),P), we will denote by

EP( f |X ,W ) := EP[ f |F(W )](X ∩W ).

Proposition 2.4. Let W1,W2 be two disjoint Borel subsets of E. For P-almost every X ∈ Conf(E), we have

(πW1∪W2)∗[P](·|X ,W1) = (πW1∪W2)∗[P(·|X ,W1)]. (2.1)

Proof. First we have

P=
∫

Conf(E)
P(·|X ,W1)P(dX) and (πW1∪W2)∗[P] =

∫
Conf(E)

(πW1∪W2)∗[P(·|X ,W1)]P(dX).

Since P(·|X ,W1) is supported on the subset {Y ∈ Conf(E) : Y ∩W1 = X ∩W1}, and (πW1∪W2)∗[P(·|X ,W1)] is sup-
ported on {Z ∈ Conf(C∪B) : Z∩B = X ∩B}, by the uniqueness of conditional measures, we get (2.1).

Since P(·|X ,W ) is by definition supported on {X ∩W}×Conf(W c), we consider P(·|X ,W ) as a measure on
Conf(W c). Further identifying Conf(W c) with the subset Conf(E,W c) := {X ∈ Conf(E) : X ∩W = /0} ⊂ Conf(E),
when it is necessary, we may also view P(·|X ,W ) as a measure on Conf(E) supported on the subset Conf(E,W c).

2.3 Palm measures
The n-th correlation measure ρn,P of a point process P on E, if it exists, is the unique σ -finite Borel measure on En

satisfying

ρn,P(A
k1
1 ×·· ·×Ak j

j ) =
∫

Conf(E)

j

∏
i=1

#(X ∩Ai)!
(#(X ∩Ai)− ki)!

dP(X),

for all bounded disjoint Borel subsets A1, · · · ,A j ⊂ E and positive integers k1, · · · ,k j with k1 + · · ·+k j = n. Here if
#(X ∩Ai)< ki, we set #(X ∩Ai)!/(#(X ∩Ai)− ki)! = 0.
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For example, the n-th correlation measure of a determinantal process PK is given by

ρn,PK (dx1 · · ·dxn) = det(K(xi,x j))1≤i, j≤n ·µ⊗n(dx1 · · ·dxn),

where K(x,y) is the integral kernel of the operator K satisfying (1.3).
Assume that P is a simple point process on E such that ρn,P exists for any n ∈ N. The reduced n-th order

Campbell measure C !
n,P of P is a σ -finite measure on En×Conf(E) satisfying∫

En×Conf(E)
F(x,X)C !

n,P(dx×dX) =
∫

Conf(E)

[
∑

x∈Xn

#F(x,X \{x1, · · · ,xn})
]
P(dX),

for any Borel function F : En×Conf(E)→ R+. Here ∑
# is the summation over all ordered n-tuples (x1, · · · ,xn)

with distinct coordinates x1, · · · ,xn ∈ X . Disintegrating C !
n,P(dx×dX), we obtain∫

En×Conf(E)
F(x,X)C !

n,P(dx×dX) =
∫

En
ρn,P(dx)

∫
Conf(E)

F(x,X)Px(dX), (2.2)

where the probability measures Px are defined for ρn,P-almost every x ∈ En and are called reduced Palm measures
of P. In what follows, by Palm measures we always mean reduced Palm measures. Since Px1,··· ,xn is invariant under
permutation of the coordinates in (x1, · · · ,xn), we may write

PX := Px1,··· ,xn , if X = {x1, · · · ,xn}.

2.4 Determinantal point processes, conditioning on bounded subsets
Let W ⊂ E be a Borel subset. Recall that, by definition, the push-forward (πW )∗(PK) is a determinantal point
process on W , induced by a correlation kernel χW KχW . We next recall, for determinantal point processes, the form
of conditional measures with respect to restricting the configuration on a bounded subset . For a point process P on
E, set

P�Conf(W ) :=


P�Conf(W )

P(Conf(W ))
, if P(Conf(W ))> 0

0, if P(Conf(W )) = 0
. (2.3)

Let B⊂ E be a bounded Borel subset. If PK(Conf(Bc))> 0, then, by [6, Proposition 2.1], PK�Conf(Bc) is a determi-
nantal point process on Bc induced by the correlation kernel χBcK(1− χBK)−1χBc ; in the discrete setting, cf. also
Borodin and Rains [2], Lyons [16]. Next, By a Theorem of Shirai and Takahashi [27, Theorem 1.7], for PK-almost
every X ∈Conf(E), the Palm measure PX∩B

K is a determinantal point process on E, induced by the correlation kernel

KX∩B = K p1,··· ,pn , if X ∩B = {p1, · · · , pn};

Summing up, we obtain

Proposition 2.5. PK(·|X ,B) is a determinantal point process on Bc for PK-almost every X ∈ Conf(E), induced by
a correlation kernel K[X ,B] defined in (1.5).

Proof. Indeed, by Proposition 8.1 in the Appendix below, for PK-almost every X ∈ Conf(E), we have

PK(·|X ,B) = PX∩B
K �Conf(Bc) = PK[X ,B] .

If K is the orthogonal projection onto a closed subspace H ⊂ L2(E,µ), then the kernel K p1,··· ,pn corresponds to
the orthogonal projection from L2(E,µ) onto the subspace H(p1, · · · , pn) := {h ∈ H : h(p1) = · · · = h(pn) = 0},
and, for a bounded Borel subset B ⊂ E, the operator K[X ,B] is the orthogonal projection onto the closure of the
subspace

χE\BH(X ∩B) = {χE\Bh : h ∈ H(X ∩B)}.

8



3 The local property: proof of Lemmata 1.7, 1.8.

3.1 Proof of Lemma 1.7.
Let B ⊂ E be a bounded Borel subset and let Q : L2(E,µ)→ L2(E,µ) be an orthogonal projection whose range
satisfies Ran(Q) ⊂ L2(E \B,µ) and such that QKQ is locally trace-class. Introduce a positive contractive locally
trace-class operator R by the formula

R = R(K,B,Q) := (Q+χB)K(Q+χB). (3.1)

Recall that from the introduction, we fixed a Borel subset E0⊂E, such that µ(E \E0) = 0 and the kernel K(x,y)
is well-defined on E0×E0. Recall also the notation introduced in Definition 1.1.

Lemma 3.1. Let R be the operator introduced in (3.1). For any p ∈ B∩E0, we have Rp = (Q+ χB)K p(Q+ χB).
More generally, for (p1, · · · , pn) ∈ (B∩E0)

n, we have

Rp1,··· ,pn = (Q+χB)K p1,··· ,pn(Q+χB).

In particular,
RX∩B = (Q+χB)KX∩B(Q+χB), for PK-almost every X ∈ Conf(E).

Proof. Take an orthonormal basis ϕi of the range Ran(Q)⊂ L2(E \B,µ) of Q and write

Q = ∑
i∈N

ϕi⊗ϕi.

