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QUANTITATIVE ANALYSIS OF BOUNDARY LAYERS IN
PERIODIC HOMOGENIZATION

SCOTT ARMSTRONG, TUOMO KUUSI, JEAN-CHRISTOPHE MOURRAT,
AND CHRISTOPHE PRANGE

Abstract. We prove quantitative estimates on the rate of convergence for
the oscillating Dirichlet problem in periodic homogenization of divergence-
form uniformly elliptic systems. The estimates are optimal in dimensions
larger than three and new in every dimension. We also prove a regularity
estimate on the homogenized boundary condition.

1. Introduction

1.1. Motivation and statement of results. We consider the oscillating
Dirichlet problem for uniformly elliptic systems with periodic coefficients, taking
the form

(1.1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−∇ ⋅ (a(x
ε
)∇uε(x)) = 0 in Ω,

uε(x) = g (x, x
ε
) on ∂Ω.

Here ε > 0 is a small parameter, the dimension d ≥ 2 and

(1.2) Ω ⊆ Rd is a smooth, bounded, uniformly convex domain.

The coefficients are given by a tensor a = (aαβij )α,β=1,...,d

i,j=1,...,L
and the unknown

function uε = (uεj)j=1,...,L takes values in RL, so that the system in (1.1) can be
written in coordinates as

−
L

∑
j=1

d

∑
α,β=1

∂β (aαβij ( ⋅
ε
)∂αuεj) = 0 in Ω, ∀i ∈ {1, . . . , L}.

The coefficients are assumed to satisfy, for some fixed constant λ ∈ (0,1), the
uniformly elliptic condition

(1.3) λ ∣ξ∣2 ≤ aαβij (y)ξαi ξ
β
j ≤ λ−1 ∣ξ∣2 ∀ξ = (ξαi ) ∈ Rd ×RL, y ∈ Rd.

Both a(⋅) and the Dirichlet boundary condition g ∶ ∂Ω ×Rd → R are assumed
to be smooth functions,

(1.4) a ∈ C∞ (Rd;RL×L×d×d) and g ∈ C∞(∂Ω ×Rd)
and periodic in the fast variable, that is,

(1.5) a(y) = a(y + ξ) and g(x, y) = g(x, y + ξ) ∀x ∈ ∂Ω, y ∈ Rd, ξ ∈ Zd.
The goal is to understand the asymptotic behavior of the system (1.1) as ε→ 0.
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The problem arises naturally in the theory of elliptic homogenization when
one attempts to obtain a two-scale expansion of solutions of the Dirichlet
problem (with non-oscillating boundary condition) near the boundary, since
the oscillating term in the two scale expansion induces a locally periodic
perturbation of the boundary condition of order O(ε), cf. [7, 12]. In other
words, when examining the fine structure of solutions of the Dirichlet problem
with oscillating coefficients, one expects to find a boundary layer in which the
solutions behave qualitatively differently than they do in the interior of the
domain (for which we have a complete understanding); and the study of this
boundary layer can be reduced to a problem of the form (1.1). Unfortunately,
the size and characteristics of this boundary layer as well as the behavior of
the solutions in it is not well-understood, due to difficulties which arise in the
analysis of (1.1).

The first asymptotic convergence result for the homogenization of the sys-
tem (1.1) in general uniformly convex domains was obtained by Gérard-Varet
and Masmoudi [11, 12]. Under the same assumptions as above, they proved
the existence of an homogenized boundary condition

g ∈ L∞(∂Ω)
such that, for each δ > 0 and q ∈ [2,∞),

(1.6) ∥uε − u∥qLq(Ω) ≤ Cε
2(d−1)
3d+5 −δ,

where the constant C depends on (δ, d,L, λ,Ω, g,a) and u = (uj) is the solution
of the homogenized Dirichlet problem

(1.7) {
−∇ ⋅ (a∇u(x)) = 0 in Ω,

u(x) = g(x) on ∂Ω.

and a is the usual homogenized tensor.1 Besides giving the quantitative rate
in (1.6), this result was the first qualitative proof of homogenization of (1.1).

The asymptotic analysis of (1.1) turns out to be more difficult than that
typically encountered in the theory of periodic homogenization. It is natural
to approximate ∂Ω locally by hyperplanes and thus the boundary layer by
solutions of a Dirichlet problem in a half-space, and these hyperplanes destroy
the periodic structure of the problem. The geometry of the domain Ω thus
enters in a nontrivial way and the local behavior of the boundary layer depends
on whether or not the angle of the normal vector to ∂Ω is non-resonant with
the periodic structure of g(x, ⋅) and a(⋅) (i.e, the lattice Zd). In domains with a
different geometry – for example, in polygonal domains as opposed to uniformly
convex domains (see [3, 14]) – the behavior can be completely different. This
is further complicated by the strength of singularities in the boundary layer
and the difficulty in obtaining any regularity of the homogenized boundary
condition g, which is not known to be even continuous.

The lack of a periodic structure means the problem requires a quantitative
approach as opposed to the softer arguments based on compactness that are

1In [12], the estimate (1.6) is stated only for q = 2, but the statement for general q can be
recovered by interpolation since L∞ bounds are available for both uε and u.
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more commonly used in periodic homogenization. Such a strategy was pursued
in [12], based on gluing together the solutions of half-space problems with
boundary hyperplanes having Diophantine (non-resonant) slopes, and it led
to the estimate (1.6). As pointed out by the authors of [12], the exponent
in (1.6) is not optimal and was obtained by balancing two sources of error.
Roughly, if one approximates ∂Ω by too many hyperplanes, then the constant
in the Diophantine condition for some of the planes is not as good, leading to a
worse estimate. If one approximates with too few planes, the error in the local
approximation (caused by the difference between the local hyperplane and ∂Ω)
becomes large.

Given the role of the problem (1.1) in quantifying asymptotic expansions in
periodic homogenization, obtaining the optimal convergence rate of ∥uε−u∥Lp(Ω)
to zero is of fundamental importance. To make a guess for how far the upper
bound for the rate in (1.6) is from being optimal, one can compare it to the
known rate in the case that a is constant-coefficient (i.e., a = a). In the latter
case, the recent work of Aleksanyan, Shahgholian and Sjölin [2] gives, for every
q ∈ [1,∞),

(1.8) ∥uε − u∥qLq(Ω) ≤ C ⋅

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ε
1
2 in d = 2,

ε ∣log ε∣ in d = 3,

ε in d ≥ 4.

One should not expect a convergence rate better than O(ε
1
q ) for ∥uε − u∥Lq(Ω).

Indeed, observe that the difference in the boundary conditions is O(1) and that
we should expect this difference to persist at least in an O(ε)-thick neighborhood
of ∂Ω. Thus the solutions will be apart by at least O(1) in a set of measure at

least O(ε), and this already contributes O(ε
1
q ) to the Lq norm of the difference,

which is observed in [2, Theorem 1.6]. The reason that the rate is worse
in low dimensions is because our estimate for the boundary layer is actually
optimistic: in some places (near points of ∂Ω with good Diophantine normals),
the boundary layer where ∣uε − u∣ ≳ 1 will be O(ε) thick, but in other places

(near points with rational normals with small denominator relative to ε−
1
2 ), the

boundary layer will actually be worse, up to O(ε 1
2 ) thick. In small dimensions

(i.e., in d = 2 and with d = 3 being critical) the “bad” points actually take a
relatively large proportion of the surface area of the boundary, leading to a
worse error. While even the analysis in the constant-coefficient case is subtle,
the case of general periodic a(y) poses much greater difficulties.

The main result of this paper is the following improvement of the rate (1.6).
In dimensions d ≥ 4, we obtain the optimal convergence rate up to an arbitrarily
small loss of exponent, since it agrees with (1.8).

Theorem 1. Assume that (1.2), (1.3), (1.4) and (1.5) hold and let a denote the
homogenized coefficients associated to a(⋅) obtained in periodic homogenization.
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Then there exists a function g ∈ L∞(∂Ω) satisfying

⎧⎪⎪⎨⎪⎪⎩

g ∈W s,1(∂Ω) ∀s < 2
3 in d = 2,

∇g ∈ L
2(d−1)

3
,∞(∂Ω) in d > 2,

and, for every q ∈ [2,∞) and δ > 0, a constant C(q, δ, d, λ,a, g,Ω) < ∞ such
that, for every ε ∈ (0, 1], the solutions uε and u of the problems (1.1) and (1.7)
satisfy the estimate

∥uε − u∥qLq(Ω) ≤ C ⋅

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ε
1
3
−δ in d = 2,

ε
2
3
−δ in d = 3,

ε1−δ in d ≥ 4.

The difference in small dimensions from our rate and (1.8) is due to an error
which arises only in the case of operators with oscillating coefficients: the largest
source of error comes from the possible irregularity of the homogenized boundary
condition g. Reducing this source of error requires to improve the regularity

of g. The statement asserting that ∇g ∈ L
2(d−1)

3
,∞ in d > 2 and g ∈W 2

3
−,1 in d = 2

is, to our knowledge, new and the best available regularity for the homogenized
boundary condition (although see Remark 1.1 below). It is an improvement

of the one proved in [12], where it was shown2 that ∇g ∈ L
(d−1)

2
,∞ in d > 2 and

g ∈W 1
2
−,1 in d = 2. We also mention the recent work of Feldman and Kim [9],

who proved for an oscillating Dirichlet problem in nondivergence form that
the effective boundary condition is at least Hölder continuous; the question of
whether g is necessarily continuous in our setting is still open.

Remark 1.1 (Optimal estimates in dimensions d = 2, 3). Several months after an
earlier version of this paper first appeared on the arXiv, Zhongwei Shen kindly
pointed out to us that our method leads to optimal estimates for the boundary
layer in dimensions d = 2, 3 (up to an arbitrarily small loss of exponent). Indeed,
in a very recent preprint, Shen and Zhuge [16] were able to upgrade the regularity
statement for the homogenized boundary data in Theorem 1, reaching ∇g ∈ Lq
for any q < d − 1 in dimension d ≥ 3, and g ∈ W s,1 for any s < 1 in dimension
d = 2. Their proof of the regularity of the homogenized boundary data follows
ours, with a new ingredient, namely a weighted estimate for the boundary
layer. We will mention below where this new idea makes it possible to improve
on our result. Using this improvement of regularity and then following our
argument for estimating boundary layers leads to the following improvement of
the estimates of Theorem 1 in d = 2,3, which is also proved in [16]: for every
q ∈ [2,∞) and δ > 0, there is a constant C(q, δ, d, λ,a, g,Ω) <∞ such that, for
every ε ∈ (0,1], the solutions uε and u of the problems (1.1) and (1.7) satisfy
the estimate

(1.9) ∥uε − u∥qLq(Ω) ≤ C ⋅
⎧⎪⎪⎨⎪⎪⎩

ε
1
2
−δ in d = 2,

ε1−δ in d = 3.

This is optimal since it agrees with (1.8), up to an arbitrary loss of exponent.

2This estimate was not stated in [12], but it follows from their Corollary 2.9.
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We do not expect it to be possible to eliminate the small loss of exponent rep-
resented by δ > 0 without upgrading the qualitative regularity assumption (1.4)
on the smoothness of a and g to a quantitative one (for example, that these
functions are analytic). Note that this regularity assumption plays an important
role in the proof of Theorem 1 and is not a mere technical assumption or one
used to control the small scales of the solutions. Rather, it is used to obtain
control over the large scale behavior of the solutions via the quasiperiodic
structure of the problem since it gives us a quantitative version of the ergodic
theorem (see Proposition 2.1). In other words, the norms of high derivatives of a
and g control the ergodicity of the problem and thus the rate of homogenization.

It would be interesting to reduce the restriction on q in Theorem 1 by
allowing for q ∈ [1,2). This restriction is necessary because we estimate the

level sets {uε − u > t} of the error only for t ≳ O(ε 1
2 ).

In the course of proving Theorem 1, we give a new expression for the homog-
enized boundary condition which makes it clear that g(x) is a local, weighted
average of g(x, ⋅) which depends also on the normal vector n(x) to ∂Ω at x.
See (1.12) and (1.13), below.

The proof of Theorem 1 blends techniques from previous works on the
problem [11, 12, 1, 2] with some original estimates and then combines them
using a new strategy. Like the approach of [12], we cut the boundary of ∂Ω
into pieces and approximate each piece by a hyperplane. However, rather than
gluing approximations of the solution together, we approximate, for a fixed x0,
the contribution of each piece of the boundary in the Poisson formula

(1.10) uε(x0) = ∫
∂Ω
P ε

Ω(x0, x)g (x,
x

ε
) dHd−1(x).

Thus, at least in the use of the Poisson formula, our approach bears a similarity
to the one of [1, 2].

The first step in the argument is to replace the Poisson kernel P ε
Ω(x0, x) for

the heterogeneous operator −∇ ⋅ a ( ⋅
ε
)∇ by its two scale expansion, using a

result of Kenig, Lin and Shen [13] (based on the classical regularity theory of
Avellaneda and Lin [5, 6]), which states that

P ε
Ω(x0, x) = PΩ(x0, x)ωε(x) + small error,

where PΩ(x0, x) is the Poisson kernel for the homogenized operator −∇ ⋅ a∇
and ωε(x) is a highly oscillating function which is given explicitly in [13] and
which depends mostly on the coefficients in an O(ε)-sized neighborhood of the
point x ∈ ∂Ω. We then show that this function ωε(x) can be approximated by
the restriction of a smooth, Zd–periodic function on Rd which depends only on
the direction of the normal derivative to ∂Ω at x. That is,

ωε(x) = ω̃ (n(x), x
ε
) + small error,

for a smooth Zd–periodic function ω̃(n(x), ⋅) ∈ C∞(Rd), where n(x) denotes
the outer unit normal to ∂Ω at x. This is true because the boundary of ∂Ω is
locally close to a hyperplane which is then invariant under Zd–translations. To
bound the error in this approximation we rely in a crucial way on the C1,1−
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regularity theory of Avellaneda and Lin [5, 6] up to the boundary for periodic
homogenization.

We can therefore approximate the Poisson formula (1.10) by

(1.11) uε(x0) = ∫
∂Ω
PΩ(x0, x) ω̃ (n(x), x

ε
) g (x, x

ε
) dHd−1(x) + small error.

Finally, we cut up the boundary of ∂Ω into small pieces which are typically

of size O(ε1−) but sometimes as large as O(ε 1
2
−), depending on whether the

local outer unit normal to ∂Ω resonates with the lattice structure of Zd on
scales smaller than O(ε−1). This chopping has to be done in a careful way,
which we handle by performing a Calderón-Zygmund-type cube decomposition.
In each piece, we freeze the macroscopic variable x = x on both ω̃ and g and
approximate the boundary by a piece of a hyperplane, making another small
error. The integral on the right of (1.11) is then replaced by a sum of integrals,
each of which is a slowly varying smooth function PΩ(x0, ⋅) times the restriction
of a smooth, εZd–periodic function ω̃ (n(x), ⋅ε) g (x,

⋅
ε
) to a hyperplane. This is

precisely the situation in which an appropriate quantitative form of the ergodic
theorem for quasiperiodic functions allows us to compute the integral of each
piece, up to a (very) tiny error, which turns out to be close to the integral
of PΩ(x0, ⋅) times ⟨ω̃ (n(x), ⋅) g (x, ⋅)⟩, the mean of the local periodic function.
Therefore we deduce that

(1.12) uε(x0) = ∫
∂Ω
PΩ(x0, x)⟨ω̃(n(x), ⋅)g(x, ⋅)⟩dHd−1(x) + small error.

