Numerical validation framework for micromechanical simulations based on synchrotron 3D imaging
Résumé
A combined computational-experimental framework is introduced herein to validate numerical simulations at the microscopic scale. It is exemplified for a flat specimen with central hole made of cast iron and imaged via in situ synchrotron laminography at micrometer resolution during a tensile test. The region of interest in the reconstructed volume, which is close to the central hole, is analyzed by Digital Volume Correlation (DVC) to measure kinematic fields. Finite Element (FE) simulations, which account for the studied material microstructure, are driven by Dirichlet boundary conditions extracted from DVC measurements. Gray level residuals for DVC measurements and FE simulations are assessed for validation purposes.
Origine | Fichiers produits par l'(les) auteur(s) |
---|