We may assume that the values ϕi(x) are well-defined for any index i ∈ N and any x ∈ E0. Observe that for any
p ∈ B∩E0, we have

R(·, p) = (Q+χB)[K(·, p)]. (3.2)

Indeed, write

R = (∑
i∈N

ϕi⊗ϕi)K(∑
j∈N

ϕ j⊗ϕ j)+(∑
i∈N

ϕi⊗ϕi)KχB +χBK(∑
j∈N

ϕ j⊗ϕ j)+χBKχB,

since p ∈ B∩E0, we get for any x ∈ E0:

R(x, p) = ∑
i∈N

ϕi(x)
∫

E
ϕi(y)K(y, p)µ(dy)+χB(x)K(x, p)

= ∑
i∈N

ϕi(x)〈K(·, p),ϕi〉+χB(x)K(x, p),

which is equivalent to (3.2). Since R(p, p) = K(p, p), we have

Rp = R− R(·, p)⊗R(·, p)
R(p, p)

= (Q+χB)K(Q+χB)−
(Q+χB)[K(·, p)]⊗ (Q+χB)[K(·, p)]

K(p, p)

= (Q+χB)
[
K− K(·, p)⊗K(·, p)

K(p, p)

]
(Q+χB) = (Q+χB)K p(Q+χB).

The formula for Rp1,··· ,pn follows immediately by induction on n.

Recall that, by our discussion in §2.4, the kernel χE\BK(1− χBK)−1χE\B is a correlation kernel for the deter-
minantal point process PK�Conf(Bc), provided that PK(Conf(Bc))> 0.
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Lemma 3.2. Let B be a bounded Borel subset of E such that PK(#B = 0)> 0. Let R be the operator introduced in
(3.1). Then

χE\BR(1−χBR)−1
χE\B = Q

(
χE\BK(1−χBK)−1

χE\B
)

Q. (3.3)

Proof. The gap probability PK(#B = 0) is given by

PK(#B = 0) = PK({X : X ∩B = /0}) = det(1−χBKχB)> 0. (3.4)

It follows that 1− χBKχB is invertible and hence 1 is not an eigenvalue of χBKχB. But since χBKχB is a priori
a positive contraction and χBKχB is compact, its norm coincides with its maximal eigenvalue. Hence χBKχB is
strictly contractive. But we also have

‖χBKχB‖= ‖(χBK1/2)(χBK1/2)∗‖= ‖χBK1/2‖2 < 1. (3.5)

Hence

‖χBK‖ ≤ ‖χBK1/2‖‖K1/2‖< 1. (3.6)

Therefore, both χBK and χBR = χBK(Q+ χB) are strictly contractive. In particular, the operators on both the left
hand side and the right hand side of (3.3) are well-defined.

Since Q commutes with χE\B, we have

χE\BRχE\B = QχE\BKχE\BQ and χE\BRχB = QχE\BKχB.

Since χBRχB = χBKχB, for n≥ 1, we have

χE\BR(χBR)n
χE\B = χE\BR(χBR) · · ·(χBR)χE\B = χE\BRχB(χBRχB)

n−1
χBRχE\B =

= QχE\BKχB(χBKχB)
n−1

χBKχE\BQ = QχE\BK(χBK)n
χE\BQ. (3.7)

Now since χBR and χBK are both strictly contractive, we finally write

χE\BR(1−χBR)−1
χE\B =

∞

∑
n=0

χE\BR(χBR)n
χE\B =

=
∞

∑
n=0

QχE\BK(χBK)n
χE\BQ = QχE\BK(1−χBK)−1

χE\BQ. (3.8)

Conclusion of the proof of Lemma 1.7. By Proposition 8.1 and Proposition 2.5,

PK(·|X ,B) = (PK)X∩B�Conf(Bc) = PKX∩B�Conf(Bc), for P-almost every X ∈ Conf(E).

By definition (2.3) of the normalized restriction measure PKX∩B�Conf(Bc), we must have

PKX∩B(#B = 0) = PKX∩B(Conf(Bc))> 0, for PK-almost every X ∈ Conf(E). (3.9)

Lemma 3.2 applied to the operators KX∩B and RX∩B and Lemma 3.1 now imply Lemma 1.7.
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3.2 Proof of Lemma 1.8
Choose an arbitrary unit vector ϕ ∈ L2(E \ (A∪B),µ), let Q be the orthogonal projection from L2(E,µ) onto the
one dimensional subspace spanned by ϕ . Define

R = Rϕ := (χA +χB +Q)K(χA +χB +Q).

Arguing as in the proof of Lemma 1.7, we obtain the PK-almost sure equalities

R[X ,A] = (χB +Q)K[X ,A](χB +Q); R[X ,A∪B] = QK[X ,A∪B]Q; (R[X ,A])[X ,B] = Q(K[X ,A])[X ,B]Q. (3.10)

We also have the following description of conditional measures:

PR(·|X ,A) = PR[X ,A] and PR(·|X ,A∪B) = PR[X ,A∪B] , for PR-almost every X ∈ Conf(E).

The above first equality implies that[
PR(·|X ,A)

]
(·|X ,B) = PR[X ,A](·|X ,B) = P(R[X ,A])[X ,B] , for PR-almost every X ∈ Conf(E).

Now we may apply the measure-theoretic identity[
PR(·|X ,A)

]
(·|X ,B) = PR(·|X ,A∪B), for PR-almost every X ∈ Conf(E)

and obtain

PR[X ,A∪B] = P(R[X ,A])[X ,B] , for PR-almost every X ∈ Conf(E). (3.11)

It follows that for PR-almost every X ∈ Conf(E), we have

EPR

[
#(X ∩ (E \ (A∪B))

∣∣X ,A∪B
]
= tr

(
χE\(A∪B)R

[X ,A∪B]
χE\(A∪B)

)
= tr

(
χE\(A∪B)(R

[X ,A])[X ,B]
χE\(A∪B)

)
.

Combining with (3.10), we obtain the PR-almost sure equality

tr
(

χE\(A∪B)QK[X ,A∪B]QχE\(A∪B)

)
= tr

(
χE\(A∪B)Q(K[X ,A])[X ,B]QχE\(A∪B)

)
.

That is,

〈K[X ,A∪B]
ϕ,ϕ〉= 〈(K[X ,A])[X ,B]

ϕ,ϕ〉, for PR-almost every X ∈ Conf(E).

Since ϕ is arbitrary and since L2(E \ (A∪B),µ) is separable and both K[X ,A∪B] and (K[X ,A])[X ,B] are supported on
L2(E \ (A∪B),µ), we obtain

K[X ,A∪B] = (K[X ,A])[X ,B], for PR-almost every X ∈ Conf(E). (3.12)

Observe that the equality χA∪BRχA∪B = χA∪BKχA∪B implies the equality (πA∪B)∗(PR) = (πA∪B)∗(PK). Combining
with (3.12) and the fact that K[X ,A∪B] and (K[X ,A])[X ,B] are F(A∪B)-measurable, we get the desired equality

K[X ,A∪B] = (K[X ,A])[X ,B], for PK-almost every X ∈ Conf(E).
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4 The martingale property: proof of Lemma 1.9.