The right side is now u(x0) plus the errors, since now we can see that the
homogenized boundary condition should be defined by

(1.13) g(x) ∶= ⟨ω̃(n(x), ⋅)g(x, ⋅)⟩, x ∈ ∂Ω.

There is an important subtlety in the final step, since the function g is
not known to be very regular. This is because we do not know how to prove
that ω̃(n,x) is even continuous as a function of the direction n ∈ ∂B1. As a
consequence, we have to be careful in estimating the error made in approximating
the homogenized Poisson formula with the sum of the integrals over the flat
pieces. This is resolved by showing that g is continuous at every x ∈ ∂Ω with
Diophantine normal n(x), with a quantitative bound for the modulus which

leads to the conclusion that ∇g ∈ L
2(d−1)

3
−. This estimate is a refinement of those

of [12] and also uses ideas from [15]; see the discussion in Section 4.

We conclude this section by remarking that, while many of the arguments
in the proof of Theorem 1 are rather specific to the problem, we expect the
high-level strategy– based on two-scale expansion of the Poisson kernel, a
suitable regularity theory (like that of Avellaneda and Lin) and the careful
selection of approximating half-spaces (done here using a Calderón-Zygmund
cube decomposition of the boundary based on the local Diophantine quality)–
to be quite flexible and useful in other situations. For instance, we expect the
analogous problem for equations in nondivergence form, studied for instance by
Feldman [10], to be amenable to a similar attack.
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1.2. Notations and basic definitions. The indices i, j, k, l usually stand for
integers ranging between 1 and L, whereas the small greek letters α, β, γ stand
for integers ranging between 1 and d. As is usual, the set natural numbers
{0,1,2 . . .} is denoted by N. The vectors ei ∈ RL, for i = 1, . . . , L form the
canonical basis of RL. The vector ed = (0, . . . , 0, 1) ∈ Rd is the d-th vector of the
canonical basis of Rd. The notation Bd−1(0, r0) ⊆ Rd−1 denotes the Euclidean
ball of Rd−1 centered at the origin and of radius r0. For a point z = (z′, zd) ∈ Rd,
z′ ∈ Rd−1 is the tangential component and zd ∈ R the vertical one. The gradient
∇′ is the gradient with respect to the d − 1 first variables. The notation Md(R)
(resp. Md−1,d(R), ML(R)) denotes the set of d × d (resp. (d − 1) × d, L × L)
matrices.

Unless stated otherwise, x0, x, x, z denote slow variables. The point x0

usually denotes a point in the interior of Ω, while x and x are points on the
boundary (x stands for a fixed reference point). The notation y stands for the
fast variable, y = x

ε . The vector n(x) ∈ ∂B1 is the unit outer normal to ∂Ω at
the point x ∈ ∂Ω. Given n ∈ ∂B1 and a ∈ R, the notation Dn(a) stands for the
half-space {y ⋅ n > a} of Rd.

We let Hs denote, for s > 0, the s-dimensional Hausdorff measure on Rd. For
1 ≤ p ≤∞ and s ≥ 0, Lp is the Lebesgue space of exponent p, W s,p is the Sobolev
space of regularity index s and Hs = W s,2. For 1 < p < ∞, Lp,∞ denotes the
weak Lp space.

The first-order correctors χ = χβ(y) ∈ML (R), indexed by β = 1, . . . , d, are
the unique solutions of the cell problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−∇ ⋅ (a(y)∇χβ(y)) = ∂αaαβ(y) in Td,

∫
Td
χβ(y)dy = 0.

The constant homogenized tensor a = (aαβij )α,β=1,...,d

i,j=1,...,L
is given by

aαβ ∶= ∫
Td

aαβ(y)dy + ∫
Td

aαγ(y)∂γχβ(y)dy.

Starred quantities such as χ∗ refer to the objects associated to the adjoint
matrix a∗ defined by (a∗)αβij = aβαji , for α, β = 1, . . . , d and i, j = 1, . . . , L.

We now turn to the definition of the Poisson kernel. Let ε > 0 be fixed.
Let Gε

Ω ∈ML(R) be the Green kernel associated to the domain Ω and to the

operator −∇ ⋅ a ( ⋅
ε
)∇. For the definition, the existence and basic properties of

the Green kernel, we refer to [8]. The Poisson kernel P ε
Ω ∈ML(R) associated to

the domain Ω and to the operator −∇ ⋅ a ( ⋅
ε
)∇ is now defined in the following

way: for all i, j = 1, . . . , L, for all x0 ∈ Ω, x ∈ ∂Ω,

P ε
Ω,ij(x0, x) ∶= −n(x) ⋅ a∗ik(

x

ε
)∇Gε

Ω,kj(x,x0).

We will use many times the following uniform bound for the Poisson kernel
(cf. [5, Theorem 3(i)]): there exists a constant C(d,L,λ,a,Ω) uniform in ε, such
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that for x0 ∈ Ω, for x ∈ ∂Ω,

(1.14) ∣P ε
Ω(x0, x)∣ ≤

C dist(x0,Ω)
∣x0 − x∣d

.

We denote by PΩ the Poisson kernel for the homogenized operator −∇ ⋅ a∇.

Let us conclude this section by two remarks on the constants. In the Dio-
phantine condition (see Definition 2.2), the exponent κ > 1

d−1 is fixed for the
whole paper. This exponent plays no role in our work except that the condition
κ > 1

d−1 implies (2.4). As usual, c and C denote positive constants that may vary
in each occurrence. The dependence of these constants on other parameters is
made precise whenever it is necessary.

1.3. Outline of the paper. In the next section, we present a quantitative
ergodic theorem for quasiperiodic functions and discuss the Diophantine condi-
tions. In Section 3, we give a triadic cube decomposition of a neighborhood of
the boundary ∂Ω using a Calderón-Zygmund-type stopping time argument. In
Section 4, we analyze the half-space problem and show that the homogenized
boundary condition g is continuous at points x ∈ ∂Ω with Diophantine nor-
mals n(x). In Section 5, we show that the two-scale expansion of the Poisson
kernel is, up to a small error, locally periodic. In Section 6, we combine all the
previous ingredients to obtain an estimate of the homogenization error in terms
of local errors which depend on the size of the local cube in the decomposition.
In the final section, we compute the Lq norm of these errors to complete the
proof of Theorem 1.

2. Quantitative ergodic theorem for quasiperiodic functions

The following result is a quantitative ergodic theorem for quasiperiodic
functions satisfying a Diophantine condition. Its statement can be compared
to that of [4, Proposition 2.1], although the argument we give here, which is
Fourier analytic, is very different from the one in [4]. We state it in a very
general form, though we apply it later for a more specific Diophantine condition.

Proposition 2.1. Let Ψ ∶ Rd−1 → R be smooth and compactly supported, and
let K ∶ Td → R be a smooth periodic function. Suppose that the matrix N ∈
Md,d−1(R) is such that it satisfies, for some A > 0 and f ∶ (0,∞)→ (0,∞), the
Diophantine condition

∣NT ξ∣ ≥ Af(∣ξ∣) ∀ξ ∈ Zd ∖ {0}.

Then for all η > 0, for all k ∈ N, we have the estimate

(2.1) ∣∫
Rd−1

Ψ(z′)K(Nz
′

η
) dz′ − K̂(0)∫

Rd−1
Ψ(z′)dz′∣

≤ (A−1η)k (∫
Rd−1

∣∇kΨ(z′)∣ dz′)
⎛
⎝ ∑
ξ∈Zd∖{0}

∣K̂(ξ)∣ ∣f(∣ξ∣)∣−k
⎞
⎠
.
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Proof. Assume without loss of generality (by subtracting a constant from K)

that K̂(0) = 0. Now we Fourier expand K:

∫
Rd−1

Ψ(z′)K(Nz
′

η
) dz′

= ∑
ξ∈Zd∖{0}

K̂(ξ)∫
Rd−1

Ψ(z′) exp(iNT ξ ⋅ z
′

η
) dz′

= − ∑
ξ∈Zd∖{0}

K̂(ξ)∫
Rd−1

Ψ(z′)iηN
T ξ

∣NT ξ∣2
⋅ ∇{exp(iNT ξ ⋅ z

′

η
)} dz′

= ∑
ξ∈Zd∖{0}

iηK̂(ξ)NT ξ

∣NT ξ∣2
⋅ ∫

Rd−1
∇Ψ(z′) exp(iNT ξ ⋅ z

′

η
) dz′.

After iterating this k times, we obtain

∫
Rd−1

Ψ(z′)K(Nz
′

η
) dz′

= ∑
ξ∈Zd∖{0}

( iη

∣NT ξ∣
)
k

K̂(ξ)( N
T ξ

∣NT ξ∣
)
⊗k

∫
Rd−1

∇kΨ(z′) exp(iNT ξ ⋅ z
′

η
) dz′.

Applying the Diophantine condition ∣NT ξ∣ ≥ Af(∣ξ∣), we get

∣∫
Rd−1

Ψ(z′)K(Nz
′

η
) dz′∣ ≤ ∑

ξ∈Zd∖{0}
ηkA−k ∣f(∣ξ∣)∣−k ∣K̂(ξ)∣∫

Rd−1
∣∇kΨ(z′)∣ dz′.

This completes the proof. �

We now precisely describe the Diophantine condition we will use in our
applications of Proposition 2.1. We take a parameter κ > 1

d−1 to be fixed for the
rest of the paper.

Definition 2.2 (Diophantine direction). We say that n ∈ ∂B1 is Diophantine
with constant A > 0 if

(2.2) ∣(Id −n⊗ n)ξ∣ ≥ A∣ξ∣−κ, ∀ξ ∈ Zd ∖ {0},

where (Id −n⊗ n)ξ denotes the projection of ξ on the hyperplane n⊥.

Let M be an orthogonal matrix sending ed on n. We can reformulate the
Diophantine condition in terms of the projection on Rd−1 × {0} of the rotated
lattice elements MT ξ. Denoting by N ∈Md,d−1(R) the matrix of the first d − 1
columns of M , we have

MT ξ = (NT ξ)1e1 + . . . (NT ξ)d−1ed−1 + (ξ ⋅ n)ed.

Thus, condition (2.2) is equivalent to

(2.3) ∣NT ξ∣ ≥ A∣ξ∣−κ, ∀ξ ∈ Zd ∖ {0}.

The constant A is necessarily less than 1. Notice that a Diophantine vector
is necessarily irrational, that is, n ∉ RZd. The value of the exponent κ is not
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important and plays no role in the paper, provided it is chosen larger than
(d − 1)−1. For A > 0, denote

Λ(A) ∶= {n ∈ ∂B1 ∶ n satisfies (2.2)} .
Then the union of Λ(A) over all A > 0 is a set of full measure in ∂B1 with
respect to Hd−1. More precisely, we have the estimate (cf. [12, (2.2)]),

(2.4) Hd−1 (Λ(A)c) ≤ CAd−1.

We now introduce the function

A ∶ ∂B1 Ð→ [0,1],
defined in the following way: for n ∈ ∂B1,

(2.5) A(n) ∶= sup{A ≥ 0 ∶ n ∈ Λ(A)} .
As a consequence of (2.4), the function A−1 satisfies the bound

Hd−1 ({n ∈ ∂B1 ∶ A−1(n) > t}) ≤ Ct1−d.

Thus A−1 belongs to the weak Lebesgue space Ld−1,∞(∂B1) and the previous
line can be written equivalently as

∥A−1∥
Ld−1,∞(∂B1)

≤ C.

If we consider a smooth uniformly convex domain Ω, then the mapping

S ∶ x ∈ ∂Ωz→ n(x) ∈ ∂B1,

where n(x) is the unit outer normal to Ω at x ∈ ∂Ω, is a diffeomorphism (since
the principal curvatures are bounded from below and above). Therefore, A−1 ○S
belongs to Ld−1,∞(∂Ω), and we have the bound

(2.6) ∥A−1 ○ S∥
Ld−1,∞(∂Ω) ≤ C.

Henceforth, we do not distinguish between the functions A and A ○ S in our
notation.

3. Triadic cube decomposition of the boundary layer

In this section, we perform a Calderón-Zygmund-type decomposition of the
domain near the boundary which, when applied to the Diophantine constant of
the normal to the boundary, will help us construct the approximation of the
boundary layer.

We begin by introducing the notation we use for triadic cubes. For n ∈ Z, we
denote the triadic cube of size 3n centered at z ∈ 3nZd by

◻n(z) ∶= z + [−1

2
3n,

1

2
3n)

d

.

We denote the collection of triadic cubes of size 3n by

Tn ∶= {◻n(z) ∶ z ∈ 3nZd} .

Notice that Tn is a partition of Rd. The collection of all triadic cubes is

T ∶= {◻n(z) ∶ n ∈ Z, z ∈ 3nZd}
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If ◻ ∈ T has the form ◻ = ◻n(z), then we denote by size(◻) ∶= 3n the side length
of ◻, the center of the cube by x(◻) ∶= z and, for r > 0, we write r◻ to denote
the cube z + r◻n, that is, the cube centered at z of side length 3nr. If ◻,◻′ ∈ T ,
then we say that ◻ is the predecessor of ◻′ if ◻′ ⊆ ◻ and size(◻) = 3 size(◻′).
We also say that ◻′ is a successor of ◻ if ◻ is the predecessor of ◻′.

Proposition 3.1. Assume that Ω ⊆ Rd is a bounded Lipschitz domain, δ > 0,
and let

F ∶ ∂Ω→ [δ,∞)
be a Borel measurable function. Then there exists a collection P ⊆ T of disjoint
triadic cubes satisfying the following properties:

(i) ∂Ω ⊆⋃P.

(ii) For every ◻ ∈ P,
◻∩ ∂Ω ≠ ∅.

(iii) For every ◻ ∈ P,
ess inf
3◻∩∂Ω

F ≤ size(◻).

(iv) There exists a positive constant C(d,Ω) <∞ such that for every n ∈ Z,

#{◻ ∈ P ∶ size(◻) ≥ 3n} ≤ C3−n(d−1)Hd−1 ({x ∈ ∂Ω ∶ F (x) ≥ 3n−2})

(v) If ◻,◻′ ∈ P are such that dist(◻,◻′) = 0, then

1

3
≤ size(◻)

size(◻′)
≤ 3.

