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OPTIMAL QUANTITATIVE ESTIMATES IN STOCHASTIC
HOMOGENIZATION FOR ELLIPTIC EQUATIONS IN

NONDIVERGENCE FORM

SCOTT ARMSTRONG AND JESSICA LIN

Abstract. We prove quantitative estimates for the stochastic homogeniza-
tion of linear uniformly elliptic equations in nondivergence form. Under
strong independence assumptions on the coefficients, we obtain optimal
estimates on the subquadratic growth of the correctors with stretched
exponential-type bounds in probability. Like the theory of Gloria and
Otto [18, 19] for divergence form equations, the arguments rely on nonlinear
concentration inequalities combined with certain estimates on the Green’s
functions and derivative bounds on the correctors. We obtain these analytic
estimates by developing a C1,1 regularity theory down to microscopic scale,
which is of independent interest and is inspired by the C0,1 theory introduced
in the divergence form case by the first author and Smart [5].

1. Introduction

1.1. Motivation and informal summary of results. We identify the opti-
mal error estimates for the stochastic homogenization of solutions uε solving:

(1.1) {− tr (A (x
ε
)D2uε) = 0 in U,

uε(x) = g(x) on ∂U.

Here U is a smooth bounded subset of Rd with d ≥ 2, D2v is the Hessian of a
function v and tr(M) denotes the trace of a symmetric matrix M ∈ Sd. The
coefficient matrix A(⋅) is assumed to be a stationary random field, with given
law P, and valued in the subset of symmetric matrices with eigenvalues belonging
to the interval [λ,Λ] for given ellipticity constants 0 < λ ≤ Λ. The solutions
uε are understood in the viscosity sense [13] although in most of the paper
the equations can be interpreted classically. We assume that the probability
measure P has a product-type structure and in particular possesses a finite
range of dependence (see Section 1.3 for the precise statement). According to
the general qualitative theory of stochastic homogenization developed in [23, 24]
for nondivergence form elliptic equations (see also the later work [12]), the
solutions uε of (1.1) converge uniformly as ε → 0, P–almost surely, to that of
the homogenized problem

(1.2) {− tr(AD2u) = 0 in U,

u(x) = g(x) on ∂U,
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for some deterministic, uniformly elliptic matrix A. Our interest in this paper
is to study the rate of convergence of uε to u.

Error estimates quantifying the speed homogenization of uε → u have been
obtained in [24, 25, 11, 4]. The most recent paper [4] was the first to give a
general result stating that the typical size of the error is at most algebraic, that
is, O(εα) for some positive exponent α. The earlier work [25] gave an algebraic
error estimate in dimensions d > 4. The main purpose of this paper is to reveal
explicitly the optimal exponent.

Our main quantitative estimates concern the size of certain stationary solu-
tions called the approximate correctors. These are defined, for a fixed symmetric
matrix M ∈ Sd and ε > 0, as the unique solution φε ∈ C(Rd) ∩ L∞(Rd) of the
equation

(1.3) ε2φε − tr (A(x)(M +D2φε)) = 0 in Rd.

Our main result states roughly that, for every x ∈ Rd, ε ∈ (0, 1
2] and t > 0,

(1.4) P[∣ε2φε(x) − tr (AM) ∣ ≥ tE(ε)] ≲ exp (−t 12) ,

where the typical size E(ε) of the error depends only on the dimension d in the
following way:

(1.5) E(ε) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε ∣log ε∣ in d = 2,

ε
3
2 in d = 3,

ε2 ∣log ε∣
1
2 in d = 4,

ε2 in d > 4.

Note that the rescaling φε(x) ∶= ε2φε (xε) allows us to write (1.3) in the so-called
theatrical scaling as

φε − tr (A (x
ε
) (M +D2φε)) = 0 in Rd.

This is a well-posed problem (it has a unique bounded solution) on Rd which
homogenizes to the equation

φ − tr (A (M +D2φ)) = 0 in Rd.

The solution of the latter is obviously the constant function φ ≡ tr (AM) and
so the limit

(1.6) ε2φε(x) = φε(εx)→ tr (AM)

is a qualitative homogenization statement. Therefore, the estimate (1.4) is a
quantitative homogenization result for this particular problem which asserts
that the speed of homogenization is O(E(ε)).

Moreover, it is well-known that estimating the speed of homogenization for
the Dirichlet problem is essentially equivalent to obtaining estimates on the
approximate correctors (see [15, 7, 11, 4]). Indeed, the estimate (1.4) can
be transferred without any loss of exponent to an estimate on the speed of
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homogenization of the Dirichlet problem. One can see this from the standard
two-scale ansatz

uε(x) ≈ u(x) + ε2φε (xε) ,
which is easy to formalize and quantify in the linear setting since the homoge-
nized solution u is completely smooth. We remark that since (1.4) is an estimate
at a single point x, an estimate in L∞ for the Dirichlet problem will necessarily
have an additional logarithmic factor ∣ log ε∣q for some q(d) < ∞. Since the
argument is completely deterministic and essentially the same as in the case of
periodic coefficients, we do not give the details here and instead focus on the
proof of (1.4).

The estimate (1.4) can also be expressed in terms of an estimate on the
subquadratic growth of the correctors φ, which are the solutions, for given
M ∈ Sd, of the problem

(1.7)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

− tr (A(x)(M +D2φ) = − tr(AM) in Rd,

lim sup
R→∞

R−2 osc
BR

φ = 0.

Recall that while D2φ exists as a stationary random field, φ itself may not be
stationary. The estimate (1.4) implies that, for every x ∈ Rd,

P [∣φ(x) − φ(0)∣ ≥ t∣x∣2E (∣x∣−1)] ≲ exp (−t 12) .

Notice that in dimensions d > 4, this implies that the typical size of ∣φ(x)−φ(0)∣
stays bounded as ∣x∣ →∞, suggesting that φ is a locally bounded, stationary
random field. In Section 7, we prove that this is so: the correctors are locally
bounded and stationary in dimensions d > 4.

The above estimates are optimal in the size of the scaling, that is, the
function E(ε) cannot be improved in any dimension. This can be observed
by considering the simple operator −a(x)∆ where a(x) is a scalar field with
a random checkerboard structure. Fix a smooth (deterministic) function f ∈
C∞
c (Rd) and consider the problem

(1.8) − a (xε)∆uε = f(x) in Rd.

We expect this to homogenize to a problem of the form

−a∆u = f(x) in Rd.

In dimension d = 2 (or in higher dimensions, if we wish) we can also consider
the Dirichlet problem with zero boundary conditions in a ball much larger than
the support of f . We can then move the randomness to the right side of the
equation to have

−∆uε = a−1 (x
ε
) f(x) in Rd

and then write a formula for the value of the solution uε at the origin as a
convolution of the random right side against the Green’s kernel for the Laplacian
operator. The size of the fluctuations of this convolution is easy to determine,
since it is essentially a sum (actually a convolution) of i.i.d. random variables,
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and it turns out to be precisely of order E(ε) (with a prefactor constant
depending on the variance of a(⋅) itself). For instance, we show roughly that

var [uε(0)] ≃ E(ε)2.

This computation also serves as a motivation for our proof of (1.4), although
handling the general case of a random diffusion matrix is of course much more
difficult than that of (1.8), in which the randomness is scalar and can be split
from the operator.

1.2. Method of proof and comparison to previous works. The argu-
ments in this paper are inspired by the methods introduced in the divergence
form setting by Gloria and Otto [18, 19] and Gloria, Neukamm and Otto [16]
(see also Mourrat [21]). The authors combined certain concentration inequalities
and analytic arguments to prove optimal quantitative estimates in stochastic
homogenization for linear elliptic equations of the form

−∇ ⋅ (A(x)∇u) = 0.

The concentration inequalities provided a convenient mechanism for transferring
quantitative ergodic information from the coefficient field to the solutions
themselves, an idea which goes back to an unpublished paper of Naddaf and
Spencer [22]. Most of these works rely on some version of the Efron-Stein
inequality [14] or the logarithmic Sobolev inequality to control the fluctuations
of the solution by estimates on the spatial derivatives of the Green’s functions
and the solution.

A variant of these concentration inequalities plays an analogous role in this
paper (see Proposition 2.2). There are then two main analytic ingredients we
need to conclude: first, an estimate on the decay of the Green’s function for
the heterogenous operator (note that, in contrast to the divergence form case,
there is no useful deterministic bound on the decay of the Green’s function);
and (ii) a higher-order regularity theory asserting that, with high P-probability,
solutions of our random equation are more regular than the deterministic
regularity theory would predict. We prove each of these estimates by using the
sub-optimal (but algebraic) quantitative homogenization result of [4]: we show
that, since solutions are close to those of the homogenized equation on large
scales, we may “borrow” the estimates from the constant-coefficient equation.
This is an idea that was introduced in the context of stochastic homogenization
for divergence form equations by the first author and Smart [5] (see also [17, 3])
and goes back to work of Avellaneda and Lin [6, 7] in the case of periodic
coefficients.

We remark that, while the scaling of the error E(ε) is optimal, the esti-
mate (1.4) is almost certainly sub-optimal in terms of stochastic integrability.
This seems to be one limitation of an approach relying on (nonlinear) concentra-
tion inequalities, which so far yield only estimates with exponential moments [17]
rather than Gaussian moments [1, 2, 20]. Recently, new approaches based on
renormalization-type arguments (rather than nonlinear concentration inequal-
ities) have been introduced in the divergence form setting [1, 2, 20]. It was
shown in [2] that this approach yields estimates at the critical scale which are
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also optimal in stochastic integrability. It would be very interesting to see
whether such arguments could be developed in the nondivergence form case.

1.3. Assumptions. In this subsection, we introduce some notation and present
the hypotheses. Throughout the paper, we fix ellipticity constants 0 < λ ≤ Λ
and the dimension d ≥ 2. The set of d-by-d matrices is denoted by Md, the set of
d-by-d symmetric matrices is denoted by Sd, and Id ∈ Sd is the identity matrix.
If M,N ∈ Sd, we write M ≤ N if every eigenvalue of N −M is nonnegative; ∣M ∣
denotes the largest eigenvalue of M .

1.3.1. Definition of the probability space (Ω,F). We begin by giving the struc-
tural hypotheses on the equation. We consider matrices A ∈ Md which are
uniformly elliptic:

(1.9) λId ≤ A(⋅) ≤ ΛId

and Hölder continuous in x:

(1.10) ∃σ ∈ (0,1] such that sup
x,y∈Rd

∣A(x) −A(y)∣
∣x − y∣σ <∞,

We define the set

(1.11) Ω ∶= {A ∶ A satisfies (1.9) and (1.10)} .
Notice that the assumption (1.10) is a qualitative one. We purposefully do
not specify any quantitative information regarding the size of the supremum
in (1.10), because none of our estimates depend on this value. We make
this assumption in order to ensure that a comparison principle holds for our
equations.

We next introduce some σ–algebras on Ω. For every Borel subset U ⊆ Rd we
define F(U) to be the σ–algebra on Ω generated by the behavior of A in U ,
that is,

(1.12) F(U) ∶= σ–algebra on Ω generated by the family of random variables

{A↦ A(x) ∶ x ∈ U} .
We define F ∶= F(Rd).
1.3.2. Translation action on (Ω,F). The translation group action on Rd natu-
rally pushes forward to Ω. We denote this action by {Ty}y∈Rd , with Ty ∶ Ω→ Ω
given by

(TyA)(x) ∶= A(x + y).
The map Ty is clearly F–measurable, and is extended to F by setting, for each
E ∈ F ,

TyE ∶= {TyA ∶ A ∈ E} .
We also extend the translation action to F–measurable random elements X ∶
Ω→ S on Ω, with S an arbitrary set, by defining (TyX)(F ) ∶=X(TyF ).

We say that a random field f ∶ Zd ×Ω → S is Zd–stationary provided that
f(y+z,A) = f(y, TzA) for every y, z ∈ Zd and A ∈ Ω. Note that an F–measurable
random element X ∶ Ω→ S may be viewed as a Zd–stationary random field via
the identification with X̃(z,A) ∶=X(TzA).
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1.3.3. Assumptions on the random environment. Throughout the paper, we fix
` ≥ 2

√
d and a probability measure P on (Ω,F) which satisfies the following:

(P1) P has Zd–stationary statistics: that is, for every z ∈ Zd and E ∈ F ,

P [E] = P [TzE] .

(P2) P has a range of dependence at most `: that is, for all Borel subsets
U,V of Rd such that dist(U,V ) ≥ `,

F(U) and F(V ) are P–independent.

Some of our main results rely on concentration inequalities (stated in Sec-
tion 2.2) which require a stronger independence assumption than finite range
of dependence (P2) which was used in [4]. Namely, we require that P is the
pushforward of another probability measure which has a product space structure.
We consider a probability space (Ω0,F0,P0) and denote

(1.13) (Ω∗,F∗,P∗) ∶= (ΩZd
0 ,FZd

0 ,PZd
0 ).

We regard an element ω ∈ Ω∗ as a map ω ∶ Zd → Ω0. For each Γ ⊆ Zd, we denote
by F∗(Γ) the σ-algebra generated by the family {ω ↦ ω(z) ∶ z ∈ Γ} of maps
from Ω∗ to Ω0. We denote the expectation with respect to P∗ by E∗. Abusing
notation slightly, we also denote the natural Zd-translation action on Ω∗ by Tz,
that is, Tz ∶ Ω∗ → Ω∗ is defined by (Tzω)(y) ∶= ω(y + z).

We assume that there exists an (F∗,F)–measurable map π ∶ Ω∗ → Ω which
satisfies the following:

(1.14) P [E] = P∗[π−1(E)] for every E ∈ F ,

(1.15) π ○ Tz = Tz ○ π for every z ∈ Zd,

with the translation operator interpreted on each side in the obvious way, and

(1.16) for every Borel subset U ⊆ Rd and E ∈ F(U),
π−1(E) ∈ F∗ ({z ∈ Zd ∶ dist(z,U) ≤ `/2}) .

We summarize the above conditions as:

(P3) There exists a probability space (Ω∗,F∗,P∗) of the form (1.13) and a
map

π ∶= Ω∗ → Ω,

which is (F ,F∗)–measurable and satisfies (1.14), (1.15) and (1.16).

Note that, in view of the product structure, the conditions (1.14) and (1.16)
imply (P2) and (1.14) and (1.15) imply (P1). Thus (P1) and (P2) are superseded
by (P3).
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1.4. Statement of main result. We next present the main result concerning
quantitative estimates of the approximate correctors.

Theorem 1.1. Assume that P is a probability measure on (Ω,F) satisfying (P3).
Let E(ε) be defined by (1.5). Then there exist δ(d, λ,Λ) > 0 and C(d, λ,Λ, `) ≥ 1
such that, for every ε ∈ (0, 1

2],

(1.17) E

⎡⎢⎢⎢⎢⎢⎣
exp

⎛
⎜
⎝
⎛
⎝

1

E(ε) sup
x∈B√

d
(0)

∣ε2φε(x) − tr (AM)∣
⎞
⎠

1
2
+δ ⎞

⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
≤ C.

The proof of Theorem 1.1 is completed in Section 6.