Proposition 4.1. For any bounded Borel subset B⊂ E, we have

EPK (K
[X ,B]) =

∫
Conf(E)

K[X ,B]PK(dX) = χE\BKχE\B. (4.1)

Remark. Extending the argument of Benjamini, Lyons, Peres and Schramm [1] for the case of spanning trees,
Lyons [16, Lemma 7.17] proved (4.1) when E is discrete and K is an orthogonal projection on `2(E). Our proof,
based on the local property, is quite different and works both in the continuous and the discrete setting.

Proof of Lemma 1.9 assuming Proposition 4.1. Applying Proposition 4.1 to the kernel K[X ,Bn] and the bounded
Borel subset Bn+1 \Bn ⊂ E \Bn, we obtain

EP
K[X ,Bn ]

[
(K[X ,Bn])[X ,Bn+1\Bn]

]
= χE\Bn+1K[X ,Bn]χE\Bn+1 , for PK-almost every X .

The equality PK[X ,Bn ] = PK(·|X ,Bn) now yields

EP
K[X ,Bn ]

[
(K[X ,Bn])[X ,Bn+1\Bn]

]
= EPK

[
(K[X ,Bn])[X ,Bn+1\Bn]

∣∣∣F(Bn)
]
, for PK-almost every X .

Combining with Lemma 1.8, we get

EPK

[
K[X ,Bn+1]

∣∣∣F(Bn)
]
= χE\Bn+1K[X ,Bn]χE\Bn+1 , for PK-almost every X .

By linearity of the composition on the left and on the right with the operator of multiplication by χE\W and the
elementary equalities χE\W ·χE\Bn+1 = χE\W , we get the desired martingale property:

E
[
χE\W K[X ,Bn+1]χE\W

∣∣∣F(Bn)
]
= χE\W K[X ,Bn]χE\W , for PK-almost every X .

Proof of Proposition 4.1. Let ϕ ∈ L2(E \B,µ) be such that ‖ϕ‖2 = 1. We use (3.1) for Q = ϕ⊗ϕ , the orthogonal
projection onto the one-dimensional space spanned by ϕ , and thus set

R = (ϕ⊗ϕ +χB)K(ϕ⊗ϕ +χB).

We have the clear identity
(πB)∗(PR) = PχBRχB = PχBKχB = (πB)∗(PK). (4.2)

By Lemma 1.7, for PK-almost every X ∈ Conf(E), we have

R[X ,B] = QK[X ,B]Q = (ϕ⊗ϕ)K[X ,B](ϕ⊗ϕ).

Since clearly K[X ,B] = K[X∩B,B] and R[X ,B] = R[X∩B,B], the above equality holds for PR-almost every X ∈ Conf(E).
Now recall that PR(·|X ,B) = PR[X ,B] , for PR-almost every X ∈ Conf(E). Hence

EPR

[
#E\B

∣∣X ,B
]
= EP

R[X ,B]

[
#E\B

]
= tr(χE\BR[X ,B]

χE\B) = 〈K[X ,B]
ϕ,ϕ〉, for PR-almost every X ∈ Conf(E).

Consequently,

EPR

[
#E\B

]
= tr(χE\BRχE\B) = tr(QKQ) = 〈Kϕ,ϕ〉.

On the other hand,

EPR

[
#E\B

]
= EPR

(
EPR

[
#E\B

∣∣X ,B
])

= EPR

(
〈K[X ,B]

ϕ,ϕ〉
)
,
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whence
EPR

(
〈K[X ,B]

ϕ,ϕ〉
)
= 〈Kϕ,ϕ〉.

The relation K[X ,B] = K[X∩B,B] and the identity (4.2) together give

EPR

(
〈K[X ,B]

ϕ,ϕ〉
)
= EPR

(
〈K[X∩B,B]

ϕ,ϕ〉
)
= EPK

(
〈K[X∩B,B]

ϕ,ϕ〉
)
= EPK

(
〈K[X ,B]

ϕ,ϕ〉
)

and
EPK

(
〈K[X ,B]

ϕ,ϕ〉
)
= 〈Kϕ,ϕ〉. (4.3)

Since ϕ is an arbitrarily chosen unit function in L2(E \B) and since K[X ,B] = χE\BK[X ,B]χE\B, we obtain (4.1).

5 Proof of Theorem 1.2

Proposition 5.1. Let W ⊂ E be a Borel subset, and let B1 ⊂ B2 ⊂ ·· ·Bn ⊂ ·· · ⊂W be an increasing exhausting
sequence of bounded Borel subsets of W. The sequence

(
χE\W K[X ,Bn]χE\W

)
n∈N converges PK-almost surely in the

space of locally trace class operators.

Proof. Since K is locally of trace class, there exists a positive function ψ : E \W → (0,1] such that ψ1/2Kψ1/2 is
of trace class and for any bounded subset B⊂ E, we have

inf
x∈B

ψ(x)> 0. (5.1)

Then
EPK (∑

x∈X
ψ(x)) =

∫
E

ψ(x)K(x,x)µ(dx) = tr(ψ1/2Kψ
1/2) = Mψ < ∞.

Denote
G(X ,n) := χE\W K[X ,Bn]χE\W .

Then for any n ∈ N, we have

Mψ = EPK (∑
x∈X

ψ(x)) = EPK

[
EPK

(
∑
x∈X

ψ(x)
∣∣F(Bn)

)]
= EPK

[
tr(ψ1/2G(X ,n)ψ1/2)

]
. (5.2)

By the martingale property of the sequence (G(X ,n))n∈N and the equality (5.2), the sequence (ψ1/2G(X ,n)ψ1/2)n∈N
forms a bounded martingale in L1(PK ,L1(L2(E,µ))). By Proposition 2.3, the Banach space L1(L2(E,µ)) has the
Radon-Nikodym property. Therefore there exists a measurable function F(X ,∞) with values in L1(L2(E,µ)), such
that

ψ
1/2G(X ,n)ψ1/2 in L1(L2(E,µ))−−−−−−−−→

PK -a.s.
F(X ,∞).

