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Abstract A combined computational - experimental framework is introduced

herein to validate numerical simulations at the microscopic scale. It is exemplified

for a flat specimen with central hole made of cast iron and imaged via in situ syn-

chrotron laminography at micrometer resolution during a tensile test. The region

of interest in the reconstructed volume, which is close to the central hole, is an-

alyzed by Digital Volume Correlation (DVC) to measure kinematic fields. Finite

Element (FE) simulations, which account for the studied material microstructure,

are driven by Dirichlet boundary conditions extracted from DVC measurements.

Gray level residuals for DVC measurements and FE simulations are assessed for

validation purposes.

Keywords Level set · Microstructure meshing · Multiscale analysis · Volume

correlation · X-ray laminography

1 Introduction

In many applications, metals and alloys for in-use analyses and metal forming raise

important issues for ductile fracture, which have led researchers to investigate more

and more advanced damage models. A first category of damage models, known as

macroscopic models [31,52,38], is used to predict not only damage occurrence but

also the softening and transition to fracture. Due to their macroscopic nature,

these models are known to have limited predictive capabilities and are usually

calibrated and applied for specific loading conditions. For applications such as

material forming, where loading may be complex and non proportional, these

limitations are problematic [14,13].
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A promising alternative is provided by microscopic models [20,47], where the

macroscopic constitutive behavior is derived thanks to the homogenization of mi-

croscopic calculations. This derivation may be purely analytical [20] or aided by

numerical calculations on ideal microstructures [47]. However, the predictive ca-

pabilities of these microscopic models are also known to be limited for arbitrary

loading conditions [14,13], due to quite restrictive assumptions that are used for

their derivation [20,47]. The calibration of these models is a challenging task that is

being addressed in the literature using more advanced experimental and numerical

procedures. Some variables such as porosity can now be observed experimentally

thanks to X-ray imaging techniques [1,8,69,22] with the possibility of considering

inclusions and voids individually based on manual [69] or automatic [22] proce-

dures.

Further, simulations are necessary to experimentally relate observed quanti-

ties such as porosity and number of fractured/debonded inclusions to mechanical

variables such as plastic strain and stress-based criteria. These calculations at

the microscale are usually conducted with idealistic microstructures and constitu-

tive behavior, considering homogeneous kinematic or static boundary conditions,

which cannot capture the local strain and stress states that inclusions and voids

are subjected to, due to their random shapes and distribution [1,44,66,22]. The

effect of the three-dimensional random distribution of voids on softening has been

studied [18] using different void volume fractions.

The main objective of the current work is to enable for more realistic micro-

scopic calculations thanks to physical models calibrated directly at the microscale

to analyze the three steps of ductile damage, namely, void nucleation, growth and

coalescence. To achieve such goal, a first step consists of developing a numerical
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framework allowing for such validation and identification. The proof of concept of

such validation framework is the topic of the present paper. The studied material

is nodular cast iron, which at the microscale features a ferritic matrix and graphite

nodules, with no significant porosity in the initial state. Then, under tensile load-

ing, ductile fracture is mainly driven by a very early debonding of the nodules

from the matrix, and coalescence of the subsequent nucleated voids [17,29,68].

Evidence in the literature [17,74,6,29] suggests to model the nodules as voids, as

their load carrying capacity is very low under tensile loading. This assumption

is made herein and at the microscale the material is considered as a two-phase

microstructure with a ferritic matrix and voids.