1.5. Outline of the paper. The rest of the paper is organized as follows. In
Section 2, we introduce the approximate correctors and the modified Green’s
functions and give some preliminary results which are needed for our main
arguments. In Section 3, we establish a C1,1 regularity theory down to unit scale
for solutions. Section 4 contains estimates on the modified Green’s functions,
which roughly state that the these functions have the same rate of decay at
infinity as the Green’s function for the homogenized equation (i.e, the Laplacian).
In this section, we also mention estimates on the invariant measure associated
to the linear operator in (1.1). In Section 5, we use results from the previous
sections to measure the “sensitivity” of solutions of the approximate corrector
equation with respect to the coefficients. Finally, in Section 6, we obtain
the optimal rates of decay for the approximate corrector, proving our main
result, and, in Section 7, demonstrate the existence of stationary correctors
in dimensions d > 4. In the appendix, we give a proof of the concentration
inequality we use in our analysis, which is a stretched exponential version of
the Efron-Stein inequality.

2. Preliminaries

2.1. Approximate correctors and modified Green’s functions. For each
given M ∈ Sd and ε > 0, the approximate corrector equation is

ε2φε − tr(A(x)(M +D2φε)) = 0 in Rd.

The existence of a unique solution φε belonging to C(Rd) ∩L∞(Rd) is obtained
from the usual Perron method and the comparison principle.

We also introduce, for each ε ∈ (0,1] and y ∈ Rd, the “modified Green’s
function” Gε(⋅, y;A) = Gε(⋅, y), which is the unique solution of the equation

(2.1) ε2Gε − tr (A(x)D2Gε) = χB`(y) in Rd.

Compared to the usual Green’s function, we have smeared out the singularity
and added the zeroth-order “massive” term.

To see that (2.1) is well-posed, we build the solution Gε by compactly
supported approximations. We first solve the equation in the ball BR (for
R > `) with zero Dirichlet boundary data to obtain a function Gε,R(⋅, y). By
the maximum principle, Gε,R(⋅, y) is increasing in R and we may therefore
define its limit as R → ∞ to be Gε(⋅, y). We show in the following lemma
that it is bounded and decays at infinity, and from this it is immediate that
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it satisfies (2.1) in Rd. The lemma is a simple deterministic estimate which
is useful only in the regime ∣x − y∣ ≳ ε−1 ∣log ε∣ and follows from the fact (as
demonstrated by a simple test function) that the interaction between the terms
on the left of (2.1) give the equation a characteristic length scale of ε−1.

Lemma 2.1. There exist a(d, λ,Λ) > 0 and C(d, λ,Λ) > 1 such that, for every
A ∈ Ω, x, y ∈ Rd and ε ∈ (0,1],
(2.2) Gε(x, y) ≤ Cε−2 exp (−εa∣x − y∣) .
Proof. Without loss of generality, let y = 0. Let φ(x) ∶= C exp (−εa∣x∣) for
C,a > 0 to be selected below. Compute, for every x ≠ 0,

D2φ(x) = φ(x)(−εa 1

∣x∣ (I −
x⊗ x
∣x∣2 ) + ε2a2x⊗ x

∣x∣2 ) .

Thus for any A ∈ Ω,

− tr (A(x)D2φ(x)) ≥ φ(x)( 1

∣x∣λεa(d − 1) −Λ(ε2a2)) in Rd ∖ {0}.

Set a ∶= 1√
2Λ

. Then

(2.3) ε2φ−tr (A(x)D2φ(x)) ≥ ε2φ(x)(1−Λa2)+φ(x)∣x∣ λεa(d−1) ≥ 0 in Rd∖{0}.

Take C ∶= exp(a`) so that φ(x) ≥ 1 in ∣x∣ ≤ `. Define φ̃ ∶= ε−2 min{1, φ}. Then φ̃
satisfies the inequality

ε2φ(x) − tr (A(x)D2φ(x)) ≥ χB` in Rd.

As φ̃ > 0 on ∂BR, the comparison principle yields that φ̃ ≥ Gε,R(⋅,0) for every
R > 1. Letting R →∞ yields the lemma. �

2.2. Spectral gap inequalities. In this subsection, we state the probabilistic
tool we use to obtain the quantitative estimates for the modified correctors.
The result here is applied precisely once in the paper, in Section 6, and relies on
the stronger independence condition (P3). It is a variation of the Efron-Stein
(“spectral gap”) inequality; a proof is given in Appendix A.

Proposition 2.2. Fix β ∈ (0,2). Let X be a random variable on (Ω∗,F∗,P∗)
and set

X ′
z ∶= E∗ [X ∣F∗(Zd ∖ {z})] and V∗[X] ∶= ∑

z∈Zd
(X −X ′

z)2.

Then there exists C(β) ≥ 1 such that

(2.4) E∗[exp (∣X − E [X]∣β)] ≤ CE∗[exp ((CV∗[X])
β

2−β )]
2−β
β

.

The conditional expectation X ′
z can be identified by resampling the random

environment near the point z (this is explained in depth in Section 5). Therefore,
the quantity (X −X ′

z) measures changes in X with respect to changes in the
environment near z. Following [16], we refer to (X−X ′

z) as the vertical derivative
of X at the point z.
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2.3. Suboptimal error estimate. We recall the main result of [4], which is
the basis for much of the analysis in this paper. We reformulate their result
slightly, to put it in a form which is convenient for our use here.

Proposition 2.3. Fix σ ∈ (0,1] and s ∈ (0, d). Let P satisfy (P1) and (P2).
There exists an exponent α(σ, s, d, λ,Λ, `) > 0 and a nonnegative random variable
X on (Ω,F), satisfying

(2.5) E [exp (X )] ≤ C(σ, s, d,Λ, λ, `) <∞
and such that the following holds: for every R ≥ 1, f ∈ C0,σ(BR), g ∈ C0,σ(∂BR)
and solutions u, v ∈ C(BR) of the Dirichlet problems

(2.6) {
− tr (A(x)D2u) = f(x) in BR,

u = g on ∂BR,

and

(2.7) {
− tr (AD2v) = f(x) in BR,

v = g on ∂BR,

we have, for a constant C(σ, s, d,Λ, λ, `) ≥ 1, the estimate

R−2 sup
BR

∣u(x) − v(x)∣ ≤ CR−α (1 +XR−s)ΓR,σ(f, g),

where

ΓR,σ(f, g) ∶= sup
BR

∣f ∣ +Rσ [f]C0,σ(BR) +R−2 osc
∂BR

g +R−2+σ [g]C0,σ(∂BR) .

We note that, in view of the comparison principle, Proposition 2.3 also give
one-sided estimates for subsolutions and supersolutions.

3. Uniform C1,1 Estimates

In this section, we present a large-scale (R≫ 1) regularity theory for solutions
of the equation

(3.1) − tr (A(x)D2u) = f(x) in BR

Recall that according to the Krylov-Safonov Hölder regularity theory [10], there
exists an exponent σ(d, λ,Λ) ∈ (0,1) such that u belongs to C0,σ(BR/2) with
the estimate

(3.2) Rσ−2 [u]C0,σ(BR/2) ≤ C (R−2 osc
BR

u + (⨏
BR

∣f(x)∣d dx)
1
d

) .

This is the best possible estimate, independent of the size of R, for solutions of
general equations of the form (3.1), even if the coefficients are smooth. What
we show in this section is that, due to statistical effects, solutions of our random
equation are typically much more regular, at least on scales larger than `, the
length scale of the correlations of the coefficient field. Indeed, we will show that
solutions, with high probability, are essentially C1,1 on scales larger than the
unit scale.
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The arguments here are motivated by a similar C0,1 regularity theory for
equations in divergence form developed in [5] and should be seen as a nondi-
vergence analogue of those estimates. In fact, the arguments here are almost
identical to those of [5]. They can also be seen as generalizations to the random
setting of the results of Avellaneda and Lin for periodic coefficients, who proved
uniform C0,1 estimates for divergence form equations [6] and then C1,1 estimates
for the nondivergence case [7]. Note that it is natural to expect estimates in
nondivergence form to be one derivative better than those in divergence form
(e.g., the Schauder estimates). Note that the “C1,1 estimate” proved in [17] has
a different statement which involves correctors; the statement we prove here
would be simply false for divergence form equations.

The rough idea, similar to the proof of the classical Schauder estimates, is that,
due to homogenization, large-scale solutions of (3.1) can be well-approximated
by those of the homogenized equation. Since the latter are harmonic, up to a
change of variables, they possess good estimates. If the homogenization is fast
enough (for this we need the results of [4], namely Proposition 2.3), then the
better regularity of the homogenized equation is inherited by the heterogeneous
equation. This is a quantitative version of the idea introduced in the context of
periodic homogenization by Avellaneda and Lin [6, 7].

Throughout this section, we let Q be the set of polynomials of degree at most
two and let L denote the set of affine functions. For σ ∈ (0,1] and U ⊆ Rd, we
denote the usual Hölder seminorm by [⋅]C0,σ(U).

Theorem 3.1 (C1,1 regularity). Assume (P1) and (P2). Fix s ∈ (0, d) and
σ ∈ (0,1]. There exists an F–measurable random variable X and a constant
C(s, σ, d, λ,Λ, `) ≥ 1 satisfying

(3.3) E [exp (X s)] ≤ C <∞

such that the following holds: for every M ∈ Sd, R ≥ 2X , u ∈ C(BR) and
f ∈ C0,σ(BR) satisfying

− tr (A(x)(M +D2u)) = f(x) in BR

and every r ∈ [X , 1
2R], we have the estimate

(3.4)
1

r2
inf
l∈L

sup
Br

∣u − l∣

≤ C (∣f(0) + tr(AM)∣ +Rσ[f]C0,σ(BR) +
1

R2
inf
l∈L

sup
BR

∣u − l∣) .

It is well-known that any L∞ function which can be well-approximated on
all scales by smooth functions must be smooth. The proof of Theorem 3.1 is
based on a similar idea: any function u which can be well-approximated on all
scales above a fixed scale X , which is of the same order as the microscopic scale,
by functions w enjoying an improvement of quadratic approximation property
must itself have this property. This is formalized in the next proposition, the
statement and proof of which are similar to those of [4, Lemma 5.1].
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Proposition 3.2. For each r > 0 and θ ∈ (0, 1
2), let A(r, θ) denote the subset

of L∞(Br) consisting of w which satisfy

1

(θr)2
inf
q∈Q

sup
x∈Bθr

∣w(x) − q(x)∣ ≤ 1

2
( 1

r2
inf
q∈Q

sup
x∈Br

∣w(x) − q(x)∣) .

Assume that α, γ,K,L > 0, 1 ≤ 4r0 ≤ R and u ∈ L∞(BR) are such that, for every
r ∈ [r0,R/2], there exists v ∈ A(r, θ) such that

(3.5)
1

r2
sup
x∈Br

∣u(x) − v(x)∣ ≤ r−α (K + 1

r2
inf
l∈L

sup
x∈B2r

∣u(x) − l(x)∣) +Lrγ.

Then there exist β(θ) ∈ (0, 1] and C(α, θ, γ) ≥ 1 such that, for every s ∈ [r0,R/2],

(3.6)
1

s2
inf
l∈L

sup
x∈Bs

∣u(x) − l(x)∣ ≤ C (K +LRγ + 1

R2
inf
l∈L

sup
x∈BR

∣u(x) − l(x)∣) .

and

(3.7)
1

s2
inf
q∈Q

sup
x∈Bs

∣u(x) − q(x)∣ ≤ C ( s
R

)
β

(LRγ + 1

R2
inf
q∈Q

sup
x∈BR

∣u(x) − q(x)∣)

+Cs−α (K +LRγ + 1

R2
inf
l∈L

sup
x∈BR

∣u(x) − l(x)∣) .

Proof. Throughout the proof, we let C denote a positive constant which depends
only on (α, θ, γ) and may vary in each occurrence. We may suppose without
loss of generality that α ≤ 1 and that γ ≤ c so that θγ ≥ 2

3 .

Step 1. We set up the argument. We keep track of the two quantitites

G(r) ∶= 1

r2
inf
q∈Q

sup
x∈Br

∣u(x) − q(x)∣ and H(r) ∶= 1

r2
inf
l∈L

sup
x∈Br

∣u(x) − l(x)∣ .

By the hypotheses of the proposition and the triangle inequality, we obtain
that, for every r ∈ [r0,R/2],

(3.8) G(θr) ≤ 1

2
G(r) +Cr−α (K +H(2r)) +Lrγ.

Denote s0 ∶= R and sj ∶= θj−1R/4 and let m ∈ N be such that

s−αm ≤ 1

4
≤ s−αm+1.

Denote Gj ∶= G(sj) and Hj ∶=H(sj). Noting that θ ≤ 1
2 , from (3.8) we get, for

every j ∈ {1, . . . ,m − 1},

(3.9) Gj+1 ≤
1

2
Gj +Cs−αj (K +Hj−1) +Lsγj .

For each j ∈ {0, . . . ,m − 1}, we may select qj ∈ Q such that

Gj =
1

s2
j

sup
x∈Bsj

∣u(x) − qj(x)∣ .

We denote the Hessian matrix of qj by Qj . The triangle inequality implies that

(3.10) Gj ≤Hj ≤ Gj +
1

s2
j

sup
x∈Bsj

1

2
x ⋅Qjx = Gj +

1

2
∣Qj ∣,
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and

1

s2
j

sup
x∈Bsj+1

∣qj+1(x) − qj(x)∣ ≤ Gj + θ2Gj+1.

The latter implies

∣Qj+1 −Qj ∣ ≤
2

s2
j+1

sup
x∈Bsj+1

∣qj+1(x) − qj(x)∣ ≤
2

θ2
Gj + 2Gj+1.

In particular,

(3.11) ∣Qj+1∣ ≤ ∣Qj ∣ +C (Gj +Gj+1)
Similarly, the triangle inequality also gives

(3.12) ∣Qj ∣ =
2

s2
j

inf
l∈L

sup
x∈Bsj

∣qj(x) − l(x)∣ ≤ 2Gj + 2Hj ≤ 4Hj.

Thus, combining (3.11) and (3.12), yields

(3.13) ∣Qj ∣ ≤ ∣Q0∣ +C
j

∑
i=0

Gi ≤ C (H0 +
j

∑
i=0

Gi) .

Next, combining (3.9) (3.10) and (3.13), we obtain, for every j ∈ {0, . . . ,m − 1},

Gj+1 ≤
1

2
Gj +Cs−αj (K +H0 +

j

∑
i=0

Gi) +Lsγj .(3.14)

The rest of the argument involves first iterating (3.14) to obtain bounds on Gj ,
which yield bounds on ∣Qj ∣ by (3.13), and finally on Hj by (3.10).

Step 2. We show that, for every j ∈ {1, . . . ,m},

(3.15) Gj ≤ 2−jG0 +Cs−αj (K +H0) +CL (sγj +Rγs−αj ) .

We argue by induction. Fix A,B ≥ 1 (which are selected below) and suppose
that k ∈ {0, . . . ,m − 1} is such that, for every j ∈ {0, . . . , k},

Gj ≤ 2−jG0 +As−αj (K +H0) +L (Asγj +BRγs−αj ) .

Using (3.14) and this induction hypothesis (and that G0 ≤H0), we get

Gk+1 ≤
1

2
Gk +Cs−αk (K +H0 +

k

∑
j=0

Gj) +Lsγk

≤ 1

2
(2−kG0 +As−αk (K +H0) +L (Asγk +BRγs−αk )) +Lsγk

+Cs−αk (K +H0 +
k

∑
j=0

(2−jG0 +As−αj (K +H0) +L (Asγj +BRγs−αj )))

≤ 2−(k+1)G0 + s−αk+1(K +H0) (
1

2
A +CAs−αk +C)

+Lsγk+1 (
1

2
θ−γA +C) +LRγs−αk+1 (

1

2
B +CA +CBs−αk ) .
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Now suppose in addition that k ≤ n with n such that Cs−αn ≤ 1
4 . Then using this

and θγ ≥ 2
3 , we may select A large enough so that

1

2
A +CAs−αk +C ≤ 3

4
A +C ≤ A and

1

2
θ−γA +C ≤ A,

and then select B large enough so that

1

2
B +CA +CBs−αk ≤ B.

We obtain

Gk+1 ≤ 2−(k+1)G0 +As−αk+1 (K +H0) +ALsγk+1 +BLRγs−αk+1.