The assumption (5.1) implies that ψ−1/2F(X ,∞)ψ−1/2 ∈L1,loc(L2(E,µ)) and we have

χE\W K[X ,Bn]χE\W = G(X ,n)
in L1,loc(L2(E,µ))
−−−−−−−−−−→

PK -a.s.
ψ
−1/2F(X ,∞)ψ−1/2. (5.3)

Proof of Theorem 1.2. By (8.6), for PK-almost every X ∈ Conf(E), we have

(πW c)∗[PK(·|X ,Bn)]
n→∞−−−−→

weakly
PK(·|X ,W ). (5.4)

By items (i) and (iv) of Proposition 2.5, for PK-almost every X ∈ Conf(E), we have

(πW c)∗[PK(·|X ,Bn)] = P
χE\W K[X ,Bn ]χE\W

. (5.5)

Combining (5.3), (5.4) and (5.5) with the fact that the convergence of correlation kernels in L1,loc(L2(E,µ)) implies
the weak convergence of the corresponding determinantal measures, we complete the proof of Theorem 1.2.
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We conclude this section with a simple general proposition that allows us to construct bounded martingales
from the sequence

(
K[X ,Bn]

)
n∈N.

Proposition 5.2. Let W ⊂ E be a Borel subset, and let B1 ⊂ B2 ⊂ ·· ·Bn ⊂ ·· · ⊂W be an increasing exhausting
sequence of bounded Borel subsets of W. Fix any positive function ψ : E \W → (0,1] such that ψ1/2Kψ1/2 is of
trace class and for any bounded subset B⊂ E, we have infx∈B ψ(x)> 0. Then(

ψ
1/2K[X ,Bn]ψ

1/2)
n∈N (5.6)

is an L1(L2(E \W,µ))-valued martingale which is bounded in L2(Conf(E),P;L1(L2(E \W,µ))). In particular,
the sequence converges in L1(Conf(E),P;L1(L2(E \W,µ))).

Proof. It suffices to show that the sequence (5.6) is bounded in L2(Conf(E),P;L1(L2(E \W,µ))). Indeed, we have∥∥ψ
1/2K[X ,Bn]ψ

1/2∥∥
L1(L2(E\W,µ))

= tr
(
ψ

1/2K[X ,Bn]ψ
1/2)= EPK

(
∑
x∈X

ψ(x)
∣∣X ,Bn

)
.

By Proposition 8.4, we get the desired L2(Conf(E),P;L1(L2(E \W,µ)))-boundedness of the sequence (5.6).

Remark. Let B(W ) be the directed set of bounded measurable subsets of W, ordered by set-inclusion. Then the
set-indexed family

(
χE\W K[X ,B]χE\W

)
B∈B(W )

is a set-indexed martingale adapted to the filtration (F(B))B∈B(W ).

By virtue of Proposition 5.2, for any positive function ψ : E \W → (0,1] such that ψ1/2Kψ1/2 is of trace class and
for any bounded subset B⊂ E, we have infx∈B ψ(x)> 0, the set-indexed martingale(

ψ
1/2K[X ,B]

ψ
1/2
)

B∈B(W )

converges in L1(Conf(E),PK ;L1(L2(E \W,µ))).

6 Triviality of the tail σ -algebra: proof of Theorem 1.3

We start by fixing a specific sequence Dn, independent of W , which allows us then, for a given W , to choose the
approximating sequence Wn in a specific way.

Definition 6.1. Fix any increasing exhausting sequence D1 ⊂ ·· · ⊂ Dn ⊂ ·· · ⊂ E of bounded Borel subsets fo E.
For any Borel subset W ⊂ E, set

K[X ,W ] := lim
n→∞

χE\W K[X ,W∩Dn]χE\W .

The convergence takes place in L1,loc(L2(E,µ)) by Proposition 5.1.The kernel K[X ,W ] is well-defined for PK-
almost every X . For fixed W , the limit almost surely is independent of the choice of the sequence (Dn)

∞
n=1.

Proposition 6.2. Fix a bounded Borel subset B⊂E and let E \B⊃W1⊃ ·· · ⊃Wn⊃ ·· · be any decreasing sequence
of Borel subsets. Then

(
χBK[X ,Wn]χB

)
n∈N is an (F(Wn))n∈N-adapted reverse martingale defined on the probability

space (Conf(E),F(E),PK).

Proof. It suffices to prove that for any φ ∈ L2(B,µ), the sequence
(
〈K[X ,Wn]φ ,φ〉

)
n∈N is an (F(Wn))n∈N-adapted

reverse martingale defined on the probability space (Conf(E),F(E),PK). By definition, for any n ∈ N, we have

〈K[X ,Wn]φ ,φ〉= lim
k→∞

〈K[X ,Wn∩Dk]φ ,φ〉, PK-almost surely. (6.1)

Since all the operators K[X ,Wn] are contractive, by the bounded convergence theorem, the convergence (6.1) takes
place in L1(PK) as well. Fix an natural number n ∈ N. For any ε > 0, let k ∈ N be large enough in such a way that∥∥∥〈K[X ,Wn]φ ,φ〉−〈K[X ,Wn∩Dk]φ ,φ〉

∥∥∥
L1(PK)

≤ ε;
∥∥∥〈K[X ,Wn+1]φ ,φ〉−〈K[X ,Wn+1∩Dk]φ ,φ〉

∥∥∥
L1(PK)

≤ ε. (6.2)
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For fixed n ∈ N, the sequence (
EPK

[
〈K[X ,Wn]φ ,φ〉

∣∣∣F(Wn+1∩Dk)
])∞

k=1

is a martingale that converges in L1-norm to EPK

[
〈K[X ,Wn]φ ,φ〉

∣∣∣F(Wn+1)
]
. We can therefore choose k large enough

in such a way that∥∥∥EPK

[
〈K[X ,Wn]φ ,φ〉

∣∣∣F(Wn+1)
]
−EPK

[
〈K[X ,Wn]φ ,φ〉

∣∣∣F(Wn+1∩Dk)
]∥∥∥

L1(PK)
≤ ε.

Since Wn+1∩Dk ⊂Wn∩Dk and Dk is bounded, Lemma 1.9 implies

EPK

[
〈K[X ,Wn∩Dk]φ ,φ〉

∣∣∣F(Wn+1∩Dk)
]
= 〈K[X ,Wn+1∩Dk]φ ,φ〉,

whence∥∥∥EPK

[
〈K[X ,Wn]φ ,φ〉

∣∣∣F(Wn+1)
]
−〈K[X ,Wn+1]φ ,φ〉

∥∥∥
L1(PK)

≤

≤ 2ε +
∥∥∥EPK

[
〈K[X ,Wn]φ ,φ〉

∣∣∣F(Wn+1∩Dk)
]
−〈K[X ,Wn+1∩Dk]φ ,φ〉

∥∥∥
L1(PK)

≤

≤ 3ε +
∥∥∥EPK

[
〈K[X ,Wn∩Dk]φ ,φ〉

∣∣∣F(Wn+1∩Dk)
]
−〈K[X ,Wn+1∩Dk]φ ,φ〉

∥∥∥
L1(PK)

= 3ε, (6.3)

and we obtain the desired reverse martingale relation EPK

[
〈K[X ,Wn]φ ,φ〉

∣∣∣F(Wn+1)
]
= 〈K[X ,Wn+1]φ ,φ〉.