Proof. We proceed by a stopping time argument. We initialize the induction
by taking n0 ∈ Z large enough that Ω ⊆ ◻0 for some ◻0 ∈ Tn0 and ess inf◻0 F ≤
size(◻0). We iteratively define a sequence {Qk}k∈N of subsets Qk ⊆ Tn0−k
satisfying, for every ◻ ∈ Qk,

◻∩ ∂Ω ≠ ∅
in the following way. We take Q0 ∶= {◻0}. If

ess inf
∂Ω

F > 1

3
size(◻0)

then we say that ◻0 is a bad cube and we stop the procedure and set P ∶= Q0

and B0 ∶= Q0. Otherwise we set G0 = Q0, B0 = ∅ and continue. Having chosen
Q0, . . . ,Qk−1, and having split each of Qj for j ∈ {0, . . . , k − 2} into good cubes
Gj and bad cubes Bj so that Qj = Gj ∪ Bj and Gj ∩ Bj = ∅, we split Qk−1 into
good cubes Gk−1 and bad cubes Bk−1 and define Qk as follows. We take Gk−1 to
be the elements ◻ ∈ Qk−1 satisfying both

(3.1) ◻′ ∈ Tn0−k, ◻′ ∩ ∂Ω ≠ ∅ and ◻′ ⊆ ◻ Ô⇒ ess inf
3◻′∩∂Ω

F ≤ 1

3
size(◻)

and
◻′ ∈ Bk−2 Ô⇒ dist (◻,◻′) > 0.

The set of bad cubes Bk−1 is defined to be Qk−1 ∖ Gk−1. We then define Qk to
be the subcollection of Tn0−k consisting of those cubes which have nonempty
intersection with ∂Ω and are subcubes of some element of Gk−1. We stop the
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procedure at any point if the set of good cubes is empty. This will halt before
a finite k(δ) ∈ N owing to the assumption that F ≥ δ.

We now define P to be the collection of all bad cubes which intersect ∂Ω:

P ∶=
k(δ)
⋃
j=0

Bj.

It is immediate from the construction that P satisfies properties (i), (ii), (iii)
and (v) in the statement of the proposition. We therefore have left to show
only (iv).

To prove (iv), we collect all the elements of P of size 3n0−(k−1), for some k ∈ N,
which also satisfy (3.1). Call this P1, and set P2 ∶= P ∖P1. Thus every cube of
P2 has a successor ◻′ ∈ T such that ◻′ ∩ ∂Ω ≠ ∅ and

F ≥ 1

3
size(◻) a.e. in 3◻′ ∩ ∂Ω.

In particular, there is a small universal positive constant c ∈ (0, 1
2
] depending

only on d and the Lipschitz constant of Ω such that

(3.2) ∀◻ ∈ P2, Hd−1 ({x ∈ 5

3
◻∩ ∂Ω ∶ F (x) ≥ 1

3
size(◻)}) ≥ c size(◻)d−1.

Observe that property (v) ensures that the cube 5
3◻ ∩ ∂Ω is a subset of the

union of the neighboring elements of P to ◻, that is,

5

3
◻∩ ∂Ω ⊆⋃{◻′ ∈ P ∶ dist(◻,◻′) = 0} .

We write ◻ ∼ ◻′ if ◻,◻′ ∈ P are neighboring cubes, in other words, if ◻ ≠ ◻′

and dist(◻,◻′) = 0. Property (v) also ensures that every element of P has at
most 3d−1 ⋅ 2d ≤ C neighboring elements of P. This implies that

n0−n
∑
k=0

∑
◻∈P2∩Bk

Hd−1 ({x ∈ 5

3
◻∩ ∂Ω ∶ F (x) ≥ 1

3
size(◻)})(3.3)

≤
n0−n
∑
k=0

∑
◻∈P2∩Bk

∑
◻′∈P,◻∼◻′

Hd−1 ({x ∈ ◻′ ∩ ∂Ω ∶ F (x) ≥ 1

3
size(◻)})

≤ C ∑
◻∈P
Hd−1 ({x ∈ ◻∩ ∂Ω ∶ F (x) ≥ 1

9
3n})

≤ CHd−1 ({x ∈ ∂Ω ∶ F (x) ≥ 3n−2}) .
Next, for every ◻ ∈ P2, let P1(◻) be the collection of elements of P1 which are
subsets of 3◻. Observe that

(3.4) ⋃P1 ⊆ ⋃
◻∈P2

3◻.

Indeed, each cube ◻ in P1 is the neighbor of some cube ◻′ ∈ P with size(◻′) =
3 size(◻). If ◻′ /∈ P2, then it is also the neighbor of a cube in P that is three
times larger. We continue this process, finding a chain of larger and larger cubes
until we reach a cube ◻′′ ∈ P2 which is guaranteed to occur by construction. It
is easy to check that 3◻′′ contains the entire chain of cubes starting from ◻.
This argument yields (3.4).
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Now, since Ω is a Lipschitz domain, we have that, for every ◻′ ∈ P2,

(3.5) #{◻ ∈ P1(◻′) ∶ size(◻) ≥ 3n} ≤ C3−n(d−1) size(◻′)d−1.

Indeed, the Hd−1 measure of ∂Ω ∩ 3◻′ is at most C size(◻′)d−1 and therefore
there exist at most C size(◻′)d−13−n(d−1) triadic cubes of size larger than 3n

which intersect it.

We deduce from (3.2), (3.3), (3.4) and (3.5) that
n0−n
∑
k=0

# ⋃
◻′∈P2∩Bk

{◻ ∈ P1(◻′) ∶ size(◻) ≥ 3n}

≤ C
n0−n
∑
k=0

3(k−n)(d−1)# (P2 ∩ Bk)

≤ C3−n(d−1)
n0−n
∑
k=0

∑
◻∈P2∩Bk

Hd−1 ({x ∈ 5

3
◻∩ ∂Ω ∶ F (x) ≥ 1

3
size(◻)})

≤ C3−n(d−1)Hd−1 ({x ∈ ∂Ω ∶ F (x) ≥ 3n−2})
The statement (iv) follows from this. �

We next construct a partition of unity of ∂Ω subordinate to the parti-
tion {∂Ω ∩◻ ∶ ◻ ∈ P} of ∂Ω consisting of functions whose derivatives scale
according to the size of each cube. The need to construct such a partition is
the reason for requiring neighboring cubes of P to have comparable sizes in the
stopping time argument, cf. property (v) in the statement of Proposition 3.1.

Corollary 3.2. Assume the hypotheses of Proposition 3.1 and let P ⊆ T be as
in the conclusion. Then there exist a family {ψ◻ ∈ C∞(Rd) ∶ ◻ ∈ P} of smooth
functions and, for every k ∈ N, there is 0 < C(k, d,Ω) <∞ satisfying

(3.6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ ψ◻ ≤ 1,

supp (ψ◻) ⊆
4

3
◻,

∑
◻∈P

ψ◻(x) = 1 for every x ∈⋃P, and

∣∇kψ◻∣ ≤ C(size(◻))−k.

Proof. Select η ∈ C∞(Rd) satisfying

η ≥ 0, supp η ⊆ B 1
3
, η ≥ 1 on B 1

4
, ∫

Rd
η(x)dx = 1, and ∣∇kη∣ ≤ C20k.

For r > 0, set ηr(x) ∶= r−dη (xr ). For each ◻ ∈ P, define

ζ◻(x) ∶= 1◻ ∗ ηsize(◻)(x) = ∫◻
ηsize(◻)(z − x)dz.

By construction, we have that ζ◻ satisfies, for every k ∈ N,

(3.7) 0 ≤ ζ◻ ≤ 1, supp (ζ◻) ⊆
4

3
◻, and ∣∇kζ◻∣ ≤ Ck(size(◻))−k.

Since η ≥ 1 on B 1
4
, we have that

ζ◻ ≥ c on ◻.
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The previous line, the fact that supp(ζ◻) ⊆ 4
3◻ and Proposition 3.1(v) imply

that the function
ζ ∶= ∑

◻∈P
ζ◻

satisfies
c ≤ ζ ≤ C in ⋃P.

We also get by Proposition 3.1(v) that

∣∇kζ ∣ ≤ Ck(size(◻))−k in ⋃P.
Now define, for each ◻ ∈ P,

ψ◻ ∶=
ζ◻
ζ
.

It is immediate from the above construction that {ψ◻}◻∈P satisfies each of the
properties in (3.6). Note that the bound ψ◻ ≤ 1 follows from the third line
of (3.6) and ψ◻ ≥ 0. This completes the argument. �

4. Half-space boundary layer problem

The analysis of the boundary layer in the domain Ω and the definition of the
homogenized boundary condition g are based on an approximation procedure
involving half-space boundary layer problems

(4.1) {
−∇ ⋅ (a(y)∇V ) = 0 in Dn(a),
V = V0(y) on ∂Dn(a),

where n ∈ ∂B1, a ∈ R, and V0 is a Zd-periodic function. When necessary,
we write the dependence of V on a and n explicitly by writing V (y;a,n).
Full understanding of these boundary layers has been achieved in the works
[11, 12, 15]. The analysis of (4.1) is very sensitive to the Diophantine properties
of the normal n. As usual, let M be an orthogonal matrix such that Med = n,
and N be the matrix of the d − 1 first columns of M . The matrices M and
N essentially gives us a convenient coordinate system to work in. They of
course depend on n ∈ ∂B1 and can be chosen in such a way as to be locally
smooth functions of n in a neighborhood of any fixed n0 ∈ ∂B1. Since all of
the estimates we need are local in the direction n ∈ ∂B1, this suffices for our
purposes.

The first proposition addresses the existence and asymptotic behavior of V
for an arbitrary normal n. The derivation of the convergence away from the
boundary of the half-space is based on the fact that V0 is quasiperiodic along
the boundary.

Proposition 4.1 ([15, Theorem 1.2]). For any V0 ∈ C∞(Td), there exists a
unique C∞(Dn(a)) solution V to (4.1) such that

∥∇V ∥L∞({y⋅n−t>0})
t→∞Ð→ 0 and ∫

∞

a
∥∇V ⋅ n∥2

L∞({y⋅n−t=0}) dt <∞.

Moreover, there exists a boundary layer tail V ∞ ∈ RL such that

(4.2) V (y) y⋅n→∞Ð→ V ∞.
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When n ∉ RZd, V ∞ is independent of a.

As is expected, the convergence in (4.2) can be arbitrarily slow. An explicit
example is given in [15]. When the normal, in addition, satisfies the Diophantine
condition (2.2), one can prove a rate of convergence.

We define V = V(θ, t) as the solution of

(4.3)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

− ( NT∇θ

∂t
) ⋅ {b(θ + tn)( NT∇θ

∂t
)V} = 0, θ ∈ Td, t > a,

V = V0(θ), θ ∈ Td, t = a.

Here b is the coefficient matrix defined by b ∶=MTa(⋅)M and V0 ∶= V0(⋅ + an).
Existence and uniqueness properties of V and asymptotic behavior when t→∞
are given below in Proposition 4.2. Notice that if V is a solution of (4.3), then
V defined by V (Mz) = V(Nz′, zd) is a solution to (4.1).

Proposition 4.2 ([12, Proposition 2.6]). Fix n ∈ ∂B1. For any V0 ∈ C∞(Td),
there exists a unique solution V ∈ C∞(Td × [a,∞)) such that for all α ∈ Nd,
k ∈ N, there exists a positive constant C(d,L,λ,α, k,a,V0) <∞,

∫
Td
∫

∞

a
∣∂αθ ∂ktNT∇θV ∣2 + ∣∂αθ ∂k+1

t V ∣2 dθ dt ≤ C.

If n satisfies the Diophantine condition (2.2) with positive constant A = A(n),
then, for every α ∈ Nd, k, m ∈ N, there exists C(d,L,λ,α, k,m,a,V0, κ) < ∞
such that, for every θ ∈ Td and T > a,

(4.4) ∫
Td
∫

∞

T
∣∂αθ ∂ktNT∇θV ∣2 + ∣∂αθ ∂k+1

t V ∣2 dθ dt ≤
C

1 +Am∣T − a∣m
.

For a proof see [12, Proposition 2.6, pages 149-152]. Observe that (4.4) gives
in particular, for every α ∈ Nd, k, m ∈ N, the existence of a positive constant
C(d,L,λ,α, k,m,a,V0, κ) <∞ such that, for every θ ∈ Td and t > a,

(4.5) ∣∂αθ ∂ktNT∇θV(θ, t)∣ + ∣∂αθ ∂k+1
t V(θ, t)∣ ≤

C

1 +Am∣t − a∣m
.

This simply follows from Sobolev’s embedding theorem. Moreover, for every α ∈
Nd, ∣α∣ ≥ 1, k, m ∈ N, θ ∈ Td and t > a, there exists C(d,L,λ,α, k,m,a,V0, κ) <∞
such that

(4.6) ∣∂αθ ∂kt V(θ, t)∣ ≤
C

A (1 +Am∣t − a∣m)
.

We aim now at investigating the dependence of V in terms of the normal n.
Our estimate below will be used to approximate the homogenized boundary data
by piecewise constant data coming from the computation of boundary layers
in half-spaces with good Diophantine properties. A Lipschitz estimate for the
boundary layer tails appeared in [12, Corollary 2.9], but under the assumption
that both n1 and n2 are Diophantine normals with the same constant A in (2.2).
Here we focus on the continuity of V with respect to n. Our goal is now to
prove a series of lemmas, which are tools to prove the regularity result for g
stated in Theorem 1. These lemmas will be used in section 6. We only assume
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that n2 satisfies the Diophantine condition (2.2). The argument follows that
of [12], but we give full details here for the sake of completeness.

Let n1, n2 ∈ ∂B1 be two unit vectors. Assume that n2 is Diophantine in the
sense of (2.2) with constant A = A(n2) ∈ (0,1]. Let M1, M2 be two orthogonal
matrices such that M1ed = n1 and M2ed = n2. These can be chosen in such a
way that there exists ν0(d) <∞, there exists C(d) <∞ such that if ∣n1−n2∣ ≤ ν0,
then

∣M1 −M2∣ ≤ C ∣n1 − n2∣ .
We denote by N1 and N2 the matrices of the d − 1 first columns of M1 and
M2. The functions V1 = V1(θ, t) and V2 = V2(θ, t) are the unique solutions of
(4.3) with N replaced respectively by N1 or N2, and b replaced respectively by
b1 ∶=MT

1 a(⋅)M1 and b2 ∶=MT
2 a(⋅)M2.

Now, the difference V ∶= V1 − V2 solves

(4.7)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

− ( NT
1 ∇θ

∂t
) ⋅ {b1(θ + tn1)(

NT
1 ∇θ

∂t
)V} = F, t > a,

V = 0, t = a.