By induction, we now obtain (3.15) for every j ≤ n ≤m. In addition, for every
j ∈ {n + 1, . . . ,m}, we have that 1 ≤ sj/sm ≤ C. This yields (3.15) for every
j ∈ {0, . . . , n}.

Step 3. The bound on Hj and conclusion. By (3.13), (3.15), we have

∣Qj ∣ ≤ C (H0 +
j

∑
i=0

Gi)

≤ C (H0 +
j

∑
i=0

(2−iG0 +Cs−αi (K +H0) +CL(sγi +Rγs−αi ))

≤ C (H0 +G0 +Cs−αj (K +H0) +CLRγ (1 + s−αj ))
≤ CH0 +CKs−αj +CLRγ.

Here we also used that s−αj ≤ s−αm ≤ C. Using the previous inequality, (3.10)
and (3.15), we conclude that

Hj ≤ Gj +
1

2
∣Qj ∣ ≤ CH0 +CKs−αj +CLRγ.

This is (3.6). Note that (3.15) already implies (3.7) for β ∶= (log 2)/∣ log θ∣. �

Next, we recall that solutions of the homogenized equation (which are essen-
tially harmonic functions) satisfy the “improvement of quadratic approximation”
property.

Lemma 3.3. Let r > 0. Assume that A satisfies (1.9) and let w ∈ C(Br) be a
solution of

(3.16) − tr (AD2w) = 0 in Br.

There exists θ(d, λ,Λ) ∈ (0, 1
2] such that, for every r > 0,

1

(θr)2
inf
q∈Q

sup
x∈Bθr

∣w(x) − q(x)∣ ≤ 1

2
( 1

r2
inf
q∈Q

sup
x∈Br

∣w(x) − q(x)∣) .

Proof. Since A is constant, the solutions of (3.16) are harmonic (up to a linear
change of coordinates). Thus the result of this lemma is classical. �

Equipped with the above lemmas, we now give the proof of Theorem 3.1.
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Proof of Theorem 3.1. Fix s ∈ (0, d). We denote by C and c positive constants
depending only on (s, σ, d, λ,Λ, `) which may vary in each occurrence. We
proceed with the proof of (3.4). Let Y be the random variable in the statement
of Proposition 2.3, with α the exponent there. Define X ∶= Y1/s and observe that
X satisfies (3.3). We take σ to be the smallest of the following: the exponent
in (3.2) and half the exponent α in Proposition 2.3.

We may suppose without loss of generality that − tr (AM) = f(0) = 0.

Step 1. We check that u satisfies the hypothesis of Proposition 3.2 with
r0 = CX . Fix r ∈ [CX ,R/2]. We take v,w ∈ C(B3r/4) to be the solutions of the
problems

{
− tr (AD2v) = f(x) in B3r/4,

v = u on ∂B3r/4,
{
− tr (AD2w) = 0 in B3r/4,

w = u on ∂B3r/4.

By the Alexandrov-Bakelman-Pucci estimate [10], we have

(3.17)
1

r2
sup
Br/2

∣v −w∣ ≤ C (⨏
Br

∣f(x)∣d dx)
1
d

≤ Crσ [f]C0,σ(Br) .

By the Krylov-Safanov Hölder estimate (3.2),

(3.18) rσ−2 [u]C0,σ(B3r/4) ≤ C ( 1

r2
osc
Br
u + (⨏

Br
∣f(x)∣d dx)

1
d

)

≤ C ( 1

r2
osc
Br
u + rσ [f]C0,σ(Br)) .

By the error estimate (Proposition 2.3), we have

1

r2
sup
Br/2

∣u − v∣

≤ Cr−α (1 + Yr−s)(rσ [f]C0,σ(Br) +
1

r2
osc
∂B3r/4

u + rσ−2 [u]C0,σ(B3r/4)) .

Using the assumption rs ≥ X s = Y and (3.18), this gives

(3.19)
1

r2
sup
Br/2

∣u − v∣ ≤ Cr−α (rσ [f]C0,σ(Br) +
1

r2
osc
Br
u) .

Using (3.17) and (3.19), the triangle inequality, and the definition of σ, we get

1

r2
sup
Br/2

∣u −w∣ ≤ Cr−α ( 1

r2
osc
Br
u) +Crσ [f]C0,σ(BR) .

By Lemma 3.3, w ∈ A(r, θ) for some θ ≥ c.
Step 2. We apply Proposition 3.2 to obtain (3.4). The proposition gives, for

every r ≥ r0 = CX ,

1

r2
inf
l∈L

sup
x∈Br

∣u(x) − l(x)∣ ≤ C (Rσ [f]C0,σ(BR) +
1

R2
inf
l∈L

sup
x∈Br

∣u(x) − l(x)∣) ,

which is (3.4). �
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It is convenient to restate the estimate (3.4) in terms of “coarsened” semi-
norms. Recall that, for φ ∈ C∞(B1),

∣Dφ(x0)∣ ≃
1

h
osc

Bh(x0)
φ(x),

∣D2φ(x0)∣ ≃
1

h2
inf
p∈Rd

osc
Bh(x0)

(φ(x) − p ⋅ x) ,
for 0 < h≪ 1.

This motivates the following definitions: for α ∈ (0, 1], h ≥ 0, U ⊆ Rd and x0 ∈ U ,
we define the pointwise, coarsened h-scale C0,1

h (U) and C1,1
h (U) seminorms at

x0 by

[φ]C0,α
h

(x0,U) ∶= sup
r>h

1

rα
osc

Br(x0)∩U
φ,

and

[φ]C1,α
h

(x0,U) ∶= sup
r>h

1

r1+α inf
l∈L

osc
Br(x0)∩U

(φ(x) − l(x)) .

This allows us to write (3.4) in the form

(3.20) [u]C1,1
1 (0,BR/2)

≤ CX 2 (∣f(0) + tr(AM)∣ +Rσ[f]C0,σ(BR) +
1

R2
inf
l∈L

sup
x∈BR

∣u − l∣) .

As a simple corollary to Theorem 3.1, we also have C0,1
1 bounds on u:

Corollary 3.4. Assume the hypotheses and notation of Theorem 3.1. Then,

(3.21) [u]C0,1
1 (0,BR/2)

≤ X (R ∣f(0) + trAM ∣ +R1+σ [f]C0,σ(BR) +
1

R
osc
BR

u) .

The proof follows from a simple interpolation inequality, which controls the
seminorm [⋅]C0,1

h
(BR) in terms of [⋅]C1,1

h
(BR) and the oscillation in BR:

Lemma 3.5. For any R > 0 and φ ∈ C(BR), we have

(3.22) [φ]C0,1
h

(0,BR) ≤ 14 ([φ]C1,1
h

(0,BR))
1
2 (osc

BR
φ)

1
2

.

Proof. We must show that, for every s ∈ [h,R],

(3.23)
1

s
osc
Bs
φ ≤ 14 ([φ]C1,1

h
(0,BR))

1
2 (osc

BR
φ)

1
2

.

Set

K ∶= ([φ]C1,1
h

(0,BR))
− 1

2 (osc
BR

φ)
1
2

and observe that, for every s ∈ [K,R], we have

(3.24)
1

s
osc
Bs
φ ≤K−1 osc

BR
φ = ([φ]C1,1

h
(0,BR))

1
2 (osc

BR
φ)

1
2

.

Thus we need only check (3.23) for s ∈ [h,K].
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We next claim that, for every s ∈ [h,R),

(3.25)
2

s
osc
Bs/2

φ ≤ 3s [φ]C1,1
h

(0,BR) +
1

s
osc
Bs
φ.

Fix s and select p ∈ Rd such that

1

s2
osc
Bs

(φ(y) − p ⋅ y) ≤ [φ]C1,1
h

(0,BR) .

Then

∣p∣ = 1

2s
osc
Bs

(−p ⋅ y) ≤ 1

2s
osc
Bs

(φ(y) − p ⋅ y) + 1

2s
osc
Bs
φ.

Together these yield

2

s
osc
Bs/2

φ ≤ 2

s
osc
Bs/2

(φ(y) − p ⋅ y) + 2

s
osc
Bs/2

(−p ⋅ y)

= 2

s
osc
Bs/2

(φ(y) − p ⋅ y) + 2∣p∣

≤ 3

s
osc
Bs

(φ(y) − p ⋅ y) + 1

s
osc
Bs
φ

≤ 3s [φ]C1,1
h

(0,BR) +
1

s
osc
Bs
φ.

This is (3.25).
We now iterate (3.25) to obtain the conclusion for s ∈ [h,K]. By induction,

we see that for each j ∈ N with Rj ∶= 2−jK ≥ h,

R−1
j osc

BRj

φ ≤K−1 osc
BK

φ + 3(
j−1

∑
i=0

Ri) [φ]C1,1
h

(0,BR)

≤K−1 osc
BK

φ + 6K [φ]C1,1
h

(0,BR) .

Using (3.24), we deduce that for each j ∈ N with Rj ∶= 2−jK ≥ h

R−1
j osc

BRj

φ ≤ 7 ([φ]C1,1
h

(0,BR))
1
2 (osc

BR
φ)

1
2

.

For general s ∈ [h,R) we may find j ∈ N such that Rj+1 ≤ s < Rj to get

s−1 osc
Bs
φ ≤ R−1

j+1 osc
BRj

φ ≤ 2R−1
j osc

BRj

φ ≤ 14 ([φ]C1,1
h

(0,BR))
1
2 (osc

BR
φ)

1
2

. �

Equipped with this lemma, we now present the simple proof of Corollary 3.4:

Proof of Corollary 3.4. By interpolation, we also obtain (3.21). This follows
from (3.4) and Lemma 3.5 as follows:

[u]C1,1
h

(0,BR) ≤ C [u]
1
2

C1,1
h

(0,BR)
(osc
BR

u)
1
2

≤ CX (K0 + ∣f(0)∣ +Rσ [f]C0,σ(BR) +R−2 osc
BR

u)
1
2

(osc
BR

u)
1
2

≤ CX (K0R +R∣f(0)∣ +R1+σ [f]C0,σ(BR) +R−1 osc
BR

u) ,
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where we used (3.22) in the first line, (3.4) to get the second line and Young’s
inequality in the last line. Redefining X to absorb the constant C, we ob-
tain (3.21). �

4. Green’s function estimates

We will now use a similar argument to the proof of Theorem 3.1 to obtain
estimates on the modified Green’s functions Gε(⋅,0) which are given by the
solutions of:

(4.1) ε2Gε − tr (A(x)D2Gε) = χB` in Rd.

Proposition 4.1. Fix s ∈ (0, d). There exist a(d, λ,Λ) > 0, δ(d, λ,Λ) > 0 and
an F–measurable random variable X ∶ Ω→ [1,∞) satisfying

(4.2) E [exp (X s)] ≤ C(s, d, λ,Λ, `) <∞
such that, for every ε ∈ (0,1] and x ∈ Rd,

(4.3) Gε(x,0) ≤ X d−1−δξε(x)
where ξε(x) is defined by:

(4.4) ξε(x) ∶= exp (−aε∣x∣) ⋅
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

log(2 + 1

ε(1 + ∣x∣)) , in d = 2,

(1 + ∣x∣)2−d
, in d > 2,

and

(4.5) osc
B1(x)

Gε(⋅,0) ≤ (TxX )X d−1−δ (1 + ∣x∣)1−d
exp (−aε∣x∣) .

We emphasize that (4.3) is a random estimate, and the proof relies on
the homogenization process. In contrast to the situation for divergence form
equations, there is no deterministic estimate for the decay of the Green’s
functions. Consider that for a general A ∈ Ω, the Green’s function G(⋅,0;A)
solves

− tr (AD2G(⋅,0;A)) = δ0 in Rd.

The solution may behave, for ∣x∣ ≫ 1, like a multiple of

Kγ(x) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣x∣−γ γ > 0,

log ∣x∣ γ = 0,

− ∣x∣−γ γ < 0,

for any exponent γ in the range

d − 1

Λ
− 1 ≤ γ ≤ Λ(d − 1) − 1.

In particular, if Λ is large, then γ may be negative and so G(⋅,0;A) may be
bounded near the origin. To see that this range for γ is sharp, it suffices to
consider, respectively, the diffusion matrices

A1(x) = Λ
x⊗ x
∣x∣2 + (I − x⊗ x∣x∣2 ) and A2(x) =

x⊗ x
∣x∣2 +Λ(I − x⊗ x∣x∣2 ) .
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Note that A1 and A2 can be altered slightly to be smooth at x = 0 without
changing the decay of G at infinity.

Before we discuss the proof of Proposition 4.1, we mention an interesting
application to the invariant measure associated with (4.1). Recall that the
invariant measure is defined to be the solution mε of the equation in double-
divergence form:

ε2(mε − 1) − div (D(A(x)mε)) = 0 in Rd.

By (4.3), we have that for every y ∈ Rd,

∫
B`(y)

mε(x)dx ≤ ∫
Rd
Gε(x,0)dx ≤ X d−1−δ.

In particular, we deduce that, for some δ > 0,

P [∫
B`(y)

mε(x)dx > t] ≤ C exp (−t d
d−1

+δ) .

This gives a very strong bound on the location of particles undergoing a diffusion
in the random environment.

We now return to the proof of Proposition 4.1. Without loss of generality,
we may change variables and assume that the effective operator A = I. The
proof of (4.5) is based on the idea of using homogenization to compare the
Green’s function for the heterogeneous operator to that of the homogenized
operator. The algebraic error estimates for homogenization in Proposition 2.3
are just enough information to show that, with overwhelming probability, the
ratio of Green’s functions must be bounded at infinity. This is demonstrated
by comparing the modified Green’s function Gε(⋅,0) to a family of carefully
constructed test functions.

The test functions {ϕR}R≥C will possess the following three properties:

(4.6) inf
A∈Ω

− tr (A(x)D2ϕR) ≥ χB` in BR,

(4.7) −∆ϕR(x) ≳ ∣x∣−d in Rd ∖BR/2,

(4.8) ϕR(x) ≲ Rd−1−δ(1 + ∣x∣2−d) in Rd ∖BR.

As we will show, these properties imply, for large enough R (which will be
random and depend on the value of X from many different applications of
Proposition 2.3), that Gε(⋅,0) ≤ ϕR in Rd.

The properties of the barrier function ϕR inside and outside of BR will be
used to compare with Gε(⋅,0) in different ways. If Gε(⋅,0) /≤ ϕR then, since
they both decay at infinity, Gε(⋅,0) − ϕR must achieve its global maximum
somewhere in Rd. Since ϕR is a supersolution of (4.6), this point must lie in
Rd ∖BR. As ϕR is a supersolution of the homogenized equation outside BR/2,
this event is very unlikely for R≫ 1, by Proposition 2.3. Note that there is a
trade-off in our selection of the parameter R: if R is relatively large, then ϕR is
larger and hence the conclusion Gε(⋅, 0) ≤ ϕR is weaker, however the probability
that the conclusion fails is also much smaller.
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Since the Green’s function for the Laplacian has different qualitative behavior
in dimensions d = 2 and d > 2, we split the proof of Proposition 4.1 into these
two cases, which are handled in the following subsections.