Lemma 6.3. For any bounded Borel subset B⊂ E and φ ∈ L2(Bc,µ), we have

VarPK

[
〈K[X ,B]

φ ,φ〉
]
≤ ‖φ‖2

2 · ‖χBKφ‖2
2, (6.4)

where ‖ · ‖2 is the Hilbert norm on L2(E,µ).

We first prove Lemma 6.3 when K is an orthogonal projection. This part of the proof is similar to the argument
of Benjamini, Lyons, Peres and Schramm [1, Lemma 8.6] and Lyons [16, Lemma 7.17]. The proof of Lemma 6.3
in full generality proceeds by reduction to the case of projections (the usual argument of extending the phase space
must be slightly modified in the continuous setting) and is postponed to the end of the section.

Proof of Lemma 6.3 when K is an orthogonal projection. By homogeneity, we may assume that ‖φ‖2≤ 1. Since K
is an orthogonal projection, by [5, Proposition 2.4], so is K[X ,B] for PK-almost every X ∈ Conf(E). By Proposition
4.1, we have

VarPK

[
〈K[X ,B]

φ ,φ〉
]
= EPK

∣∣∣〈(K[X ,B]−χBcKχBc)φ ,φ
〉∣∣∣2 ≤ EPK

(∥∥(K[X ,B]−χBcKχBc)φ
∥∥2

2

)
=

= EPK

(
‖K[X ,B]

φ‖2
2−〈K[X ,B]

φ ,χBcKχBcφ〉−〈χBcKχBcφ ,K[X ,B]
φ〉+‖χBcKχBcφ‖2

2

)
=

= EPK

(
〈K[X ,B]

φ ,φ〉−〈K[X ,B]
φ ,χBcKχBcφ〉−〈χBcKχBcφ ,K[X ,B]

φ〉+‖χBcKχBcφ‖2
2

)
=

= 〈χBcKχBcφ ,φ〉−‖χBcKχBcφ‖2
2 = 〈Kφ ,φ〉−‖χBcKφ‖2

2 = ‖Kφ‖2
2−‖χBcKφ‖2

2 = ‖χBKφ‖2
2. (6.5)

Proposition 6.4. Fix any ` ∈N. Then
(
χD`

K[X ,E\Dn+`]χD`

)
n∈N is an (F(E \Dn+`))n∈N-adapted reverse martingale

defined on the probability space (Conf(E),F(E),PK), and we have

χD`
K[X ,E\Dn+`]χD`

n→∞−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
PK -a.s. in L1(L2(E,µ) and in L2(PK ;L1(L2(E,µ)))

χD`
KχD`

. (6.6)
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For any ` ∈ N, we have

EPK

[
PK(·|X ,E \D`)

∣∣∣ ∞⋂
n=1

F(E \Dn+`)
]
= πD`

(PK), PK-almost surely (6.7)

and, for any A ∈ F(D`), we have

lim
n→∞

EPK

∣∣∣EPK

[
χA

∣∣F(E \Dn+`)
]
−PK(A)

∣∣∣= 0. (6.8)

Proof. The reverse martingale property of the sequence follows from Proposition 6.2. Set

T :=
∞⋂

n=1

F(E \Dn+`). (6.9)

Since a Banach space valued reverse martingale converges (see, e.g., Pisier [24, p. 34]), we obtain

χD`
K[X ,E\Dn+`]χD`

n→∞−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
PK -a.s. in L1(L2(E,µ) and in L2(PK ;L1(L2(E,µ)))

EPK

[
χD`

K[X ,E\D1+`]χD`

∣∣T ].
Set

G∞(X) = EPK

[
χD`

K[X ,E\D1+`]χD`

∣∣T ].
In particular, for any φ ∈ L2(D`,µ) with ‖φ‖2 ≤ 1, we have

〈G∞(X)φ ,φ〉= EPK

[
〈K[X ,E\D1+`]φ ,φ〉

∣∣∣T ], PK-almost surely.

By Definition 6.1 and the inequality
∣∣〈K[X ,(E\Dn+`)∩Dk]φ ,φ〉

∣∣≤ 1, which holds PK-almost surely, for any n ∈ N, we
have

〈K[X ,(E\Dn+`)∩Dk]φ ,φ〉 k→∞−−−→ 〈K[X ,E\Dn+`]φ ,φ〉, PK-almost surely and in L2(PK). (6.10)

Similarly,

〈K[X ,E\Dn+`]φ ,φ〉 n→∞−−−→ 〈G∞(X)φ ,φ〉, PK-almost surely and in L2(PK). (6.11)

In particular, since (E \D1+`)∩Dk are bounded for all k ∈ N, we can apply Proposition 4.1 to obtain

EPK 〈G∞(X)φ ,φ〉= EPK

[
〈K[X ,E\D1+`]φ ,φ〉

]
= lim

k→∞

EPK

[
〈K[X ,(E\D1+`)∩Dk]φ ,φ〉

]
= 〈Kφ ,φ〉.

Now by Lemma 6.3, we have

VarPK

(
〈K[X ,(E\Dn+`)∩Dk]φ ,φ〉

)
≤ ‖χ(E\Dn+`)∩Dk

Kφ‖2
2 ≤ ‖χE\Dn+`

Kφ‖2
2.

The convergence (6.10), (6.11) yields

VarPK

(
〈K[X ,E\Dn+`]φ ,φ〉

)
= lim

k→∞

VarPK

(
〈K[X ,(E\Dn+`)∩Dk]φ ,φ〉

)
≤ ‖χE\Dn+`

Kφ‖2
2;

VarPK

(
〈G∞(X)φ ,φ〉

)
= lim

n→∞
VarPK

(
〈K[X ,E\Dn+`]φ ,φ〉

)
≤ limsup

n→∞

‖χE\Dn+`
Kφ‖2

2 = 0.

Consequently, we have 〈G∞(X)φ ,φ〉 = 〈Kφ ,φ〉,PK-almost surely. Since χD`
G∞(X)χD`

= G∞(X) and since φ is
arbitrarily chosen from the separable unit sphere in L2(D`,µ), we obtain the desired equality

G∞(X) = χD`
KχD`

, PK-almost surely.
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Finally, Proposition 8.2 implies that

πD`
[PK(·|X ,E \Dn+`)] = EPK

[
PK(·|X ,E \D`)

∣∣∣F(E \Dn+`)
]
, PK-almost surely,

and

πD`
[PK(·|X ,E \Dn+`)]

n→∞−−−−→
weakly

EPK

[
PK(·|X ,E \D`)

∣∣∣T ], PK-almost surely. (6.12)

But the convergence (6.6) implies that

πD`
[PK(·|X ,E \Dn+`)] = P

χD`
K[X ,E\Dn+`]χD`

n→∞−−−→
weakly

PχD`
KχD`

= πD`
(PK), PK-almost surely. (6.13)

Now (6.12) and (6.13) yield (6.7). Martingale convergence for a bounded random variable implies (6.8).