The right-hand side is

F = ( NT
1 ∇θ

∂t
) ⋅ {b1(θ + tn1) − b2(θ + tn2)}( NT

1 ∇θ

∂t
)V2

+ ( NT
1 ∇θ

∂t
) ⋅ b2(θ + tn2)(

NT
1 ∇θ

∂t
)V2

− ( NT
2 ∇θ

∂t
) ⋅ b2(θ + tn2)(

NT
2 ∇θ

∂t
)V2

= ( NT
1 ∇θ

∂t
) ⋅G +H,

where G ∶= G1 +G2 +G3 and H are defined by

G1 ∶= {b⋅,≤d−1
1 (θ + tn1) − b⋅,≤d−1

2 (θ + tn2)} (NT
1 −NT

2 )∇θV2,

G2 ∶= {b⋅,≤d−1
1 (θ + tn1) − b⋅,≤d−1

2 (θ + tn2)}NT
2 ∇θV2,

G3 ∶= b⋅,≤d−1
2 (θ + tn2)(NT

1 −NT
2 )∇θV2,

H ∶= (NT
1 −NT

2 )∇θ ⋅ b≤d−1,⋅
2 (θ + tn2)(

NT
2 ∇θ

∂t
)V2,

where

b⋅,≤d−1
1 ∶= (b1

αβ
ij )1≤α≤d,1≤β≤d−1

1≤i,j≤L

is a submatrix of b1,

b⋅,≤d−1
2 ∶= (b2

αβ
ij )1≤α≤d,1≤β≤d−1

1≤i,j≤L and b≤d−1,⋅
2 ∶= (b1

αβ
ij )1≤α≤d−1,1≤β≤d

1≤i,j≤L

are submatrices of b2. Notice that the expression for F involves only V2.
Therefore, we can use the decay estimates (4.5) and (4.6) involving only the
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Diophantine constant A. We have for all α ∈ Nd, k, m ∈ N, for all θ ∈ Td, for all
t > a,

(4.8) ∣∂αθ ∂ktH(θ, t)∣ ≤ C ∣n1 − n2∣
1 +Am∣t − a∣m

and the following estimates for G1, G2 and G3,

∣∂αθ ∂ktG1(θ, t)∣ ≤
C ∣n1 − n2∣2∣t − a∣
A(1 +Am∣t − a∣m)

,(4.9)

∣∂αθ ∂ktG2(θ, t)∣ ≤
C ∣n1 − n2∣∣t − a∣
1 +Am∣t − a∣m

,(4.10)

∣∂αθ ∂ktG3(θ, t)∣ ≤
C ∣n1 − n2∣

A(1 +Am∣t − a∣m)
,(4.11)

with C(d,L,λ,α, k,m,a,V0, κ) <∞.

Lemma 4.3. Let V be the solution of (4.7). For every s ∈ N, there exists a
constant C(s, d,L, λ,a,V0) <∞ such that

(4.12) ∫
∞

a
∥NT

1 ∇θV∥2
Hs(Td) + ∥∂tV∥2

Hs(Td) dt

≤ C (∫
∞

a
∥(t − a)H∥2

Hs(Td) + ∥G∥2
Hs(Td) dt) .

Proof. The proof is by induction on the number of derivatives s. The result
follows from simple energy estimates carried out on system (4.7).

Step 1. In this first step, we prove (4.12) for s = 0. Testing against V and
integrating by parts, we get

(4.13) λ∥( NT
1 ∇θ

∂t
)V∥

2

L2(Td×[a,∞))

≤ −∫
∞

a
∫
Td
G ⋅ ( NT

1 ∇θ

∂t
)V dθ dt + ∫

∞

a
∫
Td
HV dθ dt.

We now estimate the right-hand side above. For the first term, we have

∣∫
∞

a
∫
Td
G ⋅ ( NT

1 ∇θ

∂t
)V dθ dt∣

≤ 1

2λ
∥G∥2

L2(Td×[a,∞)) +
λ

2
∥( NT

1 ∇θ

∂t
)V∥

2

L2(Td×[a,∞))
,

so that we can easily swallow the second term in the left-hand side of (4.13).
For the second term on the right-hand side of (4.13), we use Hardy’s inequality
since V(⋅, a) = 0. This yields

∣∫
∞

a
∫
Td
HVdθ dt∣ = ∣∫

∞

a
∫
Td

(t − a)H V
t − a

dθ dt∣

≤ C∥(t − a)H∥L2(Td×[a,∞))∥∂tV∥L2(Td×[a,∞)).
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Young’s inequality makes it now possible to reabsorb the L2 norm of ∂tV on
the left-hand side of (4.13).

Step 2. We now estimate the higher-order derivatives by induction. The
arguments are basically the same as for s = 1 since the system satisfied by
∂αθ V , for α ∈ Nd, has basically the same structure as the system (4.7) for V . In
particular, ∂αθ V is zero on the boundary Td × {a}. Let us do the proof only for
s = 1 as the higher-order cases are treated in the same way. Let α ∈ Nd be such
that ∣α∣ = 1. Testing the equation for ∂αθ V against ∂αθ V and integrating by parts,
we get

(4.14) λ∥( NT
1 ∇θ

∂t
)∂αθ V∥

2

L2(Td×[a,∞))

≤ −∫
∞

a
∫
Td
∂αθ b1(θ + tn1)(

NT
1 ∇θ

∂t
)V ⋅ ( NT

1 ∇θ

∂t
)∂αθ V dθ dt

− ∫
∞

a
∫
Td
∂αθG ⋅ ( NT

1 ∇θ

∂t
)∂αθ V dθ dt + ∫

∞

a
∫
Td
∂αθH∂

α
θ V dθ dt.

We introduce the following notations

G̃ ∶= ∂αθ b1(θ + tn1)(
NT

1 ∇θ

∂t
)V + ∂αθG, H̃ ∶= ∂αθH.

The proof of our estimate now follows exactly the scheme of Step 1 above. �

Notice that the estimates (4.8), (4.9), (4.10) and (4.11) yield

(4.15) ∫
∞

a
∥(t − a)H∥2

Hs(Td) dt ≤
C ∣n1 − n2∣2

A3
,

and

(4.16) ∫
∞

a
∥G∥2

Hs(Td) dt ≤
C ∣n1 − n2∣2

A3
(1 + ∣n1 − n2∣2

A2
) .

In the next lemma, we give control of higher derivatives in t. This is an
important ingredient in the proof of Proposition 5.4, below.

Lemma 4.4. Let V be the solution of (4.7) and s ∈ N. There exist constants
ν0(d,Ω) < ∞ and C(s, d,L, λ,a,V0) < ∞ such that, for every x1, x2 ∈ ∂Ω and
with ni ∶= n(xi) for i ∈ {1,2}, if n2 is Diophantine with constant A > 0 and we
have ∣x1 − x2∣ ≤ ν0, then

(4.17) ∥NT
1 ∇θV∥2

Hs(Td×[a,∞))+∥∂tV∥
2
Hs(Td×[a,∞)) ≤

C ∣n1 − n2∣2
A3

(1 + ∣n1 − n2∣2
A2

) .

Proof. Step 1. The derivatives in θ are handled through Lemma 4.3. The proof
is by induction on the number of derivatives in t. Let us prove

∫
∞

a
∥NT

1 ∇θ∂tV∥2
Hs(Td) + ∥∂2

t V∥2
Hs(Td) dt ≤

C ∣n1 − n2∣2
A3

(1 + ∣n1 − n2∣2
A2

) .
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The issue is that ∂tV is not 0 on the boundary, on the contrary of tangential
derivatives. We therefore have to get some control on ∂tV(θ,0), before lifting
it. We have

(4.18) ∂2
t V =

1

bd,d1

⎛
⎝
−∂t (bd,d1 (θ + tn1))∂tV −NT

1 ∇θ ⋅ b≤d−1,d
1 ∂tV

−∂t (bd,≤d−1
1 NT

1 ∇θV) −NT
1 ∇θ ⋅ b≤d−1,≤d−1

1 NT
1 ∇θV + ( NT

1 ∇θ

∂t
) ⋅G +H

⎞
⎠
,

where bd,d1 ∶= (b1
αβ
ij )α=β=d

1≤i,j≤L, b≤d−1,d
1 ∶= (b1

αβ
ij )1≤α≤d−1, β=d

1≤i,j≤L , bd,≤d−1
1 ∶= (b1

αβ
ij )α=d,1≤β≤d−1

1≤i,j≤L

and b≤d−1,≤d−1
1 ∶= (b1

αβ
ij )1≤α,β≤d−1

1≤i,j≤L are submatrices of b1. Consequently, using

(4.12) to estimate the first four terms on the right-hand side above, and (4.15)
and (4.16) to estimate the source terms G and H, we get

∫
∞

a
∥∂2

t V∥2
Hs(Td) dt ≤

C ∣n1 − n2∣2
A3

(1 + ∣n1 − n2∣2
A2

) .

Therefore, ∂tV(θ, t)η(t), with η ∈ C∞
c (R) equal to 1 in the neighborhood of 0,

is a lifting of ∂tV(θ,0) ∈H
1
2 (Td). Then, W ∶= ∂tV − ∂tVη(t) solves

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

− ( NT
1 ∇θ

∂t
) ⋅ {b1(θ + tn1)(

NT
1 ∇θ

∂t
)W} = ( NT

1 ∇θ

∂t
) ⋅ G̃ + H̃, t > a,

W = 0, t = a,

where

G̃ ∶= b1(θ + tn1)(
NT

1 ∇θ

∂t
)(∂tVη(t)) + ∂t (b1(θ + tn1))(

NT
1 ∇θ

∂t
)V + ∂tG,

H̃ ∶= ∂tH.

Testing the equation for W against W and integrating by parts, we get

(4.19) λ∥( NT
1 ∇θ

∂t
)W∥

2

L2(Td×[a,∞))

≤ −∫
∞

a
∫
Td
G̃ ⋅ ( NT

1 ∇θ

∂t
)W dθ dt + ∫

∞

a
∫
Td
H̃W dθ dt,

which is estimated exactly as in Lemma 4.3.

Step 2. Estimating higher-order derivatives is done in the same way. Let
k ∈ N. Assume by induction that for all s ∈ N there exists a constant
C(d,L,λ, s, k,a,V0) < ∞ such that

(4.20) ∥NT
1 ∇θV∥2

Hk([a,∞);Hs(Td)) + ∥∂tV∥2
Hk([a,∞);Hs(Td))

≤ C ∣n1 − n2∣2
A3

(1 + ∣n1 − n2∣2
A2

) .
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Our goal is now to show (4.20) for k replaced by k + 1. Differentiating the
equation (4.7) k + 1 times with respect to t, we get

(4.21) ∂k+3
t V =

1

bd,d1

⎛
⎝
− ∂t (bd,d1 (θ + tn1))∂k+2

t V −NT
1 ∇θ ⋅ b≤d−1,d

1 ∂k+2
t V

− ∂t (bd,≤d−1
1 NT

1 ∇θ∂
k+1
t V) −NT

1 ∇θ ⋅ b≤d−1,≤d−1
1 NT

1 ∇θ∂
k+1
t V

+ ( NT
1 ∇θ

∂t
) ⋅ ∂k+1

t G + ∂k+1
t H + ( NT

1 ∇θ

∂t
) ⋅ (Lower-order terms)

⎞
⎠
,

where

Lower-order terms = −
k

∑
l=0

(k + 1)!
l!(k + 1 − l)!

∂k+1−l
t (b1(θ + tn1))(

NT
1 ∇θ

∂t
)∂ltV .

Notice that the structure of (4.21) is similar to the one of (4.18). All the
terms on the right-hand side of (4.21) involve at most k + 2 derivatives in t
and therefore, they can be estimated using (4.20). The rest of the proof is
completely analogous to Step 1 above. �

5. Two-scale expansion of the Poisson kernel

An important ingredient in our analysis is the two-scale expansion result of
Kenig, Lin and Shen [13, Theorem 3.8] for the Poisson kernel P ε

Ω associated to

the domain Ω and to the operator −∇ ⋅ a ( ⋅
ε
)∇. They proved that, for every

x0 ∈ Ω and x ∈ ∂Ω,

(5.1) P ε
Ω(x0, x) = PΩ(x0, x)ωε(x) +Rε(x0, x),

where PΩ is the Poisson kernel associated to the domain Ω and the homogenized
operator −∇ ⋅ a∇, the function ωε is a highly oscillating kernel whose definition
is given below and the remainder term Rε satisfies, for a positive constant
C(d,L,λ,a,Ω) <∞,

(5.2) ∣Rε(x0, x)∣ ≤ Cε ∣x0 − x∣−d log (2 + ∣x0 − x∣
ε

) .

The statement of [13, Theorem 3.8] explicitly assumes d > 2. However, as
commented in the introduction of [13], the result continues to hold in dimen-
sion d = 2. Indeed, the main use of d > 2 in the argument of [13] is to allow one
to write the first inequality in the proof of [13, Theorem 3.3], namely the bound

∣Gε
Ω(x, y)∣ ≤ C ∣x − y∣2−d.

This bound obviously does not hold in dimension d = 2. However, their proof
only needs the following bound, which does hold in every dimension d ≥ 2:

inf
a∈R

∥Gε
Ω(⋅, y) − a∥L∞(Ω∩(B2R(y)∖BR(y))) ≤ CR2−d.

The modifications to the arguments of [13] to allow d = 2 are straightforward
and the details will not be given here.
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By ellipticity of a, the matrix an(x) ⋅ n(x) ∈ML(R) is invertible; we denote
its inverse by h(x). The oscillating part ωε(x) of the kernel is then defined by
for all 1 ≤ i, j ≤ L,

(5.3) ωεij(x) ∶= hik(x)n(x) ⋅ ∇Φ∗,ε
lk (x) ⋅ n(x)alj(

x

ε
)n(x) ⋅ n(x),

where Φ∗,ε,lk is the Dirichlet corrector associated to the adjoint matrix a∗,

(5.4)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−∇ ⋅ (a∗ (x
ε
)∇Φ∗,ε) = 0 in Ω,

Φ∗,ε = p(x) on ∂Ω,

where pαj (x) ∶= xαej for each x ∈ Rd, 1 ≤ α ≤ d and 1 ≤ j ≤ L.

With an eye toward Proposition 2.1, we notice that, after zooming in at a
mesoscopic scale r in the vicinity of one boundary point x, the non-oscillating
functions h = h(x) and n = n(x) are almost constant, equal to h(x) and n(x).
The oscillating matrix a ( ⋅

ε
) is quasiperiodic along the boundary of the half-

space Dn(x)(c(x)) tangent to ∂Ω at x. However, we do not know a priori how
the normal derivative n(x) ⋅ ∇Φ∗,ε(x) of the Dirichlet corrector oscillates.

The goal is therefore to describe the behavior of Φ∗,ε close to x in terms of
intrinsic (and periodic) objects, namely cell correctors and half-space boundary
layer correctors. More precisely, we will prove the following expansion for Φ∗,ε.

Proposition 5.1. There exists r0(d,Ω) <∞ and, for every ρ ∈ (0, 1), a constant
C(ρ, d,L, λ,a,Ω) <∞ such that, for every r ∈ [ε, r0], we have

(5.5) ∥∇(Φ∗,ε(x) − p(x) − εχ∗(x
ε
) − εV ∗(x

ε
;n(x) ⋅ x

ε
,n(x)))∥

L∞(Ω∩B(x,r))

≤ C (ε 1
2 + r

2+ρ

ε1+ρ) ∧ 1,

where χ∗ is the cell corrector associated to −∇ ⋅ a∗(y)∇ and V ∗ = V ∗(y;a,n) is
the boundary layer corrector solving

(5.6) {
−∇ ⋅ (a∗(y)∇V ∗) = 0, in Dn(a),
V ∗ = −χ∗(y), on ∂Dn(a).