4.1. Proof of Proposition 4.1: Dimensions three and larger.

Lemma 4.2. Let s ∈ (0, d). Then there exist constants C, c, γ, β > 0, depending
only on (s, d, λ,Λ, `), and a family of continuous functions {ϕR}R≥C satisfying
the following: (i) for every R ≥ C and x ∈ Rd,

(4.9) ϕR(x) ≤ CRd−2+γ (1 + ∣x∣)2−d
,

(ii) there exists a smooth function ψR such that

(4.10)

⎧⎪⎪⎨⎪⎪⎩

−∆ψR ≥ c∣x∣−2−βψR in Rd ∖BR/2,

ϕR ≤ ψR in Rd ∖BR/2,

and (iii) for each R ≥ C and A ∈ Ω, we have

(4.11) − tr (A(x)D2ϕR) ≥ χB` in BR.

Proof. Throughout, we fix s ∈ (0, d) and let C and c denote positive constants
which depend only on (s, d, λ,Λ, `) and may vary in each occurrence.

We define ϕR. For each R ≥ 4`, we set

ϕR(x) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

mR −
h

γ
(`2 + ∣x∣2)

γ
2 , 0 ≤ ∣x∣ ≤ R,

kR∣x∣2−d exp(− 1

β
∣x∣−β) , ∣x∣ > R,

where we define the following constants:

2β ∶= α(s, d, λ,Λ, `) > 0

is the exponent from Proposition 2.3 with σ = 1,

γ ∶= max{1

2
,1 − λ

2Λ
}

h ∶= 2

λ
(2`)2−γ

kR ∶= h (d − 2 − 2βR−β)−1
Rd−2+γ exp( 1

β
2βR−β)

mR ∶=
h

γ
(`2 +R2)

γ
2 + kRR2−d exp(− 1

β
R−β) .

Notice that the choice of mR makes ϕR continuous. We next perform some
calculations to guarantee that this choice of ϕR satisfies the above claims.

Step 1. We check that for every R ≥ 4` and x ∈ Rd, (4.9) holds. Note that
β = 1

2α ≥ c and thus, for every R ≥ 4`,

(4.12) c ≤ exp(− 1

β
R−β) ≤ 1.
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For such R, we also have that since d ≥ 3, (d − 2 − 2βR−β) ≥ c. Morever, since
R ≥ 4` ≥ 4, this implies that (2/R)β ≤ 1 − c. Using also that h ≤ C, we deduce
that for every R ≥ 4`,

(4.13) kR ≤ CRd−2+γ and mR ≤ CRγ.

For ∣x∣ > R, (4.9) is immediate from the definition of ϕR, (4.12) and (4.13).
For ∣x∣ ≤ R, we first note that ϕR is a decreasing function in the radial direction
and therefore supRd ϕR = ϕR(0) ≤ mR. We then use (4.13) to get, for every
∣x∣ ≤ R,

ϕR(x) ≤mR ≤ CRγ ≤ CRd−2+γ(1 + ∣x∣)2−d.

This gives (4.9).

Step 2. We check that ϕR satisfies

(4.14) ϕR(x) ≤ ψR(x) ∶= kR∣x∣2−d exp(− 1

β
∣x∣−β) in Rd ∖BR/2.

Since this holds with equality for ∣x∣ ≥ R, we just need to check it in the annulus
{R/2 ≤ ∣x∣ < R}. For this it suffices to show that in this annulus, ψR − ϕR is
decreasing in the radial direction. Since both ψR and ϕR are decreasing radial
functions, we simply need to check that

(4.15) ∣DϕR(x)∣ < ∣DψR(x)∣ for every x ∈ BR ∖BR/2.

We compute, for R/2 ≤ ∣x∣ ≤ R, since γ ≤ 1,

∣DϕR(x)∣ = h (`2 + ∣x∣2)
γ
2
−1 ∣x∣ ≤ h∣x∣γ−1

and

∣DψR(x)∣ = ∣x∣−1 (d − 2 − ∣x∣−β)ψR(x)

= kR (d − 2 − ∣x∣−β) ∣x∣1−d exp(− 1

β
∣x∣−β)

≥ kR (d − 2 − 2βR−β) ∣x∣1−d exp(− 1

β
2βR−β) .

It is now evident that the choice of kR ensures that (4.15) holds. This completes
the proof of (4.14).

Step 3. We check that ψR satisfies

(4.16) −∆ψR(x) ≥ c∣x∣−2−βψR(x) in ∣x∣ ≥ C.
By a direct computation, we find that, for x ≠ 0,

−∆ψR(x) = ∣x∣−2−β (d − 2 + β − ∣x∣−β)ψR(x).
This yields (4.16). For future reference, we also note that for every ∣x∣ > 1,

(4.17) ∣x∣−2 osc
B
∣x∣/2(x)

ψR + sup
y∈B

∣x∣/2(x)
(∣y∣−1 ∣DψR(y)∣) ≤ C ∣x∣−2ψR(x).

This follows from the computation

∣DψR(x)∣ = ∣x∣−1ψR(x) (2 − d + ∣x∣−β) .
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Step 4. We check that (4.11) holds. By a direct computation, we find that
for every x ∈ BR,

D2ϕR(x) = −h (`2 + ∣x∣2)
γ
2
−1 (Id + γ − 2

`2 + ∣x∣2 (x⊗ x))

= −h (`2 + ∣x∣2)
γ
2
−1 ((Id − x⊗ x∣x∣2 ) + `

2 − (1 − γ)∣x∣2
`2 + ∣x∣2 (x⊗ x∣x∣2 )) .

Making use of our choice of γ, we see that, for any A ∈ Ω and x ∈ BR,

− tr (A(x)D2ϕR(x)) ≥ h (`2 + ∣x∣2)
γ
2
−1 ((d − 1)λ −Λ(1 − γ)(`2 + ∣x∣2)−1∣x∣2)

≥ h (`2 + ∣x∣2)
γ
2
−1 ((d − 1)λ −Λ(1 − γ)) .

The last expression on the right side is positive since, by the choice of γ,

(d − 1)λ −Λ(1 − γ) ≥ (d − 3

2
)λ > λ > 0,

while for x ∈ B`, we have, by the choice of h,

h (`2 + ∣x∣2)
γ
2
−1 ((d − 1)λ −Λ(1 − γ)) ≥ h (2`2)

γ
2
−1
λ > 1.

This completes the proof of (4.11). �

Proof of Proposition 4.1 when d ≥ 3. As before, we fix s ∈ (0, d) and let C and
c denote positive constants which depend only on (s, d, λ,Λ, `). We use the
notation developed in Lemma 4.2 throughout the proof.

We make one reduction before beginning the main argument. Rather than
proving (4.3), it suffices to prove

(4.18) ∀x ∈ Rd, Gε(x,0) ≤ X d−1−δ (1 + ∣x∣)2−d
.

To see this, we notice that

Gε(x,0) ≤ ( sup
∣x∣≤ε−1

Gε(x,0)
(1 + ∣x∣)2−d) ε

d−2 exp(a) exp (−aε∣x∣) in Rd ∖Bε−1 .

Indeed, the right hand side is larger than the left hand side on ∂Bε−1 , and hence
in Rd ∖Bε−1 by the comparison principle and the fact that the right hand side
is a supersolution of (2.3) for a(d, λ,Λ) > 0 (by the proof of Lemma 2.1). We
then obtain (4.3) in Rd ∖Bε−1 by replacing X by CX and a by 1

2a, using (4.18),
and noting that

εd−2 exp (−aε∣x∣) ≤ C ∣x∣2−d exp(−a
2
ε∣x∣) for every ∣x∣ ≥ ε−1.

We also get (4.3) in Bε−1 , with X again replaced by CX , from (4.18) and the
simple inequality

exp (−aε∣x∣) ≥ c for every ∣x∣ ≤ ε−1.

Step 1. We define X and check that it has the desired integrability. Let Y
denote the random variable X in the statement of Proposition 2.3 in BR with s
as above and σ = 1. Also denote Yx(A) ∶= Y(TxA), which controls the error in
balls of radius R centered at a point x ∈ Rd.
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We now define

(4.19) X (A) ∶= sup{∣z∣ ∶ z ∈ Zd, Yz(A) ≥ 2d∣z∣s} .
The main point is that X has the following property by Proposition 2.3: for
every z ∈ Zd with ∣z∣ > X , and every R > 1

8 ∣z∣ and g ∈ C0,1(∂BR(z)), every pair

u, v ∈ C(BR) such that

(4.20) {
− tr(A(x)D2u) ≤ 0 ≤ −∆v in BR(z),
u ≤ g ≤ v on ∂BR(z),

must satisfy the estimate

(4.21) R−2 sup
BR(z)

(u(x) − v(x)) ≤ CR−α (R−2 osc
∂BR(z)

g +R−1 [g]C0,1(∂BR(z))) .

Let us check that

(4.22) E [exp (X s)] ≤ C(s, d, λ,Λ, `) <∞.
A union bound and stationarity yield, for t ≥ 1,

P [X > t] ≤ ∑
z∈Zd∖Bt

P [Yz ≥ 2d∣z∣s]

≤ ∑
n∈N,2n≥t

∑
z∈B2n∖B2n−1

P [Yz ≥ 2d∣z∣s]

≤ C ∑
n∈N,2n≥t

2dn P [Y ≥ 2(n−1)s+d] .

By Proposition 2.3 and Chebyshev’s inequality,

∑
n∈N,2n≥t

2dn P [Y ≥ 2(n−1)s+d] ≤ C ∑
n∈N,2n≥t

2dn exp (−2(n−1)s+d)

≤ C exp (−2ts) .
It follows then that

E[exp(X s)] = s∫
∞

0
ts−1 exp(ts)P[X > t]dt

≤ sC ∫
∞

0
ts−1 exp(−ts)dt ≤ C.

This yields (4.22).

Step 2. We reduce the proposition to the claim that, for every R ≥ C,

(4.23) {A ∈ Ω ∶ sup
0<ε≤1

sup
x∈Rd

(Gε(x,0;A) − ϕR(x)) > 0} ⊆ {A ∈ Ω ∶ X (A) > R} .

If (4.23) holds, then by (4.9) we have

{A ∈ Ω ∶ sup
0<ε≤1

sup
x∈Rd

(Gε(x,0;A) −CRd−2+γ (1 + ∣x∣)2−d) > 0}

⊆ {A ∈ Ω ∶ X (A) > R} .
However this implies that, for every R ≥ C, 0 < ε ≤ 1 and x ∈ Rd,

Gε(x,0) ≤ CX d−2+γ (1 + ∣x∣)2−d
.
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Setting δ ∶= 1 − γ ≥ c(d, λ,Λ) > 0, we obtain (4.18).

Step 3. We prove (4.23). Fix A ∈ Ω, 0 < ε ≤ 1 and R ≥ 10
√
d for which

sup
Rd

(Gε(⋅,0) − ϕR) > 0.

The goal is to show that X ≥ R, at least if R ≥ C. We do this by exhibiting
∣z∣ > R and functions u and v satisfying (4.20), but not (4.21).

As the functions Gε(⋅,0) and ϕR decay at infinity (c.f. Lemma 2.1), there
exists a point x0 ∈ Rd such that

Gε(x0,0) − ϕR(x0) = sup
Rd

(Gε(⋅,0) − ϕR) > 0.

By the maximum principle and (4.11), it must be that ∣x0∣ ≥ R. By (4.14),

(4.24) Gε(x0,0) − ψR(x0) = sup
B
∣x0 ∣/2

(x0)
(Gε(⋅,0) − ψR) .

We perturb ψR by setting ψ̃R(x) ∶= ψR(x) + c∣x0∣−2−βψR(x0)∣x − x0∣2 which, in
view of (4.16), satisfies

−∆ψ̃R ≥ 0 in B∣x0∣/2(x0).

The perturbation improves (4.24) to

Gε(x0,0) − ψ̃R(x0) ≥ sup
∂B
∣x0 ∣/2

(x0)
(Gε(⋅,0) − ψ̃R) + c∣x0∣−βψR(x0).

If R ≥ C, then we may take z0 ∈ Zd to be the nearest lattice point to x0 such
that ∣z0∣ > ∣x0∣ and get x0 ∈ B∣z0∣/4(z0). Since ψ(∣x∣) is decreasing in ∣x∣, this
implies

Gε(x0,0) − ψ̃R(x0) ≥ sup
∂B
∣z0 ∣/4

(z0)
(Gε(⋅,0) − ψ̃R) + c∣z0∣−βψR(z0).

In view of (4.17), this gives

Gε(x0,0) − ψ̃R(x0) ≥ sup
∂B
∣z0 ∣/4

(z0)
(Gε(⋅,0) − ψ̃R) + cΓ∣z0∣−β,

where

Γ ∶= osc
∂B
∣z0 ∣/4

(z0)
ψ̃R + ∣z0∣[ψ̃R]C0,1(∂B

∣z0 ∣/4
(z0))

.

We have thus found functions satisfying (4.20) but in violation of (4.21). That
is, we deduce from the definition of Yz that Yz0 ≥ c∣z0∣s+α−β −C and, in view of
the fact that β = 1

2α < α and ∣z0∣ > R, this implies that Yz0 ≥ 2d∣z0∣s provided
R ≥ C. Hence X ≥ ∣z0∣ > R. This completes the proof of (4.23). �

4.2. Dimension two. The argument for (4.3) in two dimensions follows along
similar lines as the proof when d ≥ 3, however the normalization of Gε is more
tricky since it depends on ε.
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Lemma 4.3. Let s ∈ (0,2). Then there exist constants C, c, γ, β > 0, depend-
ing only on (s, d, λ,Λ, `), and a family of continuous functions {ϕR,ε}R≥C,ε≤c
satisfying the following: (i) for every R ≥ C,

(4.25) ϕR,ε(x) ≤ CRγ log(2 + 1

ε(1 + ∣x∣)) exp (−aε∣x∣) ,

(ii) there exists a smooth function ψR,ε such that

{
−∆ψR,ε ≥ c∣x∣−2−βψR,ε in B2ε−1 ∖BR/2,

ϕR,ε ≤ ψR,ε in B2ε−1 ∖BR/2,

and (iii) for every R ≥ C and A ∈ Ω,

(4.26) − tr (A(x)D2ϕR,ε) ≥ χB` in BR⋃ (R2 ∖Bε−1) .

Proof. Throughout we assume d = 2, we fix s ∈ (0,2) and let C and c denote
positive constants which depend only on (s, λ,Λ, `) and may vary in each
occurrence. We roughly follow the outline of the proof of (4.3) above in the
case of d ≥ 3.

Step 1. The definition of ϕR. For ε ∈ (0, 1
2], 4` ≤ R ≤ ε−1 and x ∈ R2, we set

ϕR,ε(x) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mR,ε −
h

γ
(`2 + ∣x∣2)

γ
2 , 0 ≤ ∣x∣ ≤ R,

kR (1

a
exp(a) + ∣log ε∣ − log ∣x∣) exp(− 1

β
∣x∣−β) , R < ∣x∣ ≤ 1

ε
,

bR,ε exp (−aε∣x∣) , ∣x∣ > 1

ε
,

where the constants are defined as follows:

a ∶= a(λ,Λ) is the constant from Lemma 2.1,

2β ∶= α(s, λ,Λ, `) > 0 is the exponent from Proposition 2.3 with σ = 1,

γ ∶= max{1

2
,1 − λ

2Λ
} ,

h ∶= 2

λ
(2`)2−γ,

kR ∶= 2h exp( 1

β
2βR−β)Rγ,

mR,ε ∶=
h

γ
(`2 +R2)

γ
2 + kR (1

a
exp(a) + ∣log ε∣ − logR) exp(− 1

β
R−β) ,

bR,ε ∶=
1

a
kR exp(2a − 1

β
εβ)

Observe that

(4.27) kR ≤ CRγ, mR,ε ≤ CRγ (1 + ∣log ε∣ − logR) and bR,ε ≤ CRγ.

