Optimal quantitative estimates in stochastic homogenization for elliptic equations in nondivergence form - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

Optimal quantitative estimates in stochastic homogenization for elliptic equations in nondivergence form

Résumé

We prove quantitative estimates for the stochastic homogenization of linear uniformly elliptic equations in nondivergence form. Under strong independence assumptions on the coefficients, we obtain optimal estimates on the subquadratic growth of the correctors with stretched exponential-type bounds in probability. Like the theory of Gloria and Otto for divergence form equations, the arguments rely on nonlinear concentration inequalities combined with certain estimates on the Green's functions and derivative bounds on the correctors. We obtain these analytic estimates by developing a $C^{1,1}$ regularity theory down to microscopic scale, which is of independent interest and is inspired by the~$C^{0,1}$ theory introduced in the divergence form case by the first author and Smart.
Fichier principal
Vignette du fichier
optimalrates.pdf (528.15 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01483482 , version 1 (06-03-2017)

Identifiants

Citer

Scott N. Armstrong, Jessica Lin. Optimal quantitative estimates in stochastic homogenization for elliptic equations in nondivergence form. 2017. ⟨hal-01483482⟩
109 Consultations
82 Téléchargements

Altmetric

Partager

More