It follows immediately from the proposition that we can approximate ωε.
Observe that, for every k ∈ N, the function y ↦ ∇kV ∗(y; y ⋅ n,n) is a smooth,
periodic function of y ∈ Rd.

Corollary 5.2. There exists a constant C(d,L,λ,a,Ω) <∞ such that

(5.7) sup
x∈∂Ω

∣ωε(x) − ω̃(x, xε )∣ ≤ Cε
1
2 ,

where we denote, for 1 ≤ i, j ≤ L,

(5.8) ω̃ij(x, y)
∶= hik(x)n(x) ⋅ (∇plk(y) +∇χ∗lk(y) +∇V ∗

lk(y; y ⋅ n(x), n(x))) ⋅ n(x)
× alj(y)n(x) ⋅ n(x).
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Moreover, the map y ↦ ω̃ij(x, y) is periodic and smooth and, for each k ∈ N, we
have the estimate

∥∇kω̃ij(x, ⋅)∥L∞(Rd) ≤ C(k, d,L, λ,a,Ω) <∞.

Proof. Taking r = ε in (5.5), we obtain, for every x ∈ ∂Ω,

(5.9) ∥∇(Φ∗,ε(x) − p(x) − εχ∗(x
ε
) − εV ∗(x

ε
;n(x) ⋅ x

ε
,n(x)))∥

L∞(Ω∩B(x,ε))

≤ Cε 1
2 .

In particular, at x = x we have

∣∇(Φ∗,ε(x) − p(x) − εχ∗(x
ε
) − εV ∗(x

ε
;n(x) ⋅ x

ε
,n(x)))∣ ≤ Cε 1

2 .

In view of the definitions of ωε and ω̃, this yields (5.7) at x = x. The second
statement follows from the fact that y ↦ ∇kV ∗(y; y ⋅ n,n) is a smooth, periodic
function for every k ∈ N. �

Before going into the details of the proof of Proposition 5.1, let us comment
on the boundary layer corrector V ∗ solving (5.6). The existence and uniqueness
of V ∗ is a consequence of Proposition 4.1. The boundary layer corrector is
bounded in L∞ (Dn(x) (n(x) ⋅ xε)). Below, we will need the following estimate
of the derivatives of V ∗ + χ∗ in a layer close to the boundary of the half-space.

Lemma 5.3. Fix µ ∈ (0,1). There exists a constant C(d,µ,L,λ,a,Ω) < ∞,
such that for every n ∈ ∂B1, a ∈ R and every solution V ∗(⋅;a,n) of (5.6), we
have the estimate

(5.10) ∥V ∗ + χ∗∥C3,µ(a<y⋅n<a+1) ≤ C.

Proof. Let y be a point on the hyperplane ∂Dn(a), i.e. y ⋅ n = a. Estimate
(5.10) follows from applying the local boundary Schauder theory to V ∗ + χ∗,
which solves

{
−∇ ⋅ (a∗(y)∇(V ∗ + χ∗)) = ∇ ⋅ a∗, B(y,2) ∩Dn(a),
V ∗ + χ∗ = 0, B(y,2) ∩ ∂Dn(a).

Therefore, the local boundary C3,µ estimate implies

∥V ∗ + χ∗∥C3,µ(B(y,2)∩Dn(a)) ≤ C (∥V ∗ + χ∗∥L∞(B(y,4)∩Dn(a)) + ∥a∗∥C2,µ(Td)) ≤ C,
which yields the result. �

Proof of Proposition 5.1. The proof relies on the uniform regularity theory
developed by Avellaneda and Lin [5]. There is no essential difficulty, but some
technical aspects have to be handled.

Step 1. We first rotate and translate the domain in order to work in the
situation where x = 0, n(x) = ed. We ignore the effect of translation and assume
right away that c(x) = 0. Rotating the domain will change both the coefficient
matrix and the boundary condition. Denoting as usual by n(x) the outer unit
normal at x, we take M ∈Md(R) an orthogonal matrix sending the d-th vector
of the canonical basis ed on n(x). Let N ∈ Md,d−1(R) be the matrix of the
first d − 1 columns of M and let n stand for n(x). The matrix b is defined
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as above by b = MTa(⋅)M . The rotated domain MTΩ is again denoted by
Ω. Our convention is to keep the trace of the rotation M in the notations
whenever it may change some calculations or estimates. Otherwise, we overlook
the dependence in M .

There exists r0(d,Ω) <∞, such that in (Bd−1(0,2r0) × (−2r0,2r0)) ∩ ∂Ω we
can write ∂Ω as a graph xd ∶= ϕ(x′), where ϕ is (at least) a C3 function. Notice
that ϕ(0) = 0 as well as ∇ϕ(0) = 0. By Taylor expanding ϕ around 0, we get
for all ∣x′∣ < r0,

(5.11) ϕ(x′) = ∫
1

0
∇2ϕ(tx′) ∶ x′ ⊗ x′(1 − t)dt =∶ ϕ̃(x′) ∶ x′ ⊗ x′,

where ϕ̃ as well as its first-order derivative are bounded in L∞(B(0, r0)). From
now on ε ≤ r ≤ r0.

Notice that the rotated Dirichlet corrector, Φ∗,ε,lk(M ⋅) solves

(5.12)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−∇ ⋅ (b∗(Mx

ε
)∇Φ∗,ε(Mx)) = 0 in Ω,

Φ∗,ε(Mx) = p(Mx) on ∂Ω.

Step 2. The proof of the error estimate (5.5) relies on the local boundary
Lipschitz estimate uniform in ε proved in [5].

Denote

sε(⋅) ∶= Φ∗,ε(M ⋅) − p(M ⋅) − εχ∗(M ⋅
ε

) − εV ∗(M ⋅
ε

) .

The error sε is a weak solution of
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−∇ ⋅ (b∗ (Mx

ε
)∇sε) = 0 in Ω ∩B(0,2r),

sε = −εχ∗(Mx

ε
) − εV ∗(Mx

ε
) on ∂Ω ∩B(0,2r).

The boundary Lipschitz estimate [5, Lemma 20] gives, for 0 < ρ < 1,

(5.13) ∥∇sε∥L∞(Ω∩B(0,r)) ≤ C{1

r
∥sε∥L∞(Ω∩B(0,2r))

+rρ [εχ∗(M ⋅
ε

) + εV ∗(M ⋅
ε

)]
C1,ρ(∂Ω∩B(0,2r))

},

with C depending only on d, λ, the Hölder semi-norm of a, ρ and Ω and, in
particular, independent of ε. We now estimate each term on the right-hand
side of (5.13). For both terms we crucially need to use cancellation properties
in the boundary condition.

Step 3. We now concentrate on the first term on the right-hand side of (5.13).
The claim is that

(5.14) ∥sε∥L∞(Ω∩B(0,2r)) ≤ C(rε 1
2 + r2).

We first use the Agmon-type maximum principle of [5, Theorem 3(ii)] to get

(5.15) ∥sε∥L∞(Ω∩B(0,2r)) ≤ ∥sε∥L∞(Ω) ≤ Cε.
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Notice that this L∞ bound is nothing but a consequence of the integral rep-
resentation formula for sε and the Poisson kernel bound (1.14): for every
x0 ∈ Ω,

∣sε(x0)∣ = ε ∣∫
∂Ω
P ε

Ω(x0, x) (χ∗(
Mx

ε
) + V ∗(Mx

ε
)) dHd−1(x)∣

≤ Cε∫
∂Ω

dist(x0, ∂Ω)
∣x0 − x∣d

dHd−1(x)

≤ Cε.

However estimate (5.15) only yields O( εr) on the right-hand side of (5.5), which
is not nearly good enough. To get a better estimate, we must use the cancellation
properties of the boundary condition close to the origin. Using

(5.16) εχ∗(Nx
′

ε
) + εV ∗(Nx

′

ε
) = 0

and the expansion of ϕ near the origin (5.11), we have

(5.17)

−εχ∗(Mx

ε
) − εV ∗(Mx

ε
)

= −εχ∗(Nx
′ + xdn
ε

) − εV ∗(Nx
′ + xdn
ε

)

= −εχ∗(Nx
′

ε
) − εV ∗(Nx

′

ε
) − ∫

1

0
[∇χ∗ +∇V ∗](Nx

′ + txdn
ε

) ⋅ nxd dt

= −∫
1

0
[∇χ∗ +∇V ∗](Nx

′ + tϕ(x′)n
ε

) ⋅ ndtϕ̃(x′) ∶ x′ ⊗ x′.

Denote

F (y′, yd) ∶= ∫
1

0
[∇χ∗ +∇V ∗](Ny′ + tydn) ⋅ ndt.

By Lemma 5.3, all derivatives of F (at least) up to order three are uniformly
bounded for yd ∈ [0,1). Moreover, for any x = (x′, ϕ(x′)), ∣x′∣ < r0,

(5.18) εχ∗(Mx

ε
) + εV ∗(Mx

ε
) = F(x

′

ε
,
ϕ(x′)
ε

) ϕ̃(x′) ∶ x′ ⊗ x′.

Therefore, close to the origin, the boundary condition is squeezed between two
paraboloids. We will rely on this property, when estimating

sε(x0) = −∫
∂Ω
P ε

Ω(x0, x) (εχ∗(
Mx

ε
) + εV ∗(Mx

ε
)) dHd−1(x),

for x0 ∈ B(0,2r) ∩Ω. We split the boundary integral into two parts

(5.19) ∫
∂Ω
P ε

Ω(x0, x) (εχ∗(
Mx

ε
) + εV ∗(Mx

ε
)) dHd−1(x)

= ∫
B(0,4ε

1
2 )∩∂Ω

P ε
Ω(x0, x) (εχ∗(

Mx

ε
) + εV ∗(Mx

ε
)) dHd−1(x)

+ ∫
B(0,4ε

1
2 )c∩∂Ω

P ε
Ω(x0, x) (εχ∗(

Mx

ε
) + εV ∗(Mx

ε
)) dHd−1(x).
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For the first term on the right-hand side of (5.19), on B(0,4ε
1
2 ) ∩ ∂Ω we

use (5.18), which gives

∣∫
B(0,4ε

1
2 )∩∂Ω

P ε
Ω(x0, x) (εχ∗(

Mx

ε
) + εV ∗(Mx

ε
)) dHd−1(x)∣

≤ C ∫
∣x′∣≤4ε

1
2

∣P ε
Ω(x0, (x′, ϕ(x′))) [εχ∗ + εV ∗](Nx

′ + ϕ(x′)n
ε

)∣ dx′

≤ C ∫
∣x′∣≤4ε

1
2

x0d − ϕ(x0
′)

((x0d − ϕ(x′))2 + ∣x′0 − x′∣2)
d
2

∣F(x
′

ε
,
ϕ(x′)
ε

) ϕ̃(x′) ∶ x′ ⊗ x′∣ dx′

≤ C ∫
∣x′∣≤4ε

1
2

(x0d − ϕ(x0
′))∣x′∣2

((x0d − ϕ(x′))2 + ∣x0
′ − x′∣2)

d
2

dx′.

Bounding ∣x′∣ by the triangle inequality,

∣x′∣2 ≤ 2∣x′0∣2 + 2∣x′0 − x′∣2,

and using the following bounds when appropriate, for all x ∈ B(0,2r) ∩Ω,

x0d − ϕ(x0
′) ≤ r, ∣x0∣2 ≤ r2,

it now follows from the previous series of inequalities that

∣∫
B(0,4ε

1
2 )∩∂Ω

P ε
Ω(x0, x) (εχ∗(

Mx

ε
) + εV ∗(Mx

ε
)) dHd−1(x)∣

≤ Cr∫
∣x′∣≤4ε

1
2

1

∣x0
′ − x′∣d−2

dx′ +Cr2∫
∣x′∣≤4ε

1
2

x0d − ϕ(x0
′)

((x0d − ϕ(x′))2 + ∣x0
′ − x′∣2)

d
2

dx′.

A direct computation gives

r∫
∣x′∣≤4ε

1
2

1

∣x0
′ − x′∣d−2

dx′ ≤ Crε 1
2 ,

and, on the other hand, using that for all x0 ∈ B(0, 2r)∩Ω, for all x ∈ B(0, 4ε 1
2 )∩

Ω,

∣ϕ(x0
′) − ϕ(x′)∣ ≤ ∥∇ϕ∥

L∞(B(0,4ε
1
2 ))

∣x0
′ − x′∣ ≤ Cε 1

2 ∣x0
′ − x′∣,

we obtain

r2∫
∣x′∣≤4ε

1
2

x0d − ϕ(x0
′)

((x0d − ϕ(x′))2 + ∣x0
′ − x′∣2)

d
2

dx′

= r2∫
∣x′∣≤4ε

1
2

x0d − ϕ(x0
′)

((x0d − ϕ(x0
′) + ϕ(x0

′) − ϕ(x′))2 + ∣x0
′ − x′∣2)

d
2

dx′

≤ Cr2∫
∣x′∣≤4ε

1
2

x0d − ϕ(x0
′)

((x0d − ϕ(x0
′))2 + (1 − ε 1

2 )2∣x0
′ − x′∣2)

d
2

dx′

≤ Cr2.
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To estimate the second term on the right-hand side of (5.19), we use (1.14)
and that the boundary condition is uniformly bounded by ε:

∣∫
B(0,4ε

1
2 )c∩∂Ω

P ε
Ω(x0, x) (εχ∗(

Mx

ε
) + εV ∗(Mx

ε
)) dHd−1(x)∣

≤ Cεr∫
B(0,4ε

1
2 )c∩∂Ω

1

(∣x∣ − r)d
dHd−1(x)

≤ Cεr∫
{Bd−1(0,r0)×(−r0,r0)}c∩∂Ω

1

∣x∣d
dHd−1(x) +Cεr∫

∂Ω, ε
1
2 <∣x∣<r0

1

∣x∣d
dHd−1(x)

≤ C(εr + ε 1
2 r).

The above inequalities yield (5.14).

Step 4. The second term on the right-hand side of (5.13) is straightforwardly
estimated. In order to estimate the C1,ρ semi-norm of the boundary data, we
estimate its second-order derivative using (5.18). We have

∇(F(x
′

ε
,
ϕ(x′)
ε

)) = 1

ε
∇′F(x

′

ε
,
ϕ(x′)
ε

) + 1

ε
∂dF(x

′

ε
,
ϕ(x′)
ε

)∇′ϕ(x′),

and

∇2 (F(x
′

ε
,
ϕ(x′)
ε

)) = 1

ε2
∇′2F(x

′

ε
,
ϕ(x′)
ε

)

+ 2

ε2
∂d∇′F(x

′

ε
,
ϕ(x′)
ε

)⊗∇′ϕ(x′) + 1

ε2
∂2
dF(x

′

ε
,
ϕ(x′)
ε

)∇′ϕ(x′)⊗∇′ϕ(x′).