Step 2. We show that, for every ε ∈ (0, 1
2], 4` ≤ R ≤ ε−1 and x ∈ R2, (4.25)

holds. This is relatively easy to check from the definition of ϕR,ε, using (4.12)
and (4.27). For x ∈ BR, we use ϕR,ε ≤ mR,ε, (4.27) and exp(−aεR) ≥ c to
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immediately obtain (4.25). For x ∈ Bε−1 ∖BR, the estimate is obtained from
the definition of ϕR,ε, the bound for kR in (4.27) and (4.12). For x ∈ R2 ∖Bε−1 ,
the logarithm factor on the right side of (4.25) is C and we get (4.25) from the
bound for bR,ε in (4.27).

Step 3. We show that, for ε ∈ (0, c] and R ≥ C, we have

(4.28) ϕR,ε(x) ≤ ψR,ε(x) ∶= kR (1

a
exp(a) + ∣log ε∣ − log ∣x∣) exp(− 1

β
∣x∣−β)

in
1

2
R ≤ ∣x∣ ≤ 2

ε
.

We have equality in (4.28) for R ≤ ∣x∣ ≤ ε−1 by the definition of ϕR,ε. As
ϕR,ε is radial, it therefore suffices to check that the magnitude of the radial
derivative of ϕR,ε is less than (respectively, greater than) than that of ψR,ε in
the annulus {R/2 ≤ ∣x∣ ≤ R} (respectively, {ε−1 ≤ ∣x∣ ≤ 2ε−1}). This is ensured
by the definitions of kR and bR,ε, as the following routine computation verifies:
first, in x ∈ BR ∖BR/2, we have

∣DϕR,ε(x)∣ = h (`2 + ∣x∣2)
γ
2
−1 ∣x∣ < h∣x∣γ−1,

and thus in BR ∖BR/2, provided R ≥ C, we have that

∣DψR,ε(x)∣ = kR∣x∣−1 ∣−1 + ∣x∣−β (1

a
exp(a) + ∣log ε∣ − log ∣x∣)∣ exp(− 1

β
∣x∣−β)

> 1

2
kR∣x∣−1 exp(− 1

β
2βR−β) = hRγ ∣x∣−1 ≥ h∣x∣γ−1 > ∣DϕR,ε(x)∣ .

Next we consider x ∈ B2ε−1 ∖Bε−1 and estimate

∣DϕR,ε(x)∣ = aεbR,ε exp (−aε∣x∣) > aεbR,ε exp (−2a) = 2εkR exp(− 1

β
εβ)

and

∣DψR,ε(x)∣ ≤ kR∣x∣−1 (1 + 1

a
exp(a)∣x∣−β) exp(− 1

β

εβ

2β
) ≤ 2εkR exp(− 1

β
εβ) ,

the latter holding provided that ε ≤ c. This completes the proof of (4.28).

Step 4. We show that ψR,ε satisfies

(4.29) −∆ψR,ε ≥ c∣x∣−2−βψR,ε(x) in C ≤ ∣x∣ ≤ 2

ε
.

By a direct computation, for every x ∈ R2 ∖ {0}, we have

−∆ψR,ε(x) = ∣x∣−2−β ((β − ∣x∣−β)ψR,ε(x) + kR ( 1

∣x∣2 + 1) exp(− 1

β
∣x∣−β))

≥ ∣x∣−2−β (β − ∣x∣−β)ψR,ε(x).
From β ≥ c and the definition of ψR,ε, we see that ψR,ε > 0 and (β − ∣x∣−β) ≥ c
for every β−1/β ≤ ∣x∣ ≤ 2ε−1. This yields (4.29).

For future reference, we note that, for every ∣x∣ ≤ 2ε−1,

(4.30) ∣x∣−2 osc
B
∣x∣/2(x)

ψR,ε + sup
y∈B

∣x∣/2(x)
(∣y∣−1DψR,ε(y)) ≤ C ∣x∣−2 ≤ C ∣x∣−2ψR,ε(x).
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Step 5. We check (4.26) by checking that for every A ∈ Ω,

(4.31) − tr (A(x)D2ϕR,ε) ≥ χB` in BR ∪ (R2 ∖Bε−1).
In fact, for BR, the computation is identical to the one which established (4.11),
since our function ϕR,ε here is the same as ϕR (from the argument in the case
d > 2) in BR, up to a constant. Therefore we refer to Step 5 in Lemma 4.2 for
details. In R2 ∖Bε−1 , ϕR,ε is a supersolution by the proof of Lemma 2.1 and by
the choice of a.

We remark that in the case that R = ε−1, the middle annulus in the definition
of ϕR,ε disappears, and we have that ϕR,ε is a global (viscosity) solution of (4.31),
that is,

(4.32) − tr (A(x)D2ϕR,ε) ≥ χB` in R2 if R = ε−1.

To see why, by (4.26), we need only check that ϕR,ε is a viscosity supersolution
of (4.26) on the sphere ∂BR = ∂Bε−1 . However, the function ϕR,ε cannot be
touched from below on this sphere, since its inner radial derivative is smaller
than its outer radial derivative by the computations in Step 3. Therefore we
have (4.32). It follows by comparison that, for every ε ∈ (0, 1

2] and x ∈ R2,

Gε(x,0) ≤ ϕR,ε(x) if R = ε−1

≤ Cε−γ log(2 + 1

ε(1 + ∣x∣)) exp (−aε∣x∣)(4.33)

�

Proof of Proposition 4.1 when d = 2. The proof follows very similar to the case
when d ≥ 3, using the appropriate adaptations for the new test function intro-
duced in Lemma 4.3. As before, we fix s ∈ (0, 2) and let C and c denote positive
constants which depend only on (s, λ,Λ, `). We use the notation developed in
Lemma 4.3 throughout the proof.

Step 1. We define the random variable X in exactly the same way as in
(4.19), so

(4.34) X (A) ∶= sup{∣z∣ ∶ z ∈ Zd, Yz(A) ≥ 2d∣z∣s} ,
The argument leading to (4.22) follows exactly as before, so that

E[exp(X s)] ≤ C(s, λ,Λ, `) <∞.
Step 2. We reduce the proposition to the claim that, for every R ≥ C,

(4.35)

⎧⎪⎪⎨⎪⎪⎩
A ∈ Ω ∶ sup

0<ε< 1
R

sup
x∈R2

(Gε(x,0,A) − ϕR,ε(x)) > 0

⎫⎪⎪⎬⎪⎪⎭
⊆ {A ∈ Ω ∶ X (A) > R} .

If (4.35) holds, then by (4.25) we have

⎧⎪⎪⎨⎪⎪⎩
A ∶ sup

0<ε< 1
R

sup
x∈R2

(Gε(x,0,A) −CRγ log(2 + 1

ε(1 + ∣x∣)) exp (−aε∣x∣)) > 0

⎫⎪⎪⎬⎪⎪⎭
⊆ {A ∈ Ω ∶ X (A) > R} .
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From this, we deduce that, for every 0 < ε < X −1 and x ∈ R2,

(4.36) Gε(x,0) ≤ CX γ log(2 + 1

ε(1 + ∣x∣)) exp (−aε∣x∣) .

Moreover, if ε ∈ (0, 1
2] and ε ≥ X −1, then by (4.33) we have

Gε(x,0) ≤ Cε−γ log(2 + 1

ε(1 + ∣x∣)) exp (−aε∣x∣)

≤ CX γ log(2 + 1

ε(1 + ∣x∣)) exp (−aε∣x∣) .

Thus we have (4.36) for every ε ∈ (0, 1
2] and x ∈ R2. Taking δ ∶= 1 − γ ≥ c, we

obtain the desired conclusion (4.3) for d = 2.

Step 3. We prove (4.35). This is almost the same as the last step in the proof
of (4.23) for dimensions larger than two. Fix A ∈ Ω, 0 < ε ≤ 1 and R ≥ 2` for
which

sup
Rd

(Gε(⋅,0) − ϕR,ε) > 0.

As in the case of dimensions larger than two, we select a point x0 ∈ Rd such that

Gε(x0,0) − ϕR,ε(x0) = sup
Rd

(Gε(⋅,0) − ϕR,ε) > 0.

By the maximum principle and (4.26), it must be that R ≤ ∣x0∣ ≤ ε−1. By (4.28),

(4.37) Gε(x0,0) − ψR,ε(x0) = sup
B
∣x0 ∣/2

(x0)
(Gε(⋅,0) − ψR,ε) .

We perturb ψR,ε by setting ψ̃R,ε(x) ∶= ψR,ε(x) + c∣x0∣−2−βψR,ε(x0)∣x − x0∣2 which,
in view of (4.29), satisfies

−∆ψ̃R,ε ≥ 0 in B∣x0∣/2(x0).
According to (4.24), we have

Gε(x0,0) − ψ̃R,ε(x0) ≥ sup
∂B
∣x0 ∣/2

(z0)
(Gε(⋅,0) − ψ̃R,ε) + c∣x0∣−βψR,ε(x0).

Assuming R ≥ C, we may take z0 ∈ Zd to be the nearest lattice point to x0 such
that ∣z0∣ > ∣x0∣ and deduce that x0 ∈ B∣z0∣/4 as well as

Gε(x0,0) − ψ̃R,ε(x0) ≥ sup
∂B
∣z0 ∣/4

(z0)
(Gε(⋅,0) − ψ̃R,ε) + c∣z0∣−βψR,ε(z0).

In view of (4.30), this gives

Gε(x0,0) − ψ̃R,ε(x0) ≥ sup
∂B
∣z0 ∣/4

(z0)
(Gε(⋅,0) − ψ̃R,ε) + cΓ∣z0∣−β,

where
Γ ∶= ∣z0∣−2 osc

∂B
∣z0 ∣/4

(z0)
ψ̃R,ε + ∣z0∣−1[ψ̃R,ε]C0,1(∂B

∣z0 ∣/4
(z0))

.

We have thus found functions satisfying (4.20) but in violation of (4.21), that
is, we deduce from the definition of Yz that Yz0 ≥ c∣z0∣s+α−β − C. In view of
the fact that β = 1

2α < α and ∣z0∣ > R, this implies that Yz0 ≥ 2d∣z0∣s provided
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R ≥ C. By the definition of X , we obtain X ≥ ∣z0∣ > R. This completes the proof
of (4.35). �

5. Sensitivity estimates

In this section, we present an estimate which uses the Green’s function bounds
to control the vertical derivatives introduced in the spectral gap inequality
(Proposition 2.2). Recall the notation from Proposition 2.2:

X ′
z ∶= E∗ [X ∣F∗(Zd ∖ {z})] and V∗[X] ∶= ∑

z∈Zd
(X −X ′

z)2.

The vertical derivative (X −X ′
z) measures, in a precise sense, the sensitivity of

X subject to changes in the environment near z. We can therefore interpret
(X −X ′

z) as a derivative of X with respect to the coefficients near z. The goal
then will be to understand the vertical derivative (X −X ′

z) when X is φε(x),
for fixed x ∈ Rd.

The main result of this section is the following proposition which computes
φε(x) − E∗[φε(x) ∣F∗(Zd ∖ {z})] in terms of the random variable introduced in
Proposition 4.1. Throughout the rest of the section, we fix M ∈ Sd with ∣M ∣ = 1
and let ξε be defined as in (4.4).

Proposition 5.1. Fix s ∈ (0, d). There exist positive constants a(d, λ,Λ) > 0,
δ(d, λ,Λ) > 0 and an F∗–measurable random variable X ∶ Ω∗ → [1,∞) satisfying

(5.1) E [exp(X s)] ≤ C(s, d, λ,Λ, `) <∞
such that, for every ε ∈ (0, 1

2
], x ∈ Rd and z ∈ Zd,

(5.2) ∣φε(x) −E∗[φε(x) ∣F∗(Zd ∖ {z})]∣ ≤ (TzX )d+1−δξε(x − z).

Before beginning the proof of Proposition 5.1, we first provide a heuristic
explanation of the main argument. We begin with the observation that we may
identify the conditional expectation E∗[X ∣F∗(Zd ∖ {z})] via resampling in the
following way. Let (Ω′

∗,F ′
∗,P′

∗) denote an independent copy of (Ω∗,F∗,P∗) and
define, for each z ∈ Zd, a map

θ′z ∶ Ω ×Ω′ → Ω

by

θ′z(ω,ω′)(y) ∶= {
ω(y) if y ≠ z,
ω′(z) if y = z.

It follows that, for every ω ∈ Ω,

(5.3) E∗ [X ∣F∗(Zd ∖ {z})] (ω) = E′
∗ [X(θ′z(ω, ⋅))] .

Therefore, we are interested in estimating differences of the form X(ω) −
X(θ′z(ω,ω′)), which represent the expected change in X if we resample the
environment at z. Observe that, by (1.16), if ω,ω′ ∈ Ω∗, z ∈ Rd, and A ∶= π(ω)
and A′ ∶= π(θ′z(ω,ω′)), then

(5.4) A ≡ A′ in Rd ∖B`/2(z).
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Denote by φε and φ′ε the corresponding approximate correctors with modified
Green’s functions Gε and G′

ε. Let w ∶= φε − φ′ε. Then we have

ε2w − tr (A′(x)D2w) = tr ((A(x) −A′(x)) (M +D2φε))
≤ dΛ (1 + ∣D2φε(x)∣)χB`/2(z)(x),

where χE denotes the characteristic function of a set E ⊆ Rd. By comparing w
to G′

ε, we deduce that, for C(d, λ,Λ) ≥ 1,

(5.5) φε(x) − φ′ε(x) ≤ C(1 + [φε]C1,1(B`/2(z)))G
′
ε(x, z).

If φε satisfied a C1,1 bound, then by (3.20) and (4.3), we deduce that

φε(0) − φ′ε(0) ≤ C ((TzX )(ω))2 ((TzY)(θ′z(ω,ω′)))
d−1−δ

ξε(z),

for X defined as in (3.20), Y defined as in (4.3), and ξε(z) defined as in (4.4).
Taking expectations of both sides with respect to P′

∗, we obtain

(5.6) φε(0) − E∗[φε(0) ∣F∗(Zd ∖ {z})] ≤ C(TzX )2(TzY∗)d−1−δξε(z),

where

(5.7) Y∗ ∶= E′
∗ [Y(θ′0(ω,ω′))d−1−δ]1/(d−1−δ)

.

Jensen’s inequality implies that the integrability of Y∗ is controlled by the
integrability of Y. First, consider that, for s ≥ d − 1 − δ, by the convexity of
t↦ exp(tr) for r ≥ 1, we have

E [exp (Ys∗)] = E [exp (E′
∗ [Y(θ′0(ω,ω′))d−1−δ]s/(d−1−δ))]

≤ E [E′
∗ [exp (Y(θ′0(ω,ω′))s)]]

= E [exp (Ys)] .

Integrability of lower moments for s ∈ (0, d − 1 − δ) follows by the bound

E [exp (Ys∗)] = E [exp (Yd−1−δ
∗ )] sup ∣exp (−Yd−1−δ

∗ + Ys∗)∣ ≤ E [exp (Yd−1−δ
∗ )]

by the monotonicity of the map p↦ xp for p ≥ 0 and x ≥ 1, which we can take
without loss of generality by letting Y∗ = Y∗ + 1. We may now redefine X to
be X + Y∗ to get one side of the desired bound (5.2). The analogous bound
from below is obtained by exchanging M for −M in the equation for φε, or by
repeating the above argument and comparing w to −G′

ε.

