QUANTITATIVE ANALYSIS OF BOUNDARY LAYERS IN PERIODIC HOMOGENIZATION
Résumé
We prove quantitative estimates on the rate of convergence for the oscillating Dirichlet problem in periodic homogenization of divergence-form uniformly elliptic systems. The estimates are optimal in dimensions larger than three and new in every dimension. We also prove a regularity estimate on the homogenized boundary condition.
Origine | Fichiers produits par l'(les) auteur(s) |
---|