Proof of Theorem 1.3. Take Dn := Bn. We prove that the σ -algebra T in (6.9) is trivial with respect to PK . Take
an event A ∈ T . For ε > 0, find ` ∈ N large enough and A1 ∈ F(D`) such that PK(A1∆A) < ε/3. By (6.8), we
have

lim
n→∞

EPK

∣∣∣EPK

[
χA1

∣∣F(E \Dn+`)
]
−PK(A1)

∣∣∣= 0.

Now find n ∈ N large enough in such a way that

EPK

∣∣∣EPK

[
χA1

∣∣F(E \Dn+`)
]
−PK(A1)

∣∣∣≤ ε/3.

It follows that for any A2 ∈ F(E \Dn+`), we have

|PK(A1∩A2)−PK(A1)PK(A2)|=
∣∣∣EPK

(
χA2EPK

[
χA1

∣∣F(E \Dn+`)
])
−EPK

(
χA2PK(A1)

)∣∣∣=
=
∣∣∣EPK

(
χA2

[
EPK

[
χA1

∣∣F(E \Dn+`)
]
−PK(A1)

])∣∣∣≤ EPK

(∣∣∣EPK

[
χA1

∣∣F(E \Dn+`)
]
−PK(A1)

∣∣∣)≤ ε/3. (6.14)

Finally, we obtain

|PK(A∩A2)−PK(A)PK(A2)| ≤ 2PK(A1∆A)+ |PK(A1∩A2)−PK(A1)PK(A2)| ≤ ε.

Taking A2 =A, we obtain PK(A) = (PK(A))2, whence PK(A) is either 0 or 1, as desired.

Proof of Lemma 6.3 in the general case. Fix a bounded Borel subset B ⊂ E and a function φ ∈ L2(E \B,µ) such
that ‖φ‖2 = 1. Recalling (3.1), set

R(K,B,φ) = (φ ⊗φ +χB)K(φ ⊗φ +χB).

By Lemma 1.7,

〈R(K,B,φ)[X ,B]
φ ,φ〉= 〈K[X ,B]

φ ,φ〉, for PK-almost every X ∈ Conf(E).

By definition, we have K[X ,B] = K[X∩B,B] and similarly R(K,B,φ)[X ,B] = R(K,B,φ)[X∩B,B]. In particular, we have

〈R(K,B,φ)[X ,B]
φ ,φ〉= 〈K[X ,B]

φ ,φ〉 for (πB)∗(PK) = PχBKχB-almost every X ∈ Conf(B);

VarPK

[
〈K[X ,B]

φ ,φ〉
]
= VarPχBKχB

[
〈K[X ,B]

φ ,φ〉
]
= VarPχBR(K,B,φ)χB

〈R(K,B,φ)[X ,B]
φ ,φ〉. (6.15)

Let m be the counting measure on N.

Proposition 6.5. There exists a locally trace class orthogonal projection operator K̃ ∈L1,loc(L2(E tN,µ ⊕m))
such that K = χEK̃χE .
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Proof. The canonical orthogonal projection dilation of K on L2(E,µ)⊕L2(E,µ) is given by the formula[
K

√
K−K2

√
K−K2 1−K

]
,

but it is not in general locally trace class. Since L2(E,µ) is separable and all infinite dimensional separable Hilbert
spaces are isometrically isomorphic, there exists a unitary operator U : L2(E,µ)→ `2(N) = L2(N,m), and we set

K̃ :=
[

1 0
0 U−1

][
K

√
K−K2

√
K−K2 1−K

][
1 0
0 U

]
.

Since K̃ is an orthogonal projection, for any bounded Borel subset B ⊂ E, which is of course also a subset of
E tN, and any φ ∈ L2(E \B,µ), which of course also lies in L2((E tN)\B,µ⊕m), we have

VarPK̃

[
〈K̃[X ,B]

φ ,φ〉
]
≤ ‖χBK̃φ‖2

2.

For the term on the right hand side, we have

χBK̃φ = χBKφ . (6.16)

Since φ ⊗φ +χB = (φ ⊗φ +χB)χE , we have

R(K̃,B,φ) = (φ ⊗φ +χB)K̃(φ ⊗φ +χB) = (φ ⊗φ +χB)K(φ ⊗φ +χB) = R(K,B,φ).

It follows that

〈K̃[X ,B]
φ ,φ〉

P
χBK̃χB

-a.s.
======== 〈R(K̃,B,φ)[X ,B]

φ ,φ〉= 〈R(K,B,φ)[X ,B]
φ ,φ〉

PχBKχB -a.s.
======== 〈K[X ,B]

φ ,φ〉.

The equality χBK̃χB = χBKχB implies the equality P
χBK̃χB

= PχBKχB , and we have

VarPK

[
〈K[X ,B]

φ ,φ〉
]
= VarPχBKχB

[
〈K[X ,B]

φ ,φ〉
]
= VarP

χBK̃χB

[
〈K̃[X ,B]

φ ,φ〉
]
= VarPK̃

[
〈K̃[X ,B]

φ ,φ〉
]
. (6.17)

Combining (6.16) and (6.17), we obtain the desired inequality (6.4).

7 Proof of Theorem 1.5

Recall that we have fixed a realization of our kernel, namely, a Borel function K(x,y) defined on the set E0×E0,
where µ(E \E0) = 0. In this section, we make the additional assumption that K is an orthogonal projection onto
a subspace H ⊂ L2(E,µ). Recalling (1.2), we fix a realization also for each h ∈ H: namely, in such a way that
the equation h(x) = 〈h,Kx〉 holds for every x ∈ E0 and every h ∈ H. Given any configuration X ∈ Conf(E) and a
bounded Borel subset B⊂ E, we set L(X) := {h ∈H : h�X ≡ 0} and χBL(X) := {χBh : h ∈ L(X)} ⊂ L2(E,µ). The
subspace L(X) is of course closed, but χBL(X) need not be closed.

Fix an exhausting sequence E1 ⊂ ·· · ⊂ En ⊂ ·· · ⊂ E \B of bounded Borel subsets of E \B, and denote

Fn = E \ (B∪En).

Since B is bounded, we have L1,loc(L2(B,µ)) =L1(L2(B,µ)). By Theorem 1.2, for PK-almost every X ∈Conf(E),
there exists a positive contraction K[X ,E\B] ∈L1(L2(B,µ)), such that

χBK[X ,En]χB
n→∞−−−−−−−−→

in L1(L2(B,µ))
K[X ,E\B] (7.1)

and

PK(·|X ,E \B) = PK[X ,E\B] . (7.2)
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Lemma 7.1. For PK-almost every X ∈ Conf(E), we have K[X ,E\B](χBh) = χBh for any h ∈ L(X ∩ (E \B)).