The main reason that this argument fails to be rigorous is technical: the
quantity [φε]C1,1(B`/2(z)) is not actually controlled by Theorem 3.1, rather we

have control only over the coarsened quantity [φε]C1,1
1 (B`/2(z))

. Most of the work

in the proof of Proposition 5.1 is therefore to fix this glitch by proving that (5.5)
still holds if we replace the Hölder seminorm on the right side by the appropriate
coarsened seminorm. This is handled by the following lemma, which we write
in a rather general form:
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Lemma 5.2. Let ε ∈ (0, 1
` ] and z ∈ Zd and suppose A,A′ ∈ Ω satisfy (5.4). Also

fix f, f ′ ∈ C(Rd) ∩L∞(Rd) and let u,u′ ∈ C(Rd) ∩L∞(Rd) be the solutions of

⎧⎪⎪⎨⎪⎪⎩

ε2u − tr (A(x)D2u) = f in Rd,

ε2u′ − tr (A′(x)D2u′) = f ′ in Rd.

Then there exists a constant C(d, λ,Λ, `) ≥ 1 such that, for every x ∈ Rd and
δ > 0,

(5.8) u(x) − u′(x)

≤ C (δ + [u]C1,1
1 (z,B1/ε(z))

+ sup
y∈B`(z), y′∈Rd

(f(y′) − f(y) − δε2∣y′ − z∣2))G′
ε(x, z)

+ ∑
y∈Zd

Gε(x, y) sup
B`/2(y)

(f − f ′).

Here G′
ε denotes the modified Green’s function for A′.

Proof. We may assume without loss of generality that z = 0. By replacing u(x)
by the function

u′′(x) ∶= u(x) − ∑
y∈Zd

Gε(x, y) sup
B`/2(y)

(f − f ′),

we may assume furthermore that f ′ ≥ f in Rd. Fix ε ∈ (0, 1
2]. We will show that

sup
x∈Rd

(u(x) − u′(x) −KG′
ε(x,0)) > 0

implies a contradiction for

K > C (1 + [u]C1,1
1 (z,B1/ε(z))

+ sup
y∈B`(z), y′∈Rd

(f(y′) − f(y) − ε2∣y′ − z∣2))G′
ε(x, z)

and C = C(d, λ,Λ, `) chosen sufficiently large.

Step 1. We find a touching point x0 ∈ B`/2. Consider the auxiliary function

ξ(x) ∶= u(x) − u′(x) −KG′
ε(x,0).

By (5.4) and using that f ′ ≥ f , we see that ξ satisfies

ε2ξ − tr (A(x)D2ξ) ≤ 0 in Rd ∖B`/2.

By the maximum principle and the hypothesis, supRd ξ = supB`/2 ξ > 0. Select

x0 ∈ B`/2 such that

(5.9) ξ(x0) = sup
Rd

ξ.

Step 2. We replace u by a quadratic approximation in B` and get a new
touching point. Select p ∈ Rd such that

(5.10) sup
x∈B`

∣u(x) − u(x0) − p ⋅ (x − x0)∣ ≤ 4`2 [u]C1,1
1 (0,B1/ε)

.

Fix ν ≥ 1 to be chosen below and define the function

ψ(x) ∶= u(x0) + p ⋅ (x − x0) − ν∣x − x0∣2 − u′(x) −KG′
ε(x,0),
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The claim is that

(5.11) x↦ ψ(x) has a local maximum in B`.

To verify (5.11), we check that ψ(x0) > sup∂B` ψ. For y ∈ ∂B`, we compute

ψ(x0) = u(x0) − u′(x0) −KG′
ε(x0,0)

≥ u(y) − u′(y) −KG′
ε(y,0) (by (5.9))

≥ u(x0) + p ⋅ (y − x0) − 8`2 [u]C1,1
1 (0,B1/ε)

− u′(y) −KG′
ε(y,0) (by (5.10))

= ψ(y) + ν∣y − x0∣2 − 8`2 [u]C1,1
1 (0,B1/ε)

≥ ψ(y) + `2ν − 8`2 [u]C1,1
1 (0,B1/ε)

,

where in the last line we used ∣y − x0∣ ≥ `
2 . Therefore, for every

ν > 8 [u]C1,1
1 (0,B1/ε)

,

the claim (5.11) is satisfied.

Step 3. We show that, for every x ∈ Rd,

(5.12) u(x) ≤ Cδε−2 + ∣x∣2 + sup
y∈Rd

(ε−2f(y) − ∣y∣2)

Define

w(x) ∶= u(x) − (∣x∣2 +L) , for L ∶= sup
x∈Rd

(ε−2f(x) − δ∣x∣2) + 2dΛε−2δ.

Using the equation for u, we find that

ε2w − tr (A(x)D2w) ≤ f − ε2(∣x∣2 +L) + 2dΛδ.

Using the definition of L, we deduce that

ε2w − tr (A(x)D2w) ≤ 0 in Rd.

Since w(x) → −∞ as ∣x∣ → ∞, we deduce from the maximum principle that
w ≤ 0 in Rd. This yields (5.12).

Step 4. We conclude by obtaining a contradiction to (5.11) for an appropriate
choice of K. Observe that, in B`, the function ψ satisfies

ε2ψ − tr (A′(x)D2ψ) ≤ ε2(u(x0) + p ⋅ (x − x0) − ν∣x − x0∣2) +Cν − f ′(x) −K
≤ ε2u(x) +Cν − f(x) −K
≤ Cν + sup

y∈Rd
(δ + f(y) − f(x) − ε2∣y∣2) −K.

Thus (5.11) violates the maximum principle provided that

K > C(ν + δ) + sup
x∈B`, y∈Rd

(f(y) − f(x) − ε2∣y∣2) .

This completes the proof. �

We now use the previous lemma and the estimates in Sections 3 and 4 to
prove the sensitivity estimates (5.2).
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Proof of Proposition 5.1. Fix s ∈ (0, d). Throughout, C and c will denote
positive constants depending only on (s, d, λ,Λ, `) which may vary in each
occurrence, and X denotes an F∗–measurable random variable on Ω∗ satisfying

E [exp (X p)] ≤ C for every p < s,
which we also allow to vary in each occurrence.

We fix z ∈ Zd and identify the conditional expectation with respect to F∗(Zd∖
{z}) via resampling, as in (5.3). By the discussion following the statement of
the proposition, it suffices to prove the bound (5.6) with Y∗ defined by (5.7)
for some random variable Y ≤ X . To that end, fix ω ∈ Ω, ω ∈ Ω′, and denote
ω̃ ∶= θz(ω,ω′) as well as A = π(ω) and A′ = π(ω̃). Note that (5.4) holds. Also
let φε and φ′ε denote the approximate correctors and Gε and G′

ε the Green’s
functions.

Step 1. We use Theorem 3.1 to estimate [φε]C1,1
1 (z,B1/ε(z))

. In preparation, we

rewrite the equation for φε in terms of

wε(x) ∶=
1

2
x ⋅Mx + φε(x),

which satisfies

− tr (A(x)D2wε) = −ε2φε(x).
In view of the fact that the constant functions ± supx∈Rd ∣tr(A(x)M)∣ are su-
per/subsolutions, we have

(5.13) sup
x∈Rd

ε2 ∣φε(x)∣ ≤ sup
x∈Rd

∣tr(A(x)M)∣ ≤ dΛ ≤ C,

and this yields

(5.14) ε2 osc
B4/ε

wε ≤ ε2 osc
B4/ε

1

2
x ⋅Mx + ε2 osc

B4/ε

φε ≤ C.

By the Krylov-Safonov Holder estimate (3.2) applied to wε in BR with R = 4ε−1

yields

(5.15) ε2−β [wε]C0,β(B2/ε) ≤ C.

Letting Q(x) ∶= 1
2x ⋅Mx, we have

(5.16) ε2 [φε]C0,β(B2/ε) ≤ ε
2 [wε]C0,β(B2/ε)+ε

2 [Q]C0,β(B2/ε) ≤ Cε
β+C ∣M ∣εβ ≤ Cεβ.

We now apply Theorem 3.1 (specifically (3.20)) to wε with R = 2ε−1 to obtain

[wε]C1,1
1 (z,B1/ε(z))

≤ (TzX )2 (sup
B2/ε

ε2φ + ε−β [ε2φε]C0,β(B2/ε)
+ ε2 osc

B2/ε

wε)

≤ C(TzX )2.

As wε and φε differ by the quadratic Q, we obtain

(5.17) [φε]C1,1
1 (z,B1/ε(z))

≤ C ((TzX )2 + ∣M ∣) ≤ C(TzX )2.
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Step 2. We estimate G′
ε(⋅, z) and complete the argument for (5.6). By

Proposition 4.1, we have

(5.18) G′
ε(x, z) ≤ (TzX )d−1−δξε(x − z)

for ξε(x − z) defined as in (4.4). Lemma 5.2 yields, for every x ∈ Rd,

∣φε(x) − φ′ε(x)∣ ≤ C (1 + [φε]C1,1
1 (z,B1/ε(z))

)G′
ε(x, z) + 2dΛGε(x, z).

Inserting (5.17) and (5.18) gives

(5.19) ∣φε(x) − φ′ε(x)∣ ≤ C(TzX )2(TzX )d−1−δξε(x − z).
This is (5.6). �

6. Optimal scaling for the approximate correctors

We complete the rate computation for the approximate correctors φε. We
think of breaking up the decay of ε2φε(0)− tr(AM) into two main contributions
of error:

ε2φε(0) − tr(AM) = ε2φε(0) − E [ε2φε(0)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

“random error”

+E [ε2φε(0)] − tr(AM)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
“deterministic error”

.

The “random error” will be controlled by the concentration inequalities
established in Section 5. We will show that the “deterministic error” is controlled
by the random error, and this will yield a rate for ε2φε(0) + tr(AM).

First, we control the random error using Proposition 2.2 and the estimates
from the previous three sections.

Proposition 6.1. There exist δ(d, λ,Λ) > 0 and C(d, λ,Λ, `) ≥ 1 such that, for
every ε ∈ (0, 1

2], and x ∈ Rd,

(6.1) E
⎡⎢⎢⎢⎢⎣
exp

⎛
⎝
( 1

E(ε) ∣ε2φε(x) − E [ε2φε(x)]∣)
1
2
+δ⎞
⎠

⎤⎥⎥⎥⎥⎦
≤ C.

Proof. For readability, we prove (6.1) for x = 0. The argument for general x ∈ Rd

is almost the same. Define

ξε(x) ∶= exp(−aε∣x∣) ⋅
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

log(2 + 1

ε(1 + ∣x∣)) if d = 2,

(1 + ∣x∣)2−d if d ≥ 3.

According to Proposition 5.1, for β > 0,

exp
⎛
⎝
C (V∗ [

ε2φε(0)
E(ε) ])

β⎞
⎠

= exp
⎛
⎝
C ( ε4

E(ε)2 ∑
z∈Zd

(φε(0) − E∗[φε(0) ∣F∗(Zd ∖ {z})])2)
β⎞
⎠

≤ exp
⎛
⎝
C ( ε4

E(ε)2 ∑
z∈Zd

(TzX )2d+2−2δξε(z)2)
β⎞
⎠
.
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We claim (and prove below) that

(6.2) ∑
z∈Zd

ξε(z)2 ≤ Cε−4E(ε)2.

Assuming (6.2) and applying Jensen’s inequality for discrete sums, we have

exp
⎛
⎝
C ( ε4

E(ε)2 ∑
z∈Zd

(TzX )2d+2−2δξε(z)2)
β⎞
⎠

≤ exp
⎛
⎝
C (∑z∈Zd(TzX )2d+2−2δξ(z)2

∑z∈Zd ξε(z)2
)
β⎞
⎠

≤
∑z∈Zd ξ(z)2 exp (C (TzX )(2d+2−2δ)β)

∑z∈Zd ξε(z)2
.

Select β ∶= d/(2d+2−3δ). Taking expectations, using stationarity, and applying
Proposition 5.1, we obtain

E∗

⎡⎢⎢⎢⎢⎣
exp

⎛
⎝
C (V∗ [

ε2φε(0)
E(ε) ])

β⎞
⎠

⎤⎥⎥⎥⎥⎦
≤ C.

Finally, an application of Proposition 2.2 gives, for γ ∶= 2β/(1 + β) ∈ (0,2),

E [exp(∣ε
2φε(0)
E(ε) − E [ε

2φε(0)
E(ε) ]∣

γ

)] ≤ C.

This completes the proof of the proposition, subject to the verification of (6.2),
which is a straightforward computation. In dimension d ≥ 3, we have

∑
z∈Zd

ξε(z)2 ≤ C ∫
Rd

(1 + ∣x∣)4−2d
exp (−2aε∣x∣) dx

= Cεd−4∫
Rd

(ε + ∣y∣)4−2d
exp (−2a∣y∣) dy

≤ Cεd−4 (∫
Rd∖Bε

∣y∣4−2d exp (−2a∣y∣) dy + ∫
Bε
ε4−2d dy)

= C ⋅ {
1 + εd−4 in d ≠ 4,

1 + ∣log ε∣ in d = 4,

= Cε−4E(ε)2.

In dimension d = 2, we have

∑
z∈Zd

ξε(z)2 ≤ C ∫
Rd

log2 (2 + 1

ε(1 + ∣x∣)) exp (−2aε∣x∣) dx

≤ Cε−2∫
Rd

log2 (2 + 1

ε + ∣y∣) exp (−2a∣y∣) dy

≤ Cε−2(∫
Bε

log2 (2 + 1

ε
) exp (−2a∣y∣) dy

+ ∫
Rd∖Bε

log2 (2 + 1

∣y∣) exp (−2a∣y∣) ).
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We estimate the two integrals on the right as follows:

∫
Bε

log2 (2 + 1

ε
) exp (−2a∣y∣) dy ≤ ∣Bε∣ log2 (2 + 1

ε
) ≤ Cε2 log2 (2 + 1

ε
)

and

∫
Rd∖Bε

log2 (2 + 1

∣y∣) exp (−2a∣y∣) dy

≤ ∣B1∣ log2 (2 + 1

ε
) +C ∫

Rd∖B1

exp (−2a∣y∣) dy ≤ C log2 (2 + 1

ε
) .

Assembling the last three sets of inequalities yields in d = 2 that

∑
z∈Zd

ξε(z)2 ≤ Cε−2 log2 (2 + 1

ε
) ≤ Cε−4E(ε)2. �

Next, we show that the deterministic error is controlled from above by the
random error. The basic idea is to argue that if the deterministic error is
larger than the typical size of the random error, then this is inconsistent with
the homogenization. The argument must of course be quantitative, so it is
natural that we will apply Proposition 2.3. Note that if we possessed the bound
supx∈Rd ∣φε(x)−E [φε(0)] ∣ ≲ ε−2E(ε), then our proof here would be much simpler.
However, this bound is too strong– we do not have, and of course cannot expect,
such a uniform estimate on the fluctuations to hold– and therefore we need to
cut off larger fluctuations and argue by approximation. This is done by using
the Alexandrov-Backelman-Pucci estimate and (6.1) in a straightforward way.