Subsequently,

∣∇(F(x
′

ε
,
ϕ(x′)
ε

) ϕ̃(x′) ∶ x′ ⊗ x′)∣ ≤ C (r
2

ε
+ r)

and

∣∇2 (F(x
′

ε
,
ϕ(x′)
ε

) ϕ̃(x′) ∶ x′ ⊗ x′)∣ ≤ C (r
2

ε2
+ r
ε
) .

Therefore, in view of (5.18), we get

(5.20) [εχ∗(Mx

ε
) + εV ∗(Mx

ε
)]

C1,ρ(∂Ω∩B(0,2r))
≤ Cr

2

ε1+ρ .

Combining (5.14) and (5.20) yields the proposition. �

We conclude this section by using the analysis in the previous section to get
a bound on the regularity of x↦ ω̃(x, y).

Proposition 5.4. There exist ν0(d,Ω) > 0 and C(d,Ω, L, λ,a, g) <∞ such that,
for every pair x1, x2 ∈ ∂Ω such that n(x2) is Diophantine with constant A and

∣x1 − x2∣ ≤ ν0,

we have, for every y ∈ Rd,

(5.21) ∣ω̃(x1, y) − ω̃(x2, y)∣ ≤
C ∣x1 − x2∣

A
3
2

(1 + ∣x1 − x2∣
A

) .
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Proof. Put ni = n(xi) for i ∈ {1, 2}. Assume n2 is Diophantine with constant A
and ∣n1 − n2∣ ≤ Cν0 with ν0 > 0 sufficiently small that the estimates of the
previous section are in force. In view of the definition (5.8) of ω̃, to prove (5.21),
it suffices to obtain, for every y ∈ Rd, the estimate

(5.22) sup
y∈Rd

∣∇V ∗(y; y ⋅ n1, n1) −∇V ∗(y; y ⋅ n2, n2)∣ ≤
C ∣n1 − n2∣

A
3
2

(1 + ∣n1 − n2∣
A

) .

By the periodicity of y ↦ V ∗(y; y ⋅ n,n), it is clear that

sup
y∈Rd

∣∇V ∗(y; y ⋅ n1, n1) −∇V ∗(y; y ⋅ n2, n2)∣

= sup
y∈[0,1]d

∣∇V ∗(y; y ⋅ n1, n1) −∇V ∗(y; y ⋅ n2, n2)∣ .

Fix y ∈ Rd and suppose that y ⋅ n1 > y ⋅ n2. Then using (4.4) of Proposition 4.2
and the Sobolev embedding theorem, we get

sup
y∈[0,1]d

∣∇V ∗(y; y ⋅ n1, n1) −∇V ∗(y; y ⋅ n2, n1)∣ ≤ C ∣n1 − n2∣ ,

and, by (4.17) of Lemma 4.4 and the Sobolev embedding theorem, we have

sup
y∈[0,1]d

∣∇V ∗(y; y ⋅ n2, n1) −∇V ∗(y; y ⋅ n2, n2)∣ ≤
C ∣n1 − n2∣

A
3
2

(1 + ∣n1 − n2∣
A

) .

The previous three displays and the triangle inequality yield (5.22) at the
point y. If y ⋅ n1 < y ⋅ n2, then use argue similarly, using ∇V ∗(y; y ⋅ n1, n2) in
place of ∇V ∗(y; y ⋅ n2, n1). This completes the proof. �

6. Outline of the rest of the proof

In this section, we combine the results of the previous sections to obtain a
representation for the error in homogenization at a fixed point x0 ∈ Ω. The
estimate is stated in Proposition 6.2, below.

We first summarize the strategy, which begins with the Poisson formula. We
take a triadic cube decomposition of the boundary, so that every cube is “good”
in the sense that there is a nearby boundary point whose normal vector is
Diophantine (with a good constant). We then approximate the integral on ∂Ω
in the Poisson formula by a sum of integrals over the tangent planes to the good
boundary points. We make an error in moving from ∂Ω to these flat tangent
planes which depends on the size of the local cube. We then replace the Poisson
kernel for the heterogeneous equation with the two-scale expansion, and use
Proposition 5.1 to approximate ωεij with a smooth, periodic function on Rd. The

result is then a sum of integrals on Rd−1 of quasiperiodic functions (the product
of the boundary condition and the periodic approximation of ωεij restricted to
the plane) multiplied by a smooth function (which is the homogenized Poisson
kernel times a cutoff function on the local cube). This latter integral is close
to the average of the periodic function, by the quantitative ergodic theorem.
Since the cubes in the partition are small, the sum of the integrals over all the
cubes is therefore close to the Poisson formula for the homogenized equation.
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Proceeding with the argument, we fix the length scale ε > 0 and take δ > 0 to
be a small exponent fixed throughout (representing the amount of exponent
that we give up in the argument). We first take Pε to be the collection of triadic
cubes given by Proposition 3.1 applied to the function

F (x) ∶= ε1−δA−1(x), x ∈ ∂Ω,

where A(x) is the Diophantine constant for the unit vector n(x), which is
normal to the boundary of ∂Ω at x ∈ ∂Ω. We let {ψ◻ ∈ C∞(Rd) ∶ ◻ ∈ P} be
the partition of unity given by Corollary 3.2 for the partition Pε. For each
x ∈ ∂Ω, we denote by ◻Pε(x) the unique element of Pε containing x. By
Proposition 3.1(iii), for each cube ◻ ∈ Pε, there exists x(◻) ∈ 3◻∩∂Ω such that

(6.1) A(x(◻)) ≥ ε1−δ

size(◻)
.

We also denote

Γε ∶= Ω ∩ ( ⋃
◻∈Pε

5◻) .

Proposition 3.1(iv) gives us that

(6.2) #{◻ ∈ Pε ∶ size(◻) ≥ 3n} ≤ C3−2n(d−1)ε(1−δ)(d−1).

Notice that (6.2) implies in particular that the largest cube in Pε has size at

most Cε
1−δ
2 . Since F is bounded below by ε1−δ, we have

(6.3) ∀◻ ∈ Pε, cε1−δ ≤ size(◻) ≤ Cε 1−δ
2 .

For each ◻ ∈ Pε, let us denote by D(◻) ∶= Dn(x(◻)) (n(x(◻)) ⋅ x(◻))),
which is the half-space tangent to Ω at x(◻). The half-space corrector

V ∗ (⋅;n(x(◻)) ⋅ x(◻)
ε , n(x)) solves (5.6).

We next give the definition of the homogenized coefficients g. Recall that
the function ω̃ is given in (5.8).

Definition 6.1. For x ∈ ∂Ω,

(6.4) g(x) ∶= ⟨g(x, ⋅)ω̃(x, ⋅)⟩ = ∫
[0,1]d

g(x, y)ω̃(x, y)dy.

where ω̃(x, y) is the function defined in (5.8).

It is immediate from Proposition 5.4 and the assumed smoothness of g that g
satisfies the following estimate, for a constant C(d,L,λ,a, g) <∞ and ν0(d,Ω) >
0: for every x1, x2 ∈ ∂Ω such that ∣x1 − x2∣ ≤ ν0 and n(x2) is Diophantine with
constant A > 0, we have

(6.5) ∣g(x1) − g(x2)∣ ≤
C ∣n1 − n2∣

A
3
2

(1 + ∣n1 − n2∣
A

) .

The goal of this section is to prove the following proposition.
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Proposition 6.2. There exists a positive constant C(δ, d,L, λ,a, g,Ω) < ∞
such that, for every x0 ∈ Ω ∖ Γε,

∣uε(x0) − u(x0)∣ ≤ Cε−10δ ∑
◻∈Pε

(size3(◻)
ε2

∧ 1) dist(x0, ∂Ω)
∣x0 − x(◻)∣d

size(◻)d−1(6.6)

+C (ε 1
2 + ε ∣log ε∣dist−1 (x0, ∂Ω)) .

The next section is devoted to estimating the Lq norms of the error term on
the right side of (6.6). For now, we turn to the proof of (6.6). Let us split the
estimate of the left-hand side of (6.6) into several pieces, which will be handled
separately: for any x0 ∈ Ω ∖ Γε,

(6.7) ∣uε(x0) − u(x0)∣ = ∣∫
∂Ω
P ε

Ω(x0, x)g (x,
x

ε
) dHd−1(x)

−∫
∂Ω
PΩ(x0, x)g(x)dHd−1(x)∣ ≤ T1 + T2 +T3 +T4 +T5,

where

T1 ∶= ∣∫
∂Ω
P ε

Ω(x0, x)g (x,
x

ε
) dHd−1(x)

− ∑
◻∈Pε

∫
∂Ω
ψ◻(x)PΩ(x0, x) ω̃ (x, x

ε
) g (x, x

ε
) dHd−1(x)∣ ,

T2 ∶= ∑
◻∈Pε

∣∫
∂Ω
ψ◻(x)PΩ(x0, x)ω̃ (x, x

ε
) g (x, x

ε
) dHd−1(x)

− ∫
∂D(◻)

ψ◻(proj(x,◻))PΩ(x0,proj(x,◻))

× ω̃ (x(◻), x
ε
) g (x(◻), x

ε
) dHd−1(x)∣,

T3 ∶= ∑
◻∈Pε

∣∫
∂D(◻)

ψ◻(proj(x,◻))PΩ(x0,proj(x,◻))

× ω̃ (x(◻), x
ε
) g (x(◻), x

ε
) dHd−1(x)

− ∫
∂D(◻)

ψ◻(proj(x,◻))PΩ(x0,proj(x,◻))g(x(◻))dHd−1(x)∣,

T4 ∶= ∑
◻∈Pε

∣∫
∂D(◻)

ψ◻(proj(x,◻))PΩ(x0,proj(x,◻))g(x(◻))dHd−1(x)

− ∫
∂D(◻)

ψ◻(proj(x,◻))PΩ(x0,proj(x,◻))g(proj(x,◻))dHd−1(x)∣,
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and

T5 ∶= ∑
◻∈Pε

∣∫
∂D(◻)

ψ◻(proj(x,◻))PΩ(x0,proj(x,◻))g(proj(x,◻))dHd−1(x)

− ∫
∂Ω
PΩ(x0, x)g(x)dHd−1(x)∣.

Here we define proj(x,◻) to be nearest point of ∂Ω to x such that x−proj(x,◻)
is a multiple of the vector n(x(◻)). This is well-defined and smooth in 5◻ ⊇
suppψ◻, provided that ε ≤ c(d,Ω), which forces the union of 5◻ over ◻ ∈ Pε to
be contained in a small enough neighborhood of the boundary. We may assume
without loss of generality that ε ≤ c(d,Ω). In particular, we have that, for every
◻ ∈ Pε and x ∈ 5◻,

∣proj(x,◻) − x∣ ≤ C size2 (◻) , ∣∇proj(x,◻) − Id∣ ≤ C size (◻) ,

and, for all k ∈ N,

∣∇kproj(x,◻)∣ ≤ C(k, ∂Ω, d).
Thus, for small enough ε ∈ (0,1), proj−1(⋅,◻) is a diffeomorphism between
∂Ω ∩ 5◻ and (proj−1(⋅,◻) (∂Ω ∩ 5◻)) ∩ ∂D(◻). The Jacobian determinants
satisfy,

∣Jproj(⋅,◻)(x) − 1∣ + ∣Jproj−1(⋅,◻)(x) − 1∣ ≤ C size(◻) ≤ Cε 1−δ
2 ≪ 1.

Estimate of T1. Using the expansion in (5.1) we may write, for x0 ∈ Ω and
x ∈ ∂Ω, the Poisson kernel P ε

Ω(x0, x) as follows:

P ε
Ω(x0, x) = PΩ(x0, x)ωε(x) +Rε(x0, x)(6.8)

= PΩ(x0, x) ∑
◻∈Pε

ψ◻(x)ωε(x) +Rε(x0, x)

= PΩ(x0, x) ∑
◻∈Pε

ψ◻(x)ω̃ (x, x
ε
)

+ PΩ(x0, x) ∑
◻∈Pε

ψ◻(x) (ωε(x) − ω̃ (x, x
ε
)) +Rε(x0, x),

where Rε(x0, x) satisfies the bound (5.2). Observe that by Corollary 5.2,

∣ωε(x) − ω̃ (x, x
ε
)∣ ≤ Cε 1

2 .

Thus, we can bound the second term on the right of (6.8) for x0 ∈ Ω ∖ Γε by

∣PΩ(x0, x)ψ◻(x)(ωε(x) − ω̃ (x, xε) )∣ ≤ Cε
1
2 ∣x − x0∣−d dist(x0, ∂Ω).

We therefore obtain from the above estimates, (5.2) and x0 /∈ Γε that

(6.9) T1 ≤ Cε
1
2 ∥g∥L∞(∂Ω×Rd) ∑

◻∈Pε

dist(x0, ∂Ω)
∣x0 − x(◻)∣d

size(◻)d−1

+Cε ∥g∥L∞(∂Ω×Rd)∫
∂Ω

∣x0 − x∣−d log (ε−1 ∣x0 − x∣ + 2) dHd−1(x).
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The second term on the right side is estimated by

⋯ ≤ Cε ∣log ε∣dist−1 (x0, ∂Ω) .
For the first term, we use

∑
◻∈Pε

dist(x0, ∂Ω)
∣x0 − x(◻)∣d

size(◻)d−1 ≤ C,

to obtain

T1 ≤ C (ε 1
2 + ε ∣log ε∣dist−1 (x0, ∂Ω)) .(6.10)

Estimate of T2. We freeze the slow variables and, in each ◻, move the
integral from ∂Ω to the boundary of the half-space D(◻). First, we use
Proposition 5.4, (6.1) and A−1 ≥ 1 to get, for every ◻ ∈ Pε and x ∈ 5◻,

∣ω̃ (x(◻), x
ε
) − ω̃ (x, x

ε
)∣ ≤ C size(◻)

A(x(◻)) 3
2

(1 + size(◻)
A(x(◻))

)

≤ C
⎛
⎝

size
9
2 (◻)

ε
5
2
(1−δ)

+ size
5
2 (◻)

ε
3
2
(1−δ)

⎞
⎠

Using (6.3) to get

size
3
2 (◻)

ε
1
2
(1−δ)

+ ε
1
2
(1−δ)

size
1
2 (◻)

≤ C,

and the boundedness ω̃, we get

∣ω̃ (x(◻), x
ε
) − ω̃ (x, x

ε
)∣ ≤ C (size3(◻)

ε2
∧ 1) .(6.11)

For future reference, we note that this also gives us the bound

(6.12) ∣g(x) − g(x(◻))∣ ≤ C (size3(◻)
ε2

∧ 1) .