Proof. Fix any h ∈ L(X ∩ (E \B))⊂ H. For any n ∈ N, since En ⊂ E \B, by definition, we have

L(X ∩ (E \B))⊂ L(X ∩En).

Since En is bounded and E \En = B∪Fn, the operator K[X ,En] is the orthogonal projection from L2(E,µ) onto the
closure of the subspace χE\EnL(X ∩En) = χB∪FnL(X ∩En). By (7.1), we have

K[X ,E\B](χBh) = lim
n→∞

(
χBK[X ,En]χB

)
(χBh) = lim

n→∞
χBK[X ,En](χBh).

Using the equalities χBh = χB∪Fnh−χFnh, K[X ,En](χB∪Fnh) = χB∪Fnh, and the relation

‖χBK[X ,En](χFnh)‖2 ≤ ‖χFnh‖2
n→∞−−−→ 0,

we obtain K[X ,E\B](χBh) = limn→∞ χBK[X ,En](χB∪Fnh−χFnh) = χBh− limn→∞ χBK[X ,En](χFnh) = χBh.

Lemma 7.2. Let P be a point process on E. Then for any bounded Borel subset B⊂ E, we have

P(#B = #(X ∩B)|X ,Bc)> 0 for P-almost every X ∈ Conf(E). (7.3)

Proof. First of all, decomposing X = Y ∪Z, Y ∈ Conf(B), Z ∈ Conf(Bc), we can rewrite the statement as follows:

P
(
{W ∈ Conf(B) : #(W ) = #(Y )}|Z,Bc)> 0 (7.4)

for (πBc)∗(P)-almost every Z ∈ Conf(Bc) and P( · |Z,Bc)-almost every Y ∈ Conf(B). We make a simple general
claim: given an integer-valued measurable function f on a probability space (Ω,P), for P-almost every y ∈ Ω we
have P{x : f (x) = f (y)}> 0. Indeed, if N = {n∈Z : P{x : f (x) = n)}= 0}, then the relation P{x : f (x) = f (y)}> 0
fails only if f (y) ∈ N, and

P{y : f (y) ∈ N}= ∑
n∈N

P{y : f (y) = n}= 0.

Taking Ω = Conf(B), P = P( · |Z,Bc), f = #B, we obtain (7.4).

Proof of Theorem 1.5. Fix a countable dense subset T of E and let Sn be an enumeration of balls with rational radii
centred at T :

{Sn : n ∈ N}= {B(x,q) : x ∈ T,q ∈Q}.

Fix a measurable subset A ⊂ Conf(E) with PK(A) = 1, such that for all X ∈ A and all n ∈ N, the conditional
measures PK(·|X ,Sc

n) and conditional kernels K[X ,Sc
n] are defined and satisfy

PK(·|X ,Sc
n) = PK[X ,Sc

n ] , (7.5)

and, moreover, the inequality (7.3) holds:

PK(#Sn = #(X ∩Sn)|X ,Sc
n)> 0 for any X ∈A, n ∈ N. (7.6)

We now show that L(X) = {0} for any X ∈A. Take X ∈A and assume, by contradiction, that there exists h ∈
L(X), h 6= 0. Choose a small ball Sn in such a way that h�Sn

6= 0 and X ∩Sn = /0. We have 0 6= χSnh ∈ χSnL(X ∩Sc
n).

By Lemma 7.1, the function χSnh satisfies K[X ,Sc
n](χSnh) = χSnh, whence the operator 1−K[X ,Sc

n] has a kernel.
In particular, det(1−K[X ,Sc

n]) = 0. On the other hand, the relations (7.5), (7.6) together with the gap probability
formula (3.4) imply that

det(1−K[X ,Sc
n]) = PK[X ,Sc

n ](#Sn = 0) = PK(#Sn = 0|X ,Sc
n) = PK(#Sn = #(X ∩Sn)|X ,Sc

n)> 0.

We thus obtain a contradiction and Theorem 1.5 is proved completely.
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8 Appendix: Martingales corresponding to conditional processes

Proposition 8.1. Let B ⊂ E be a bounded Borel subset. If P is a simple point process on E admitting correlation
measures of all orders, then P(·|X ,B) = PX∩B�Conf(Bc) for P-almost every X ∈ Conf(E).

Proof. Let Confn(E)= {X ∈Conf(E) : #X = n} and similarly define Confn(B). By the natural map En→Confn(E)
defined by (x1, · · · ,xn) 7→ {x1, · · · ,xn}, we define a measure ρ#

n,P on Confn(E) as the push-forward measure of the
correlation measure ρn,P and define a σ -finite measure C #

n,P on Confn(E)×Conf(E) as the push-forward measure
of n-th order Campbell measure C !

n,P. The formula (2.2) implies that

C #
n,P(dp×dX1) = ρ

#
n,P(dp)Pp(dX1). (8.1)

By convention, we set ρ#
0,P(dp) := δ /0 and C#

0,P := δ /0⊗P, where δ /0 is the Dirac measure at the empty configuration /0,
i.e., the unique element /0∈Conf0(E). Equivalently, for any positive Borel function H : Confn(E)×Conf(E)→R+:∫

Confn(E)×Conf(E)
H(p,X1)C

#
n,P(dX0×dX1) =

∫
Conf(E)

[
∑

x∈Xn

#H({x1, · · · ,xn},X \{x1, · · · ,xn})
]
P(dX),

where the summation ∑
# is taken over all ordered n-tuples (x1, · · · ,xn) with distinct coordinates x1, · · · ,xn ∈ X . In

particular, when n = 0, this equality reads as: for any H : Conf0(E)×Conf(E)→ R+, we have∫
Conf0(E)×Conf(E)

H(p,X1)C
#
0,P(dp×dX1) =

∫
Conf(E)

H( /0,X)P(dX).

The boundedness of B⊂ E implies that Conf(B) =
⊔

∞
n=0 Confn(B). Hence

Conf(E)' Conf(B)×Conf(Bc) =
( ∞⊔

n=0

Confn(B)
)
×Conf(Bc) =

∞⊔
n=0

(
Confn(B)×Conf(Bc)

)
.

For any n = 0,1,2, · · · , let H : Confn(E)×Conf(E)→ R+ be any non-negative Borel function supported on the
subset Confn(B)×Conf(Bc)⊂ Confn(E)×Conf(E). Then for any configuration X ∈ Conf(E), we have

∑
x∈Xn

#H({x1, · · · ,xn},X \{x1, · · · ,xn}) = n! ·χ{#(X∩B)=n} ·H(X ∩B,X ∩Bc).

When n = 0, this equality reads as H( /0,X) = χ{X∩B= /0} ·H(X ∩B,X ∩Bc). By definition of C #
n,P, we get∫

Confn(E)×Conf(E)
H(p,X1)C

#
n,P(dp×dX1) =

∫
Conf(E)

[
∑

x∈Xn

#H({x1, · · · ,xn},X \{x1, · · · ,xn})
]
P(dX)

= n! ·
∫

Conf(E)
χ{#(X∩B)=n} ·H(X ∩B,X ∩Bc)P(dX) = n! ·

∫
Confn(B)×Conf(Bc)

H(p,X1)PB,Bc(dp×dX1).