Proposition 6.2. There exists C(d, λ,Λ, `) ≥ 1 such that, for every ε ∈ (0, 1
2]

and x ∈ Rd,

(6.3) ∣E [ε2φε(x)] − tr(AM)∣ ≤ CE(ε).
Proof. By symmetry, it suffices to prove the following one-sided bound: for
every ε ∈ (0, 1

2] and x ∈ Rd,

(6.4) tr(AM) − E [ε2φε(x)] ≥ −CE(ε).
The proof of (6.4) will be broken down into several steps.

Step 1. We show that

(6.5) E
⎡⎢⎢⎢⎢⎣
exp

⎛
⎝
( 1

ε−2E(ε) (osc
B√

d

φε))
1
2
+δ⎞
⎠

⎤⎥⎥⎥⎥⎦
≤ C.

Let k ∈ L be the affine function satisfying

sup
x∈B√

d

∣φε − k(x)∣ = inf
l∈L

sup
x∈B√

d

∣φε − l(x)∣ .

According to (5.17),

(6.6) sup
x∈B√

d

∣φε − k(x)∣ ≤ CX 2.

Since k is affine, its slope can be estimated by its oscillation on B√
d ∩Zd:

∣∇k∣ ≤ C osc
B√

d
∩Zd

k.
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The previous line and (6.6) yield that

∣∇k∣ ≤ C osc
B√

d
∩Zd

φε +CX 2.

By stationarity and (6.1), we get

(6.7) E
⎡⎢⎢⎢⎢⎣
exp

⎛
⎝
( 1

ε−2E(ε) ( osc
B√

d
∩Zd

φε))
1
2
+δ⎞
⎠

⎤⎥⎥⎥⎥⎦
≤ C

Therefore,

E
⎡⎢⎢⎢⎢⎣
exp

⎛
⎝
( 1

ε−2E(ε) ∣∇k∣)
1
2
+δ⎞
⎠

⎤⎥⎥⎥⎥⎦
≤ C

The triangle inequality, (6.6) and (6.7) imply (6.5).

Step 2. Consider the function

fε(x) ∶= (−ε2φε(x) + E [ε2φε(0)])+ .
We claim that, for every R ≥ 1,

(6.8) E [(⨏
BR

∣fε(x)∣d dx)
1
d

] ≤ CE(ε).

Indeed, by Jensen’s inequality, (6.1) and (6.5),

E [(⨏
BR

∣fε(x)∣d dx)
1
d

] ≤ (⨏
BR

E [∣fε(x)∣d] dx)
1
d

≤ CE(ε).

Step 3. We prepare the comparison. Define

f̂ε(x) ∶= min{−ε2φε(x),E [−ε2φε(0)]} = −ε2φε(x) − fε(x),

fix R ≥ 1 (we will send R →∞ below) and denote by φ̂ε, the solution of

⎧⎪⎪⎨⎪⎪⎩

− tr (A(x)(M +D2φ̂ε)) = f̂ε in BR,

φ̂ε = dΛε−2∣M ∣ on ∂BR.

Note that the boundary condition was chosen so that φε ≤ φ̂ε on ∂BR. Thus
the Alexandrov-Backelman-Pucci estimate and (6.8) yield

(6.9) E [R−2 sup
BR

(φε − φ̂ε)] ≤ CE(ε).

Step 4. Let φ̂ denote the solution to

(6.10)

⎧⎪⎪⎨⎪⎪⎩

− tr(A(M +D2φ̂)) = E [−ε2φε(0)] in BR,

φ̂ = dΛε−2∣M ∣ on ∂BR.

Notice that the right hand side and boundary condition for (6.10) are chosen

to be constant. Moreover, we can solve for φ̂ explicitly: for x ∈ BR, we have

(6.11) φ̂(x) = dΛε−2∣M ∣ − ∣x∣2 −R2

2 trA
(tr(AM) − E [ε2φε(0)]) .
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We point out that since f̂ε ≤ E [−ε2φε(0)], we have that φ̂ε satisfies

⎧⎪⎪⎨⎪⎪⎩

− tr(A(x)(M +D2φ̂ε)) ≤ E [−ε2φε(0)] in BR,

φ̂ε = dΛε−2∣M ∣ on ∂BR.

It follows then that we may apply Proposition 2.3 to the pair 1
2x ⋅Mx + φ̂ε(x)

and 1
2x ⋅Mx + φ̂(x), which gives

(6.12) E [R−2 sup
x∈BR

(φ̂ε − φ̂)] ≤ CR−α.

Step 5. The conclusion. We have, by (6.9), (6.12) and (6.11),

−dΛε−2∣M ∣ ≤ E [φε(0)]
≤ E [φ̂ε(0)] +CE(ε)R2

≤ φ̂(0) +CR2−α +CE(ε)R2

= dΛε−2∣M ∣ + R2

2 trA
(tr(AM) − ε2E [φε(0)]) +CR2−α +CE(ε)R2.

Rearranging, we obtain

tr(AM) − ε2E [φε(0)] ≥ C [−2dΛ∣M ∣ε−2R−2 −CR−α −CE(ε)] .

Sending R →∞ yields

tr(AM) − E [ε2φε(0)] ≥ −CE(ε).

Since (6.5) and stationarity implies that, for every x ∈ Rd,

∣E [ε2φε(x)] − E [ε2φε(0)]∣ ≤ CE(ε),

the proof of (6.4) is complete. �

The proof of Theorem 1.1 is now complete, as it follows immediately from
Propositions 6.1, 6.2 and (6.5).

7. Existence of stationary correctors in d > 4

In this section we prove the following result concerning the existence of
stationary correctors in dimensions larger than four.

Theorem 7.1. Suppose d > 4 and fix M ∈ Sd, ∣M ∣ = 1. Then there exists a
constant C(d, λ,Λ, `) ≥ 1 and a stationary function φ belonging P–almost surely
to C(Rd) ∩L∞(Rd), satisfying

(7.1) − tr (A(x) (M +D2φ)) = − tr (AM) in Rd

and, for each x ∈ Rd and t ≥ 1, the estimate

(7.2) P [∣φ(x)∣ > t] ≤ C exp (−t 12) .
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To prove Theorem 7.1, we argue that, after subtracting an appropriate
constant, φε has an almost sure limit as ε→ 0 to a stationary function φ. We
introduce the functions

φ̂ε ∶= φε −
1

ε2
tr(AM)

Observe that

(7.3) ε2φ̂ε − tr (A(x)D2φ̂ε) = − tr(AM).

To show that φ̂ε has an almost sure limit as ε→ 0, we introduce the functions

ψε ∶= φε − φ2ε.

Then

φ̂ε − φ̂2ε = ψε −
3

4ε2
tr(AM),

and the goal will be to prove bounds on φ̂ε − φ̂ε which are summable over the
sequence εn ∶= 2−n. We proceed as in the previous section: we first estimate
the fluctuations of ψε using a sensitivity estimate and a suitable version of
the Efron-Stein inequality. We then use this fluctuation estimate to obtain
bounds on its expectation using a variation of the argument in the proof of
Proposition 6.2.

We begin with controlling the fluctuations.

Lemma 7.2. For every p ∈ [1,∞) and γ > 0, there exists C(p, γ, d, λ,Λ, `) <∞
such that, for every ε ∈ (0, 1

2
] and x ∈ Rd,

(7.4) E [∣ψε(x) − E[ψε(x)]∣p]
1
p ≤ Cε( d−42 ∧2)−γ.

Proof. In view of the Efron-Stein inequality for pth moments (cf. (A.2)), it
suffices to show that

(7.5) E [V∗ [ψε(x)]
p
2 ]

1
p ≤ Cε( d−42 ∧2)−γ.

We start from the observation that ψε satisfies the equation

(7.6) ε2ψε − tr (A(x)D2ψε) = 3ε2φ2ε in Rd.

Denote the right-hand side by hε ∶= 3ε2φ2ε.

Step 1. We outline the proof of (7.5). Fix z ∈ Rd. We use the notation
from the previous section, letting A′ ∶= π(θ′z(ω,ω′)) denote a resampling of the
coefficients at z. We let ψ′ε, φ

′
ε, G

′
ε, etc, denote the corresponding functions

defined with respect to A′. Applying Lemma 5.2 with δ = ε2, in view of (7.6),
we find that

ψε(x) − ψ′ε(x)

≤ C (ε2 + [ψε]C1,1
1 (z,B1/ε(z))

+ sup
y∈B`(z), y′∈Rd

(hε(y′) − hε(y) − ε4∣y′ − z∣2))G′
ε(x, z)

+ ∑
y∈Zd

Gε(x, y) sup
B`/2(y)

(hε − h′ε)

=∶ CK(z)ξε(x − z) +C ∑
y∈Zd

H(y, z)ξε(z − y)ξε(x − y).
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Here we have defined

K(z) ∶= ξε(x − z)−1(ε2 + [ψε]C1,1
1 (z,B1/ε(z))

+ sup
y∈B`(z), y′∈Rd

(hε(y′) − hε(y) − ε4∣y′ − z∣2))G′
ε(x, z)

and

H(y, z) ∶= (ξε(z − y)ξε(x − y))−1
Gε(x, y) sup

B`/2(y)
(hε − h′ε).

These are random variables on the probability space Ω ×Ω′ with respect to the
probability measure P̃ ∶= P∗ × P′

∗. Below we will check that, for each p ∈ [1,∞)
and γ > 0, there exists C(p, γ, d, λ,Λ, `) <∞ such that

(7.7) Ẽ [K(z)p]
1
p + Ẽ [H(y, z)p]

1
p ≤ Cε2−γ.

We first complete the proof of (7.5) assuming that (7.7) holds. In view of the
discussion in Section 5, we compute:

E [V∗ [ψε(x)]
p
2 ]

≤ E

⎡⎢⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝
∑
z∈Zd

⎛
⎝
CK(z)ξε(x − z) +C ∑

y∈Zd
H(y, z)ξε(z − y)ξε(x − y)

⎞
⎠

2⎞
⎟
⎠

p
2
⎤⎥⎥⎥⎥⎥⎥⎦

≤ CE
⎡⎢⎢⎢⎢⎣
(∑
z∈Zd

[K(z)ξε(x − z)]2)
p
2
⎤⎥⎥⎥⎥⎦

+CE

⎡⎢⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝
∑
z∈Zd

⎛
⎝∑y∈Zd

H(y, z)ξε(z − y)ξε(x − y)
⎞
⎠

2⎞
⎟
⎠

p
2
⎤⎥⎥⎥⎥⎥⎥⎦
.

By Jensen’s inequality, (6.2) and (7.7),

E
⎡⎢⎢⎢⎢⎣
(∑
z∈Zd

[K(z)ξε(x − z)]2)
p
2
⎤⎥⎥⎥⎥⎦
≤ (∑

z∈Zd
ξ2
ε(x − z))

p
2
−1

E [(∑
z∈Zd

K(z)pξ2
ε(x − z))]

≤ Cε(2−γ)p (∑
z∈Zd

ξ2
ε(x − z))

p
2

≤ Cε(2−γ)p
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and by Jensen’s inequality and (7.7),

E

⎡⎢⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝
∑
z∈Zd

⎛
⎝∑y∈Zd

H(y, z)ξε(z − y)ξε(x − y)
⎞
⎠

2⎞
⎟
⎠

p
2
⎤⎥⎥⎥⎥⎥⎥⎦

= E

⎡⎢⎢⎢⎢⎢⎣

⎛
⎝∑z∈Zd

∑
y,y′∈Zd

H(y, z)H(y′, z)ξε(z − y)ξε(x − y)ξε(z − y′)ξε(x − y′)
⎞
⎠

p
2
⎤⎥⎥⎥⎥⎥⎦

≤
⎛
⎝ ∑
z,y,y′∈Zd

ξε(z − y)ξε(x − y)ξε(z − y′)ξε(x − y′)
⎞
⎠

p
2
−1

× E
⎡⎢⎢⎢⎢⎣
∑

z,y,y′∈Zd
H(y, z) p2H(y′, z) p2 ξε(z − y)ξε(x − y)ξε(z − y′)ξε(x − y′)

⎤⎥⎥⎥⎥⎦

=
⎛
⎜
⎝
∑
z∈Zd

⎛
⎝∑y∈Zd

ξε(z − y)ξε(x − y)
⎞
⎠

2⎞
⎟
⎠

p
2
−1

× ∑
z,y,y′∈Zd

E [H(y, z) p2H(y′, z) p2 ] ξε(z − y)ξε(x − y)ξε(z − y′)ξε(x − y′)

≤
⎛
⎜
⎝
∑
z∈Zd

⎛
⎝∑y∈Zd

ξε(z − y)ξε(x − y)
⎞
⎠

2⎞
⎟
⎠

p
2

Cε(2−γ)p.

In view of the inequality

(7.8)
⎛
⎜
⎝
∑
z∈Zd

⎛
⎝∑y∈Zd

ξε(z − y)ξε(x − y)
⎞
⎠

2⎞
⎟
⎠

1
2

≤ C (1 + ε−1)4− d
2 .

which we also will prove below, the demonstration of (7.5) is complete.

To complete the proof, it remains to prove (7.7) and (7.8).

Step 2. Proof of (7.8). We first show that, for every x, z ∈ Rd,

(7.9) ∑
y∈Zd

ξε(z − y)ξε(x − y) ≤ C exp(−cε∣x − z∣) ((1 + ∣x − z∣)4−d + εd−4) .
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Recall that in dimensions d > 4, ξε(x) = exp(−aε∣x∣)(1+∣x∣)2−d. Denote r ∶= ∣x−z∣.
We estimate the sum by an integral and then split the sum into five pieces:

∑
y∈Zd

ξε(z − y)ξε(x − y)

≤ C ∫
Rd
ξε(z − y)ξε(x − y)dy

≤ C ∫
Br/4(x)

ξε(z − y)ξε(x − y)dy +C ∫
Br/4(z)

ξε(z − y)ξε(x − y)dy

+C ∫
B2r(z)∖(Br/4(z)∪Br/4(x))

ξε(z − y)ξε(x − y)dy

+C ∫
B1/ε(z)∖B2r(z)

ξε(z − y)ξε(x − y)dy

+C ∫
Rd∖B1/ε(z)

ξε(z − y)ξε(x − y)dy.

We now estimate each of the above terms. Observe first that

∫
Br/4(x)

ξε(z − y)ξε(x − y)dy + ∫
Br/4(z)

ξε(z − y)ξε(x − y)dy

≤ C exp(−cεr)∫
Br(0)

(1 + r)2−d(1 + ∣y∣)2−d dy = C exp(−cεr)(1 + r)4−d.

Next, we estimate

∫
B2r(z)∖(Br/4(z)∪Br/4(x))

ξε(z − y)ξε(x − y)dy

≤ C exp(−cεr)∫
B2r(z)

(1 + ∣y∣)2(2−d) dyC exp(−cεr)(1 + r)4−d

and

∫
B1/ε(z)∖B2r(z)

ξε(z − y)ξε(x − y)dy

≤ C ∫
B1/ε∖B2r

exp(−cεr)(1 + ∣y∣)4−2d dy = C exp(−cεr)(1 + r)4−d.

Finally, since d > 4,

∫
Rd∖B1/ε(z)

ξε(z − y)ξε(x − y)dy

≤ C exp(−cεr)∫
Rd∖B1/ε

exp(−cε∣y∣)(1 + ∣y∣)4−2d dy

= C exp(−cεr)εd−4∫
Rd∖B1

exp(−2a∣y∣)(ε + ∣y∣)4−2d dy

= C exp(−cεr)εd−4.