Using next the bound

∥ω̃ (x(◻), ⋅)∥L∞ + ∥∇ω̃ (x(◻), ⋅)∥L∞ + ∥g(⋅, ⋅)∥L∞ ≤ C,
we have, for every x ∈ ∂D(◻) ∩ suppψ◻(proj(⋅)),

∣ω̃ (x(◻), 1

ε
proj(x,◻)) − ω̃ (x(◻), x

ε
)∣

≤ C (∥∇ω̃ (x(◻), ⋅)∥L∞
size2(◻)

ε
) ∧ ∥ω̃ (x(◻), ⋅)∥L∞ ≤ C (size2(◻)

ε
∧ 1) ,

which is due to Lemma 5.3, and

∣g (proj(x,◻), 1

ε
proj(x,◻)) − g (x(◻), x

ε
)∣

≤ C (∥∇xg∥L∞ size(◻) + ∥∇yg∥L∞
size2(◻)

ε
) ∧ 2∥g∥L∞ ≤ C (size2(◻)

ε
∧ 1)
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by the regularity of g and by the fact that size(◻) ≥ cε. Moreover, the Jacobian
determinant satisfies

∣Jproj−1(⋅,◻)(x) − 1∣ ≤ C size(◻) ≤ C (size2(◻)
ε

∧ 1) .

Recording the error we make, for each x ∈ ∂D(◻) ∩ suppψ◻(proj(⋅)),

∣ω̃ (x(◻), 1

ε
proj(x,◻)) g (proj(x,◻), 1

ε
proj(x,◻))Jproj−1(⋅,◻)(x)

− ω̃ (x(◻), x
ε
) g (x(◻), x

ε
) ∣ ≤ C (size2(◻)

ε
∧ 1) .

Estimating PΩ as in the case of the term T1 and using (6.11), we find that

T2 ≤ C ∑
◻∈Pε

size(◻)d−1 dist(x0, ∂Ω)
∣x0 − x(◻)∣d

((size3(◻)
ε2

+ size2(◻)
ε

) ∧ 1)(6.13)

≤ Cε−δ ∑
◻∈Pε

size(◻)d−1 dist(x0, ∂Ω)
∣x0 − x(◻)∣d

(size3(◻)
ε2

∧ 1) ,

where in the last line we used (6.3) again.

Estimate of T3. Applying the ergodic theorem of Proposition 2.1, we can
compute the integrals over the flat half-spaces ∂D(◻) for x0 ∈ Ω ∖ Γε up to a
tiny error. The claim is that

(6.14) T3 ≤ Cδε1000.

Let us first rotate the hyperplane ∂D(◻) and change the variable. Let

r ∶= size(◻), η ∶= ε
r

and a ∶= x(◻) ⋅ n(x(◻))
ε

.

We have, with x = rNz′ + x(◻) ⋅ n(x(◻))n(x(◻)), z′ ∈ Rd−1,

∫
∂D(◻)

ψ◻(proj(x,◻))PΩ(x0,proj(x,◻))ω̃ (x(◻), x
ε
) g (x(◻), x

ε
) dHd−1(x)

= ∫
Rd−1

Ψx0,r(z′)ω̃ (x(◻), Nz
′

η
+ an(x(◻))) g (x(◻), Nz

′

η
+ an(x(◻)))dz′

where, for all z′ ∈ Rd−1,

Ψx0,r(z′) ∶= rd−1ψ◻(proj(rNz′ + x(◻) ⋅ n(x(◻)),◻))
× PΩ(x0,proj(rNz′ + x(◻) ⋅ n(x(◻)),◻)).

Applying the ergodic theorem (Proposition 2.1) for Ψ = Ψx0,r, K defined for
θ ∈ Rd by

K(θ) =Ka,x(◻)(θ) ∶= ω̃(x(◻), θ + an(x(◻)))g(x(◻), θ + an(x(◻)))
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which is a periodic function and f(∣ξ∣) = ∣ξ∣−κ, we eventually get for all k ∈ N,

(6.15) ∣∫
Rd−1

Ψx0,r(z′)K(Nz
′

η
) dz′ − K̂(0)∫

Rd−1
Ψx0,r(z′)dz′∣

≤ (A−1(x(◻))η)k (∫
Rd−1

∣∇k
z′Ψx0,r(z′)∣ dz′)

⎛
⎝ ∑
ξ∈Zd∖{0}

∣K̂(ξ)∣ ∣f(∣ξ∣)∣−k
⎞
⎠
.

Notice that K̂(0) = K̂a,x(◻)(0) = g(x(◻)) according to the Definition 6.4 of the
homogenized boundary condition g. Using the bound (6.1), we have

A−1(x(◻))η ≤ size(◻)
ε1−δ

ε

size(◻)
= εδ.

We finally estimate ∇k
z′Ψx0,r(z′). To this end,

∣∇m
x ψ◻(x)∣ ≤

C(m,d)
rm

and ∣∇m
x PΩ(x0, x)∣ ≤

C(m,Ω, d,L)
∣x − x0∣d−1+m ,

and since ∣x − x0∣ ≥ cr we have that

∣∇m
x (ψ◻(⋅)PΩ(x0, ⋅))(x))∣ ≤

C(m,Ω, d,L)
rd−1+m .

Therefore, by the chain rule and bounds on the derivatives of proj(⋅), we get

∣∇k
z′Ψx0,r(z′)∣ ≤ C1suppψ◻(rNz′ + x(◻) ⋅ n(x(◻))),

so that

∫
Rd−1

∣∇kΨx0,r(z′)∣ dz′ ≤ C.

It follows now from (6.15) that there exists C(d,L,λ,Ω, δ, κ) <∞ such that

T3 ≤ ∑
◻∈Pε

∣∫
∂D(◻)

ψ◻(x)PΩ(x0,proj(x,◻))ω̃ (x(◻), x
ε
) g (x(◻), x

ε
) dHd−1(x)

(6.16)

− ∫
∂D(◻)

ψ◻(x)PΩ(x0,proj(x,◻))g(x(◻))dHd−1(x)∣

≤ Cδε1000.

Note that the error in (6.16) can actually be made arbitrarily small, in the
sense that we can have whatever finite power of ε we like at the cost of a larger
constant C.

Estimate of T4. The estimate for T4 follows from (6.12). We obtain, for
every x0 ∈ Ω ∖ Γε, ◻ ∈ Pε and x ∈ 5◻, we have

∣ψ◻(proj(x,◻))PΩ(x0,proj(x,◻)) (g(x(◻)) − g(proj(x,◻)))∣

≤ Cψ◻(proj(x,◻))dist(x0, ∂Ω)
∣x0 − x(◻)∣d

(size3(◻)
ε2

∧ 1) .

Summing over ◻ ∈ Pε, we get

T4 ≤ C ∑
◻∈Pε

size(◻)d−1 dist(x0, ∂Ω)
∣x0 − x(◻)∣d

(size3(◻)
ε2

∧ 1) .
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Estimate of T5. For the last term we change the variables back, and use

∣Jproj(⋅,◻)(x) − 1∣ ≤ C size(◻)

together with bounds for PΩ and the boundedness of g, to get

T5 = ∑
◻∈Pε

∣∫
∂D(◻)

ψ◻(proj(x,◻))PΩ(x0,proj(x,◻))g(proj(x,◻))dHd−1(x)

− ∫
∂Ω
ψ◻(x)PΩ(x0, x)g(x)dHd−1(x)∣

≤ C ∑
◻∈Pε

size(◻)ddist(x0, ∂Ω)
∣x0 − x(◻)∣d

.

The term on the right, in turn, is bounded by the errors appearing in estimates
for T1 and T4 by (6.3), actually the much cruder estimates

cε ≤ size(◻) ≤ C,
since the latter implies

size(◻)ddist(x0, ∂Ω)
∣x0 − x(◻)∣d

≤ C size(◻)d−1 dist(x0, ∂Ω)
∣x0 − x(◻)∣d

(size(◻)3

ε2
∧ 1) .

This completes the proof of Proposition 6.2. �

We complete this section by stating and proving the Sobolev regularity result
for the homogenized boundary condition g defined in Definition 6.1. This is a
consequence of (6.5).

Proposition 6.3. Suppose that d > 2. Then the function g satisfies

∇g ∈ L
2(d−1)

3
,∞(∂Ω).

If d = 2, then g ∈W s,1(∂Ω) for all s ∈ (0, 2
3
).

Proof. Step 1. We fix τ > 0 and apply Proposition 3.1 to the function F (y) ∶=
τA−1(y). Note that since A ≤ 1, we have that F ≥ τ > 0. The conclusion of the
proposition gives us a collection Pτ of triadic cubes satisfying, for every ◻ ∈ Pτ ,
(6.17) inf

x∈3◻∩∂Ω
A−1(x) ≤ τ−1 size(◻)

as well as

(6.18) #{◻ ∈ Pτ ∶ size(◻) ≥ 3n} ≤ C3−n(d−1)Hd−1 ({x ∈ ∂Ω ∶ τA−1(x) ≥ 3n−2})
and, for every ◻,◻′ ∈ P such that dist(◻,◻′) = 0,

1

3
≤ size(◻)

size(◻′)
≤ 3.

Observe that (6.18) and (2.6) imply that

(6.19) cτ ≤ sup
◻∈Pτ

size(◻) ≤ Cτ 1
2

and thus, by (6.17), for every ◻ ∈ Pτ ,

inf
x∈3◻∩∂Ω

A−1(x) ≤ Cτ− 1
2 ≤ C size−1(◻).
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That is, for every ◻ ∈ Pτ , we have

(6.20) size(◻) ≤ C ( inf
x∈3◻∩∂Ω

A−1(x))
−1

.

We take {ψ◻}◻∈Pτ to be the partition of unity given in Corollary 3.2. For each
◻ ∈ Pτ , let x(◻) ∈ 3◻∩ ∂Ω be such that

A−1(x(◻)) ≤ 2 inf
x∈3◻∩∂Ω

A−1(x).

Define

gτ(x) ∶= ∑
◻∈Pτ

g (x(◻))ψ◻(x).

By (6.5), the triangle inequality and (6.20), for every ◻ ∈ Pτ and x1, x2 ∈ 5◻,
we have

∣g(x1) − g(x2)∣(6.21)

≤ C size(◻) ( inf
x∈3◻∩∂Ω

A−1(x))
3
2

+C size2(◻) ( inf
x∈3◻∩∂Ω

A−1(x))
5
2

≤ C size(◻) ( inf
x∈3◻∩∂Ω

A−1(x))
3
2

.

Using the previous line and (6.19), we find that, for every ◻ ∈ Pτ ,
sup

x∈5◻∩∂Ω
∣g(x) − gτ(x)∣ ≤ sup

x∈5◻∩∂Ω
∑
◻∈Pτ

∣g (x(◻)) − g(x)∣ψ◻(x)(6.22)

≤ C size(◻) ( inf
x∈3◻∩∂Ω

A−1(x))
3
2

.

≤ Cτ 1
2 ( inf

x∈3◻∩∂Ω
A−1(x))

3
2

.

Using (6.21) and ∣∇ψ◻∣ ≤ C size−1(◻), we find that, for every ◻ ∈ Pτ and x ∈ ◻,

∣∇gτ(x)∣ =
RRRRRRRRRRR

∑
◻′∈Pτ ,dist(◻′,◻)=0

g (x(◻′))∇ψ◻′(x)
RRRRRRRRRRR

(6.23)

=
RRRRRRRRRRR

∑
◻′∈Pτ ,dist(◻′,◻)=0

(g (x(◻′)) − g (x(◻)))∇ψ◻′(x)
RRRRRRRRRRR

≤ C ( inf
y∈3◻∩∂Ω

A−1(y))
3
2

.

The estimate (6.22) implies, for d > 2, that, as τ → 0,

gτ → g in Lp(∂Ω), for every p ∈ [1, 2(d − 1)
3

) .

Meanwhile, recalling that A−1 ∈ Ld−1,∞(∂Ω), the estimate (6.23) implies that
the sequence {∇gτ}τ>0 is pointwise dominated by a function belonging to the

space L
2(d−1)

3
,∞(∂Ω). Thus, in particular,

sup
τ>0

∥∇gτ∥
L

2(d−1)
3 ,∞(∂Ω)

≤ C <∞.
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Thus g ∈W 1,p(∂Ω) for every p < 2(d−1)
3 and d > 2, and ∇g ∈ L

2(d−1)
3

,∞(∂Ω).
Step 2. Now we prove the estimate in the case d = 2. Fix s ∈ (0, 2

3
).

Then, using the results of the first step, together with the property that if
dist(◻,◻′) = 0, then

1

3
≤ size(◻)

size(◻′)
≤ 3 ,

we obtain

∣gτ(x) − gτ(y)∣ ≤ C
⎛
⎝
∣x − y∣ ( inf

z∈◻Pε(x)∩∂Ω
A−1(z))

3
2

∧ 1
⎞
⎠

Notice that

∣x − y∣ ( inf
z∈◻Pε(x)∩∂Ω

A−1(z))
3
2

≥ 1 Ô⇒ ∣x − y∣−θ ≤ ( inf
z∈◻Pε(x)∩∂Ω

A−1(z))
3θ
2

and thus we may estimate, for any θ > s,

∫
∂Ω
∫
∂Ω

∣gτ(x) − gτ(y)∣
∣x − y∣1+s

dxdy

≤ C∑
◻
∫
∂Ω
∫
∂Ω∩◻

(∣x − y∣ ( inf
z∈◻∩∂Ω

A−1(z))
3
2

∧ 1)
θ

dxdy

∣x − y∣1+s

≤ C∑
◻
∫
∂Ω
∫
∂Ω∩◻

( inf
z∈◻∩∂Ω

A−1(z))
3θ
2 dxdy

∣x − y∣1+s−θ

≤ C ∫
∂Ω
A− 3θ

2 (x)dx,

where the last estimate follows by the fact that θ > s. Thus {gτ}τ is equibounded
in W s,1(∂Ω). Moreover, by (6.22), which is valid also when d = 2, we have that
gτ → g pointwise a.e. on ∂Ω. The result thus follows by Fatou’s lemma, that is

∫
∂Ω
∫
∂Ω

∣g(x) − g(y)∣
∣x − y∣1+s

dxdy

≤ lim inf
τ→0

∫
∂Ω
∫
∂Ω

∣gτ(x) − gτ(y)∣
∣x − y∣1+s

dxdy ≤ C ∫
∂Ω
A− 3θ

2 (x)dx,

provided that θ < 2
3 , because A−1 ∈ L1,∞ when d = 2. �

Remark 6.4 (On the improvement by Shen and Zhuge). Let us comment on the
upgrade of the regularity of ∇g by Shen and Zhuge in [16]. Using a weighted
estimate, they are able to refine the bounds on V = V1 − V2 in a layer close
the boundary in the following way (see [16, equation (6.11)]): for all σ ∈ (0,1),
there exists a constant C(d,L,λ,a,V0, σ) <∞ such that

∫
Td

∣NT∇θ (V1(θ,0) − V2(θ,0))∣dθ ≤
C ∣n1 − n2∣
A1+σ (1 + ∣n1 − n2∣

A
) .