The above equality, combined with (8.1), yields

PB,Bc�Confn(B)×Conf(Bc)(dp×dX1) =
1
n!

C #
n,P�Confn(B)×Conf(Bc)(dp×dX1)

=
1
n!

ρ
#
n,P�Conf(B)(dp)Pp�Conf(Bc)(dX1) =

Pp(Conf(Bc))

n!
ρ

#
n,P�Conf(B)(dp)Pp�Conf(Bc)(dX1).

Consequently,

PB,Bc(dp×dX1) =
( ∞

∑
n=0

Pp(Conf(Bc))

n!
ρ

#
n,P�Conf(B)(dp)

)
Pp�Conf(Bc)(dX1).

This implies both the formula for πB(P)(dp) and the formula for P(dX1|p,B) = PB,Bc(dX1|p,B):

πB(P)(dp) =
∞

∑
n=0

Pp(Conf(Bc))

n!
ρ

#
n,P�Conf(B)(dp); (8.2)

P(dX1|p,B) = Pp�Conf(Bc)(dX1), for πB(P)-almost every p ∈ Conf(B). (8.3)

Hence we get the desired relation P(·|X ,B) = PX∩B�Conf(Bc), for P-almost every X ∈ Conf(E).
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Remark. Kallenberg [15, Section 12.3] defined the compound Campbell measure of P on Conf f in(E)×Conf(E)
by

C #
P (dp×dX1) :=

∞

∑
n=0

1
n!

C #
n,P(dp×dX1),

where Conf f in(E) = t∞
n=0Confn(E).

Let P be a point process on E and let W ⊂ E be a Borel subset of E. Let W1 ⊂ ·· · ⊂Wn ⊂ ·· · ⊂W be an
increasing sequence of Borel subsets of W such that W =

⋃
∞
n=1Wn.

Proposition 8.2. The sequence
(
(πW c)∗[P(·|X ,Wn)]

)
n∈N is an (F(Wn))n∈N-adapted martingale defined on the prob-

ability space (Conf(E),F(E),P). Moreover, we have

(πW c)∗[P(·|X ,Wn)] = EP

[
P(·|X ,W )

∣∣∣F(Wn)
]
, for P-almost every X ∈ Conf(E). (8.4)

In particular, by martingale convergence theorem, for all Borel subsets A⊂Conf(W c) and any 1≤ p < ∞, we have(
(πW c)∗[P(·|X ,Wn)]

)
(A)

n→∞−−−−−−−−−−−−−−−→
P-a.s. and in Lp(Conf(E),P)

P(A|X ,W ). (8.5)

Moreover, for P-almost every X ∈ Conf(E), we have

(πW c)∗[P(·|X ,Wn)]
n→∞−−−→

weakly
P(·|X ,W ). (8.6)

Remark. In general, the statement (8.5) cannot be strengthened to the claim that for P-almost every X ∈ Conf(E),
we have

(
(πW c)∗[P(·|X ,Wn)]

)
(A)

n→∞−−−→ P(A|X ,W ), for all Borel subsets A⊂ Conf(W c).

We prepare a simple lemma. Let Ωi, i = 1, . . . ,n, . . . , and Ω∗ be standard Borel spaces. Fix n ∈ N and denote

x := (xi)
∞
i=1 and t =: (xi)i≥n+1,

while z will stand for the coordinate on Ω∗. Let Q(dx×dz) be a Borel probability measure on (∏∞
i=1 Ωi)×Ω∗. For

any n ∈ N, let qn(x1, · · · ,xn;dz) be the marginal on Ω∗ of the conditional measure Q(dt×dz|x1, · · · ,xn).

Lemma 8.3. We have
qn(x1, · · · ,xn;dz) = E[Q(dz|x1, · · · ,xn, t)|x1, · · · ,xn].

Proof. Denote by Qn the marginal measure of Q on Ω1× ·· · ×Ωn. Let Q∞ be the marginal measure of Q on
∏

∞
i=1 Ωi. By definition of conditional measures, we have

Q(dx×dz) = Q∞(dx)Q(dz|x1, · · · ,xn, t);

Q(dx×dz) = Qn(dx1 · · ·dxn)Q(dt×dz|x1, · · · ,xn).

And also

E[Q(dz|x1, · · · ,xn, t)|x1, · · · ,xn] =
∫

t∈∏
∞
i=n+1 Ωi

Q(dz|x1, · · · ,xn, t)Q∞(dt|x1, · · · ,xn).

Since
Q∞(dx) = Qn(dx1 · · ·dxn)Q∞(dt|x1, · · · ,xn),

we get
Q(dx×dz) = Qn(dx1 · · ·dxn)Q∞(dt|x1, · · · ,xn)Q(dz|x1, · · · ,xn, t).
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Consequently,

Q(dt×dz|x1, · · · ,xn) = Q∞(dt|x1, · · · ,xn)Q(dz|x1, · · · ,xn, t).

By definition, we have

qn(x1, · · · ,xn;dz) =
∫

t∈∏
∞
i=n+1 Ωi

Q(dt×dz|x1, · · · ,xn)

=
∫

t∈∏
∞
i=n+1 Ωi

Q∞(dt|x1, · · · ,xn)Q(dz|x1, · · · ,xn, t)

= E[Q(dz|x1, · · · ,xn, t)|x1, · · · ,xn].

Proof of Proposition 8.2. Apply Lemma 8.3 to Ωi = Conf(Wi \Wi−1).

Given a bounded non-negative Borel function g : E → R+, let Sg : Conf(E)→ R+ ∪{+∞} denote the linear
statistics defined, for Z ∈ Conf(E), by the formula Sg(Z) = ∑x∈Z g(x). Denote by EP(Sg|X ,W ) the conditional
expectation of Sg with respect to the sigma-algebra F(W ).

Proposition 8.4. If g�W ≡ 0 and EP(S2
g)< ∞, then the sequence(

EP(Sg|X ,Wn)
)

n∈N
(8.7)

is an (F(Wn))n∈N-adapted L2(Conf(E),P)-bounded martingale defined on the probability space (Conf(E),F(E),P).

Proof. Since g�W ≡ 0, by (8.4), we have

EP(Sg|X ,Wn) = EP

[
EP(Sg|X ,W )

∣∣∣F(Wn)
]
, for P-almost every X ∈ Conf(E).

By Jensen’s inequality, we have

[EP(Sg|X ,Wn)]
2 ≤ EP(S2

g|X ,Wn), for P-almost every X ∈ Conf(E).

Therefore, for any n ∈ N,
EP[EP(Sg|X ,Wn)]

2 ≤ EP(S2
g)< ∞.
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