Combining the above inequalities yields (7.9).
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To obtain (7.8), we square (7.9) and sum it over z ∈ Zd to find that

∑
z∈Zd

⎛
⎝∑y∈Zd

ξε(z − y)ξε(x − y)
⎞
⎠

2

≤ ∫
Rd
C exp (−cε∣x − z∣) ((1 + ∣x − z∣)8−2d + ε2d−8) dz = C +Cεd−8.

Step 3. The estimate of the first term on the left side of (7.7). Notice that
according to Proposition 4.1, we have that

(7.10) ∣K(z)∣ ≤ (TzX (θ′z(ω,ω′)))d−1−δ (ε2 + [ψε]C1,1
1 (z,B1/ε(z))

+ sup
y∈B`(z), y′∈Rd

(hε(y′) − hε(y) − ε4∣y′ − z∣2)) .

We control each part individually. First, we claim that for every γ ∈ (0,1), for
every p ∈ (1,∞), there exists C(γ, λ,Λ, d, `, p) such that

(7.11) E [([ψε]C1,1
1 (z,B1/ε(z))

)
p
]

1
p ≤ Cε2−γ.

Observe that ψε is a solution of

(7.12) − tr (A(x)D2ψε) = −ε2φε + 4ε2φ2ε in Rd.

Denote the right side by fε ∶= −ε2φε + 4ε2φ2ε = −ε2ψε + 3ε2φ2ε.

We show that, for every γ > 0 and p ∈ [1,∞), there exists C(γ, p, d, λ,Λ, `) <∞
such that, for every ε ∈ (0, 1

2],

(7.13) E [(∥fε∥L∞(B1/ε) + ε
−β [fε]C0,β(B1/ε))

p
]

1
p ≤ Cε2−γ.

We first observe that (6.1), (6.3), and (6.5) imply that

E

⎡⎢⎢⎢⎢⎢⎣
exp

⎛
⎜
⎝
⎛
⎝

1

E(ε) sup
B√

d

∣ε2φε − tr (AM)∣
⎞
⎠

1
2
+δ⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
≤ C.

A union bound and stationarity then give, for every γ > 0 and p ∈ [1,∞),

(7.14) E [∥ε2φε − tr (AM)∥p
L∞(B4/ε)

]
1
p

≤ Cε−γE(ε).

where C = C(γ, p, d, λ,Λ, `) <∞. The Krylov-Safonov estimate yields

E [(ε−β [φε]C0,β(B2/ε))
p
]

1
p ≤ ε−2E(ε).

The previous two displays and the triangle inequality yield the claim (7.13).
Now (7.11) follows from Theorem 3.1, (7.13), (7.14) and the Hölder inequality.

We next show that for every γ ∈ (0,1) and for every p ∈ (1,∞),

(7.15) E [( sup
y∈B`(z), y′∈Rd

(hε(y′) − hε(y) − ε4∣y′ − z∣2))
p

]
1
p

≤ Cε2−γ.
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By a union bound, we find that, for every t > 0,

P [ sup
y′∈Rd

(hε(y′) − ε4∣y′ − z∣2) > t]

≤
∞
∑
n=0

P
⎡⎢⎢⎢⎢⎣

sup
y′∈B2n/ε(z)

hε(y′) > c22nε2 + t
⎤⎥⎥⎥⎥⎦

≤
n(t)

∑
n=0

P
⎡⎢⎢⎢⎢⎣

sup
y′∈B2n/ε(z)

hε(y′) > t
⎤⎥⎥⎥⎥⎦
+

∞
∑

n=n(t)+1

P
⎡⎢⎢⎢⎢⎣

sup
y′∈B2n/ε(z)

hε(y′) > c22nε2

⎤⎥⎥⎥⎥⎦
where n(t) is the largest positive integer satisfying 22n(t) ≤ tε−2. By (7.14),

n(t)

∑
n=0

P
⎡⎢⎢⎢⎢⎣

sup
y′∈B2n/ε(z)

hε(y′) > t
⎤⎥⎥⎥⎥⎦
≤ (n(t) + 1)P

⎡⎢⎢⎢⎢⎣
sup

y′∈B
2n(t)/ε

(z)
hε(y′) > t

⎤⎥⎥⎥⎥⎦

≤ C(n(t) + 1)2dn(t)P [ sup
y′∈B1/ε

hε(y′) > t]

≤ C(n(t) + 1)2dn(t) (εγ−2t)−p

≤ C(log tε−2) (t−1ε(2−γ))p−
d
2 ε

γd
2

and

∞
∑

n=n(t)+1

P
⎡⎢⎢⎢⎢⎣

sup
y′∈B2n/ε(z)

hε(y′) > c22nε2

⎤⎥⎥⎥⎥⎦
≤

∞
∑

n=n(t)+1

C2dnP [ sup
y′∈B1/ε

hε(y′) > c22nε2]

≤ Cε(2−γ)p
∞
∑

n=n(t)+1

2dn2−2npε−2p

≤ C (ε(2−γ)t−1)p−
d
2 .

Combining the above, taking p sufficiently large, integrating over t, and shrink-
ing γ and redefining p yields (7.15).

A combination of (6.7), (7.10), (7.11), (7.15) and the Hölder inequality yields
the desired bound for the first term on the left side of (7.7).

Step 4. The estimate of the second term on the left side of (7.7). According
to (5.19) and Proposition 4.1, for X and δ(d, λ,Λ) > 0 as in Proposition 4.1,

Gε(x, y) sup
B`/2(y)

(hε − h′ε) ≤ Cε2(TyX )d−1−δξε(y − x)(TzX )d+1−δξ2ε(y − z)

≤ Cε2(TyX )d−1−δ(TzX )d+1−δξε(y − x)ξε(y − z).
Therefore,

H(y, z) ≤ Cε2(TyX )d−1−δ(TzX )d+1−δ.

Thus Hölder’s inequality yields that, for every p ∈ (1,∞),
Ẽ [H(y, z)p] ≤ Cε2p.

This completes the proof of (7.7). �

We next control the expectation of φ̂ε − φ̂2ε = ψε(x) − 3
4ε2 tr (AM).
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Lemma 7.3. For every p ∈ [1,∞) and γ > 0, there exists C(p, γ, d, λ,Λ, `) <∞
such that, for every ε ∈ (0, 1

2
] and x ∈ Rd,

(7.16) ∣E[ψε(x)] −
3

4ε2
tr (AM)∣ ≤ Cε( d−42 ∧2)−γ.

Proof. The main step in the argument is to show that

(7.17) ∣E [ψε(0)] − 4E [ψ2ε(0)]∣ ≤ Cε
d−4
2
∧2.

Let us assume (7.17) for the moment and see how to obtain (7.16) from it.
First, it follows from (7.17) that, for every ε and m,n ∈ N with m ≤ n,

∣(2−mε)2E [ψ2−mε(0)] − (2−nε)2E [ψ2−nε(0)]∣ ≤ C(2−mε) d2∧4.

Thus, the sequence {(2−nε)2E [ψ2−nε(0)]}n∈N is Cauchy and there exists L ∈ R
with

∣(2−mε)2E [ψ2−mε(0)] −L∣ ≤ C(2−mε) d2∧4.

Taking m = 0 and dividing by ε2, this yields

∣E [ψε(0)] −
L

ε2
∣ ≤ Cε d−42 ∧2.

But in view of (6.3), we have that L = 3
4 tr (AM). This completes the proof of

the lemma, subject to the verification of (7.17).

We denote hε(x) ∶= ψε(x) − 4ψ2ε(x) so that we may rewrite (7.17) as

(7.18) E [hε(0)] ≤ Cε
d−4
2
∧2.

We next introduce the function

(7.19) ηε(x) ∶= ψε −
1

4
ψ2ε

and observe that ηε is a solution of

(7.20) − tr (A(x)D2ηε) = −ε2hε in Rd.

In the first step, we show that ψε has small oscillations in balls of radius ε−1,
and therefore so do hε and ηε. This will allow us to show in the second step
that (7.20) is in violation of the maximum principle unless the mean of hε is
close to zero.

Step 1. The oscillation bound for ψε. The claim is that, for every γ ∈ (0,1)
and p ∈ [1,∞), there exists C(p, γ, λ,Λ, d, `) such that

(7.21) E [ sup
x∈B1/ε

∣ψε(x) − E [ψε(0)]∣p]
1
p

≤ Cε d−42 ∧2.

By the equation (7.12) for ψε, the Krylov-Safonov estimate (3.2) and the
bounds (7.13), we have that (taking γ sufficiently small),

(7.22) E [( sup
x∈B1/2ε

∣ψε(x) − ψε([x])∣)
p

]
1
p

≤ Cεσε2−γ ≤ Cε2.
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Here [x] denotes the nearest point of Zd to x ∈ Rd. By the fluctuation es-
timate (7.4), stationarity and a union bound, we have, for every γ > 0 and
p ∈ (1,∞),

E
⎡⎢⎢⎢⎢⎣

sup
z∈B1/ε∩Zd

∣ψε(z) − E [ψε(0)]∣p
⎤⎥⎥⎥⎥⎦

1
p

≤ Cε d−42 ∧2−γ.

The previous two lines complete the proof of (7.21).

Step 2. We prove something stronger than (7.18) by showing that

E [ sup
x∈B1/ε

∣hε(x)∣] ≤ Cε
d−4
2
∧2.

By (7.21), it suffices to show that

E [ sup
x∈B1/ε

hε(x)] ≥ −Cε
d−4
2
∧2 and E [ inf

x∈B1/ε

hε(x)] ≤ Cε
d−4
2
∧2.

We will give only the argument for the second inequality in the display above
since the proof of the first one is similar. Define the random variable

κ ∶= ε2 sup
x∈B1/ε

∣ψε(x) − E [ψε(0)]∣ .

Observe that the function

x↦ ψε(x) − 8κ∣x∣2 has a local maximum at some point x0 ∈ B1/2ε.

The equation (7.12) for ψε implies that

−ε2hε(x0) ≥ −16Λdκ ≥ −Cκ.
Thus

inf
x∈B1/2ε

hε(x) ≤ hε(x0) ≤ Cκ = C sup
x∈B1/ε

∣ψε(x) − E [ψε(0)]∣ .

Taking expectations and applying (7.21) yields the claim. �

We now complete the proof of Theorem 7.1.

Proof. Proof of Theorem 7.1 According to (7.4), (7.21), (7.16) and a union
bound, we have

(7.23) E [ sup
x∈B1/ε

∣ψε(x) −
3

4ε2
tr (AM)∣] ≤ Cε( d−42 ∧2)−γ.

From this we deduce that

(7.24) E [ sup
x∈B1/ε

∣φ̂ε(x) − φ̂2ε(x)∣] ≤ Cε(
d−4
2
∧2)−γ.

We deduce the existence of a stationary function φ satisfying

(7.25) E [ sup
x∈B1/ε

∣φ̂ε(x) − φ(x)∣] ≤ Cε(
d−4
2
∧2)−γ.

Passing to the limit ε → 0 in (7.3) and using the stability of solutions under
uniform convergence, we obtain that φ is a solution of (7.1). The estimates (7.2)
are immediate from (1.17). This completes the proof of the theorem. �
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Appendix A. Proof of the stretched exponential spectral gap
inequality

We give the proof of Proposition 2.2, the Efron-Stein-type inequality for
stretched exponential moments. We first recall the classical Efron-Stein (often
called the “spectral gap”) inequality. Given a probability space (Ω,F ,P)
and a sequence Fk ⊆ F of independent σ-algebras, let X denote a random
variable which is measurable with respect to F ∶= σ(F1, . . . ,Fn). The classical
Efron-Stein inequality states that

(A.1) var[X] = E[∣X − E[X]∣2] ≤ E [
n

∑
i=1

(X −X ′
i)2]

where

F ′
i ∶= σ(F1, . . . ,Fi−1,Fi+1, . . . ,Fn)

X ′
i ∶= E [X ∣ F ′

i ] .

Therefore, we see that the variance is controlled by the `2-norm of the vertical
derivative

V[X] ∶=
n

∑
i=1

(X −X ′
i)2.

If we have control of higher moments of V[X], then we can obtain estimates on
the moments of ∣X −E[X]∣. Indeed, a result of Boucheron, Lugosi, and Massart
which can be found in [8, 9] states that for every p ≥ 2,

(A.2) E [∣X − E[X]∣p] ≤ Cpp/2E [V[X]p/2] ,

where we may take C = 1.271. The same authors were also able to obtain similar
estimates on exponential moments of X − E[X]. Their result [8, 9] states that

(A.3) E[exp(∣X − E[X]∣)] ≤ CE[exp(CV[X])].

We now give the proof of Proposition 2.2, which is obtained by writing a
power series formula for the stretched exponential and then using (A.2) to
estimate each term. We thank J. C. Mourrat for pointing out this simple
argument and allowing us to include it here.

Proof of Proposition 2.2. We show that for every β ∈ (0,2),

E [exp (∣X − E[X]∣β)] ≤ CE [exp ((CV[X])
β

2−β )]
2−β
β
.

We may assume without loss of generality that E[X] = 0. Fix β ∈ (0,2). We
estimate the power series

E [exp (∣X ∣β)] =
∞
∑
n=0

1

n!
E [∣X ∣βn]

by splitting up the sum into two pieces and estimating each of them separately
as follows. First, we consider the terms in which the power of ∣X ∣ is less than 2,
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and apply (A.1) to get

⌊2/β⌋

∑
n=0

1

n!
E [∣X ∣βn] ≤

⌊2/β⌋

∑
n=0

1

n!
E [∣X ∣2]nβ/2 ≤

⌊2/β⌋

∑
n=0

1

n!
E [V[X]]nβ/2

≤ exp(E [V[X]]β/2).

For the other terms, we apply (A.2) (with κ in place of C) and the discrete
Holder inequality to obtain, for α > 0 to be selected below,

∞
∑

n=⌊2/β⌋+1

1

n!
E [∣X ∣βn] ≤

∞
∑
n=1

1

n!
(κnβ)nβ/2E [(V[X])nβ/2]

≤ (
∞
∑
n=1

1

n!
(κnβ
α

)
n

)
β/2

(
∞
∑
n=1

1

n!
E [(αV[X])nβ/2]

2
2−β )

2−β
2

.

We estimate the first factor on the right hand side by using the classical inequality
(related to Stirling’s approximation) which states that, for every n ∈ N,

n! ≥ (2π)1/2nn+1/2 exp(−n).

This yields that for every α > eκβ,

∞
∑
n=1

1

n!
(κnβ
α

)
n

≤ 1√
2π

∞
∑
n=1

n−1/2 (eκβ
α

)
n

≤ α

α − eκβ .

Combining this with our previous estimate, we obtain

∞
∑

n=⌊2/β⌋+1

1

n!
E [∣X ∣βn] ≤ ( α

α − eκβ )
β/2

(
∞
∑
n=1

1

n!
E [(αV[X])nβ/2]

2
2−β )

2−β
2

.

Observe that

∞
∑
n=1

1

n!
E [(αV[X])nβ/2]

2
2−β ≤

∞
∑
n=1

1

n!
E [(αV[X])

nβ
2−β ] = E [exp((αV[X])

β
2−β ] ,

and this implies that

∞
∑

n=⌊2/β⌋+1

1

n!
E [∣X ∣βn] ≤ ( α

α − eκβ )
β/2

(E [exp((αV[X])
β

2−β ])
2−β
2
.

Combining all of the previous estimates yields that

E [exp (∣X ∣β)] ≤ exp (E[V[X]]β/2) +CE [exp ((CV[X])
β

2−β )]
2−β
2
.

Since β ≤ 2 and we can take α = 20, the constant C is universal. This completes
the proof. �
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