Consequently, they can prove (see [16, Theorem 6.1]) that for any σ ∈ (0,1),
there exists a constant C(d,L,λ,a, g, σ) <∞ such that for any x1, x2 ∈ ∂Ω and
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ni ∶= n(xi), i ∈ {1, 2}, if n2 Diophantine with constant A and ∣n1 −n2∣ ≤ ν0, then

∣g(x1) − g(x2)∣ ≤
C ∣n1 − n2∣
A1+σ (1 + ∣n1 − n2∣

A
) .

Following our proof of Proposition 6.3, this yields the improved regularity
∇g ∈ Lq for any q < d − 1 in dimension d ≥ 3, and g ∈ W s,1 for any s < 1 in
dimension d = 2. Moreover, the homogenization error (6.6) is improved to, for
any σ ∈ (0,1),

(6.24) ∣uε(x0) − u(x0)∣

≤ Cε 1
2 +Cε−10δ ∑

◻∈Pε
(size2+σ(◻)

ε1+σ ∧ 1) dist(x0, ∂Ω)
∣x0 − x(◻)∣d

size(◻)d−1,

with the constant Cσ depending additionally on σ.

7. Estimate of the boundary integral

In the previous section, we encountered the following function, which repre-
sents the error in homogenization at a point x0 ∈ Ω ∖ Γε:

(7.1) Eε(x0) ∶= ∑
◻∈Pε

(size3(◻)
ε2

∧ 1) dist(x0, ∂Ω)
∣x0 − x(◻)∣d

size(◻)d−1,

where Γε denotes the boundary layer

Γε ∶= Ω ∩ ( ⋃
◻∈Pε

5◻) .

Here Pε is the collection of triadic cubes given by Proposition 3.1 for the function

F (x) ∶= ε1−δA−1(x), x ∈ ∂Ω,

δ ∈ (0, 1
50
) is a tiny, fixed exponent and A(x) is the Diophantine constant for

the unit vector n(x) which is normal to the boundary of ∂Ω at x ∈ ∂Ω. Note
that A is bounded from above by 1 and thus F is bounded from below by a
positive constant (namely ε1−δ) and therefore Proposition 3.1 applies.

Observe that, by (2.6), for every n ∈ N we have

Hd−1 ({x ∈ ∂Ω ∶ ε1−δA−1 > 3n−2}) ≤ C (ε−(1−δ)3n)1−d = Cε(1−δ)(d−1)3−n(d−1).

Therefore, applying Proposition 3.1(iv) gives us that

(7.2) #{◻ ∈ Pε ∶ size(◻) ≥ 3n} ≤ C3−2n(d−1)ε(1−δ)(d−1).

It is easy to see this is equivalent to the statement that, for every t > 0,

(7.3) Hd−1 ({x ∈ ∂Ω ∶ size(◻Pε(x)) ≥ t}) ≤ Cε(1−δ)(d−1)t1−d.

In other words, x↦ size (◻Pε(x)) belongs to Ld−1,∞(∂Ω) with the seminorm

(7.4) [size(◻Pε(⋅))]Ld−1,∞(∂Ω) ≤ Cε1−δ.

Notice that (7.2) implies in particular that the largest cube in Pε has size at

most Cε
1−δ
2 . Since F is bounded below by ε1−δ, we have

(7.5) ∀◻ ∈ Pε, cε1−δ ≤ size(◻) ≤ Cε 1−δ
2 .
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From these estimates, we see that (even in d = 2),

(7.6) ∥size(◻Pε(⋅))∥L1(∂Ω) ≤ Cε1−2δ.

Indeed, we have

∥size(◻Pε(⋅))∥L1(∂Ω) = ∫
∞

0
Hd−1 ({x ∈ ∂Ω ∶ size(◻Pε(x)) > t}) dt

≤ εHd−1 (∂Ω) +Cε(1−δ)(d−1)∫
ε(1−δ)/2

ε
t1−d dt

≤ Cε +Cε(1−δ)(d−1) ∣log ε∣
≤ Cε1−2δ.

This implies that

(7.7) ∣Γε∣ ≤ Cε1−2δ.

The main purpose of this section is to estimate the Lq norms of Eε outside of
the boundary layer Γε.

Lemma 7.1. For each q ∈ [2,∞) and δ > 0, there exists C(q, δ, d, λ,a, g,Ω) <∞
such that, for every ε ∈ (0, 1

2
],

(7.8) ∥Eε∥qLq(Ω∖Γε) ≤ C ⋅

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε
1
3
−2δ in d = 2, q ∈ [1,∞] ,

ε
2
3
−3δ in d = 3, q ∈ [1,∞] ,

ε1−7δ in d ≥ 4, q ∈ [1, d − 1

3
] ,

ε
d−1
3

(1−7δ) in d ≥ 4, q ∈ [d − 1

3
,∞] .

Proof. We begin by rewriting Eε(x0) in the following way. We take Γε to be
the boundary layer given by

Γε ∶= Ω ∩ ( ⋃
◻∈Pε

2◻) .

Then for each x0 ∈ Ω ∖ Γε and ◻ ∈ Pε, we have

max
x∈∂Ω∩◻

∣x0 − x∣ ≤ C min
x∈∂Ω∩◻

∣x0 − x∣.
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Recall that ∂Ωr = {x ∈ Ω ∶ dist(x, ∂Ω) = r}. For each x0 ∈ ∂Ωr ∖Γε, we have, by
the previous display,

Eε(x0)

(7.9)

= ∑
◻∈Pε

(size3(◻)
ε2

∧ 1) dist(x0, ∂Ω)
∣x0 − x(◻)∣d

size(◻)d−1

= r ∑
◻∈Pε

∫
∂Ω∩◻

(size3(◻)
ε2

∧ 1) 1

∣x0 − x(◻)∣d
dHd−1(x)

≤ Cr∫
∂Ω

(size3(◻)
ε2

∧ 1) 1

∣x0 − x∣d
dHd−1(x)

≤ Cr
⌈C∣ log r∣⌉

∑
m=0

(2mr)−d∫
∂Ω∩B2m+1r(x0)∖B2mr(x0)

(size3(◻Pε(x))
ε2

∧ 1) dHd−1(x)

≤ C
⌈C∣ log r∣⌉

∑
m=0

(2mr)1−d∫
∂Ω∩B2m+1r(x0)

(size3(◻Pε(x))
ε2

∧ 1) dHd−1(x).

Denote the m-th summand by

Eε,r,m(x0) ∶= (2mr)1−d∫
∂Ω∩B2m+1r(x0)

(size3(◻Pε(x))
ε2

∧ 1) dHd−1(x).

We proceed by estimating, for each fixed m ∈ N, the Lq norm of each of the
functions Eε,r,m for each q ∈ [1,∞). We compute

∫
∂Ωr

∣Eε,r,m(x0)∣q dHd−1(x0)

(7.10)

≤ C(2mr)1−d∫
∂Ωr
∫
∂Ω∩B2m+1(x0)

(size3(◻Pε(x))
ε2

∧ 1)
q

dHd−1(x)dHd−1(x0)

≤ C(2mr)1−d ∣∂Ω ∩B2m+1(x0)∣∫
∂Ω

(size3(◻Pε(x))
ε2

∧ 1)
q

dHd−1(x)

= C ∫
∂Ω

(size3(◻Pε(x))
ε2

∧ 1)
q

dHd−1(x).

The estimate of the integral on the right side is now split into cases depending
on the exponent q and the dimension d. For convenience, denote

Gε(x) ∶= size3(◻Pε(x)) ∧ ε2, x ∈ ∂Ω.
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The claim is that

(7.11) ε−2 ∥Gε∥qLq(∂Ω) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cε
1
3
−δ in d = 2, q ∈ [1,∞] ,

Cε
2
3
−2δ in d = 3, q ∈ [1,∞] ,

Cε1−6δ in d ≥ 4, q ∈ [1, d − 1

3
] ,

Cε
d−1
3

(1−6δ) in d ≥ 4, q ∈ [d − 1

3
,∞] .

Using (7.2), (7.3) and (7.5), we compute to obtain, for d ≥ 4,

∥Gε∥
d−1
3

L
d−1
3 (∂Ω)

= C ∫
ε2

0
t
d−1
3
−1Hd−1 ({x ∈ ∂Ω ∶ Gε(x) ≥ t}) dt

≤ C ∫
cε3

0
t
d−1
3
−1 dt + ∫

ε2

cε3
t
d−1
3
−1Hd−1 ({x ∈ ∂Ω ∶ size(◻Pε(x))3 > t}) dt

≤ Cεd−1 +Cε(1−δ)(d−1)∫
ε2

cε3
t−1 dt

≤ Cε(1−δ)(d−1) ∣log ε∣
≤ Cε(1−2δ)(d−1).

Thus

∥Gε∥
L
d−1
3 (∂Ω)

≤ Cε3(1−2δ).

This yields the third line of (7.11). Since we trivially have the bound

(7.12) ∥Gε∥L∞(∂Ω) ≤ ε2,

interpolation gives the last line of (7.11). In dimension d = 3, we have

∥Gε∥L1(∂Ω) = ∫
ε2

0
Hd−1 ({x ∈ ∂Ω ∶ size(◻Pε(x))3 > t}) dt

≤ Cε2(1−δ)∫
ε2

0
t−

2
3 dt

= Cε 8
3
−2δ,

while, in dimension d = 2, a similar computation gives

∥Gε∥L1(∂Ω) = ∫
ε2

0
Hd−1 ({x ∈ ∂Ω ∶ size(◻Pε(x))3 > t}) dt

≤ Cε1−δ ∫
ε2

0
t−

1
3 dt

= Cε 7
3
−δ.

The previous two displays, interpolation and (7.12) give us the first two lines
of (7.11) and completes the demonstration of (7.11).
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Combining (7.9), (7.10) and (7.11), we obtain

(7.13) ∥Eε∥qLq(∂Ωr∖Γε) ≤ C ∣log r∣q ⋅

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε
1
3
−δ in d = 2, q ∈ [1,∞] ,

ε
2
3
−2δ in d = 3, q ∈ [1,∞] ,

ε1−6δ in d ≥ 4, q ∈ [1, d − 1

3
] ,

ε
d−1
3

(1−6δ) in d ≥ 4, q ∈ [d − 1

3
,∞] .

Since ε ≤ r ≤ diam(Ω) ≤ C, we replace ∣log r∣ by ∣log ε∣ and then discard the
logarithm by giving up some of the exponent to obtain

(7.14) ∥Eε∥qLq(∂Ωr∖Γε) ≤ C ⋅

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε
1
3
−2δ in d = 2, q ∈ [1,∞] ,

ε
2
3
−3δ in d = 3, q ∈ [1,∞] ,

ε1−7δ in d ≥ 4, q ∈ [1, d − 1

3
] ,

ε
d−1
3

(1−7δ) in d ≥ 4, q ∈ [d − 1

3
,∞] .

Integrating over all ε ≤ r ≤ diam(Ω) gives us (7.8). �

We now give the proof of the main result.

Proof of Theorem 1. Fix q ∈ [2,∞]. Using (7.7) and the Agmon-type L∞

bounds for uε given in [5, Theorem 3(ii)]), we have

(7.15) ∥uε − u∥qLq(Γε) ≤ ∣Γε∣ (∥uε∥L∞(Ω) + ∥u∥L∞(Ω))
q ≤ Cε1−2δ.

We have one more term on the right side of (6.6) to estimate, which was not
handled in Lemma 7.1: denoting

Fε ∶= ε ∣log ε∣dist−1 (x0, ∂Ω) ,(7.16)

and using that dist(∂Ω,Ω ∖ Γε) ≥ cε1−δ by (7.5), we see that

∥Fε∥L∞(Ω∖Γε) ≤ Cε
δ/2 ≤ C.

Moreover, we have

∥Fε∥L1(Ω∖Γε) ≤ Cε ∣log ε∣2 ≤ Cε1−δ.

By Lp interpolation, we therefore get

∥Fε∥qLq(Ω∖Γε) ≤ Cε
1−δ.

Using this, Proposition 6.2 and Lemma 7.1, we obtain that, for every q ∈ [2,∞),
∥uε − u∥qLq(Ω∖Γε) ≤ Cε

q
2 +C ∥Eε∥qLq(Ω∖Γε) +C ∥Fε∥qLq(Ω∖Γε)

≤ Cε−10δ ⋅

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ε
1
3 in d = 2,

ε
2
3 in d = 3,

ε1 in d ≥ 4.

Summing (7.15) and the previous display and shrinking δ gives the theorem. �
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Remark 7.2 (On the optimal exponents in d = 2 and 3). With the remark of
Zhongwei Shen, the error term becomes, for any σ ∈ (0,1),

(7.17) Ẽε(x0) ∶= C ∑
◻∈Pε

(size2+σ(◻)
ε1+σ ∧ 1) dist(x0, ∂Ω)

∣x0 − x(◻)∣d
size(◻)d−1,

with the constant C a constant depending additionally on σ ∈ (0,1). It is now

clear from the above computations, modified to deal with the error term Ẽε(x0)
instead of Eε(x0), yield the bounds stated in (1.9) in dimensions d = {2,3}.
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Sci. Éc. Norm. Supér., to appear, arXiv:1502.00966.
[10] W. M. Feldman. Homogenization of the oscillating Dirichlet boundary condition in

general domains. J. Math. Pures Appl. (9), 101(5):599–622, 2014.
[11] D. Gérard-Varet and N. Masmoudi. Homogenization in polygonal domains. J. Eur. Math.

Soc. (JEMS), 13(5):1477–1503, 2011.
[12] D. Gérard-Varet and N. Masmoudi. Homogenization and boundary layers. Acta Math.,

209(1):133–178, 2012.
[13] C. E. Kenig, F. Lin, and Z. Shen. Periodic homogenization of Green and Neumann

functions. Comm. Pure Appl. Math., 67(8):1219–1262, 2014.



BOUNDARY LAYERS IN PERIODIC HOMOGENIZATION 43

[14] S. Moskow and M. Vogelius. First-order corrections to the homogenised eigenvalues of a
periodic composite medium. A convergence proof. Proc. Roy. Soc. Edinburgh Sect. A,
127(6):1263–1299, 1997.

[15] C. Prange. Asymptotic analysis of boundary layer correctors in periodic homogenization.
SIAM J. Math. Anal., 45(1):345–387, 2013.

[16] Z. Shen and J. Zhuge. Boundary layers in periodic homogenization of neumann problems,
arXiv:1610.05273.

(S. Armstrong) Université Paris-Dauphine, PSL Research University, CNRS,
UMR 7534, CEREMADE, 75016 Paris, France

E-mail address: armstrong@ceremade.dauphine.fr

(T. Kuusi) Department of Mathematics and Systems Analysis, Aalto Univer-
sity, Finland

E-mail address: tuomo.kuusi@aalto.fi

(J.-C. Mourrat) Ecole normale supérieure de Lyon, CNRS, UMR 5669, UMPA,
Lyon, France

E-mail address: jean-christophe.mourrat@ens-lyon.fr
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