The final objective of the present work includes enabling for discussions regard-

ing such assumptions, thanks to accurate and local error measurements directly

at the microscale. This would help the development of experimentally probed

microscopic models that could then be used to improve the common knowledge

and understanding of ductile fracture, and deduce more accurate macroscopic re-

sponses. In particular, the ultimate aim is to set up a framework that allows failure

and coalescence mechanisms and criteria such as internal necking or coalescence

via nucleation of voids on a second population of particles [30,28] to be assessed

numerically. The methodology proposed to obtain these local comparisons between

experimental analyses and numerical simulations is based on the following steps

(Figure 1):

– X-ray laminography to get 3D pictures of an in-situ test in a synchrotron

facility. By post-processing them, one may get, for instance, a first estimate of

the morphology of the two-phase microstructure.
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– Global digital volume correlation (DVC) to measure displacement fields whose

kinematic basis is made of the shape functions of 8-noded elements. These

displacement fields serve two purposes. First, they correspond to the kinematic

data of the test. Second and more importantly, they will be used as Dirichlet

boundary conditions of Finite Element (FE) simulations at the microscale.

– The FE simulations at the microscale explicitly account for the morphology of

the studied two-phase material. Therefore the mesh made of 4-noded tetrahe-

dra is adapted to the microstructure with a Level-Set (LS) procedure.

– FE simulations are run with an elastoplastic constitutive equation to model

the nonlinear behavior of the matrix.

– Comparisons between experimental measurements and numerical simulations

are carried out for the displacement fields and correlation residuals.

C8-DVC
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Fig. 1 Schematic representation of the methods used in the present paper for validating

numerical simulations at the microscale
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Synchrotron radiation computed laminography is a non-destructive 3D imag-

ing technique for scanning regions in laterally extended 3D objects [25,24,43,12,

54]. This geometry is of particular interest in the field of mechanics of materials

since sheet-like samples allow for a wide range of engineering-relevant boundary

conditions. Laminography is related to the inclination of the specimen rotation

axis with respect to the beam direction with an angle θ < 90◦; while tomogra-

phy, as a special case of laminography, is performed at the 90◦ angle during the

scanning procedure and requires stick-like samples. However, due to the rotation

axis inclination angle, incomplete sampling of the 3D Fourier domain of the spec-

imen is performed and additional artifacts are present [23] but often they are less

disturbing than the ones of tomography [72].

Laminography and tomography are nondestructive imaging techniques that

are used in material sciences. They enable the material microstructures and their

degradation mechanisms to be assessed qualitatively and quantitatively [41]. In-situ

experiments can also be performed to analyze the mechanical behavior of different

materials [21,11,32,15]. Initially developed at synchrotron facilities [3], these tests

are also performed at lab tomography set-ups [10]. The 3D images are acquired at

different steps of the loading history while the tested material is still under load

for visualization and measurement purposes. For instance, 3D displacement fields

can be measured via DVC.

DVC is a registration technique to measure 3D displacement fields in the bulk

of samples. In its early developments [2,62,7,70], DVC consisted of independently

registering small interrogation volumes in the considered Region of Interest (ROI).

This type of approach is nowadays referred to as local, i.e., the only information

that is kept is the mean displacement assigned to each analyzed Zone of Interest
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(ZOI) center. Various kinematic hypotheses, possibly accounting for ZOI warping,

have been implemented. However, they are different from those made in FE sim-

ulations in which the field is continuous and dense over the whole ROI. Global

approaches, which appeared more recently [58], consist of performing registrations

over the whole ROI by using kinematic fields based on finite element discretiza-

tions. Such DVC approaches can be directly linked with numerical simulations of

mechanical problems [53,9].

Examples of techniques enabling real microstructures to be meshed can be

found in the literature [75,73]. Solutions are yet to be formulated to reduce the

cost of these procedures both in terms of memory requirements and computation

time. The LS method [49] is a useful tool to represent interfaces in an FE simulation

when large deformations and complex topological events occur [63,57,51], though

some regularity [61] and conservation [60] issues have to be handled. Distance

maps and LS functions have also been used in the field of image processing to

extract interfaces and topological data [34]. If FE simulations are to be performed

with these interfaces, image processing can be performed directly on the FE mesh,

thereby reducing memory requirements for high resolution images and enabling

the parallel capabilities of standard FE codes to be used [61].

In the past, 3D meshes stemming from X-ray tomography data have been

created for fatigue loading cases e.g. to assess the stress intensity factor ahead of a

crack [53]. In Ref. [50] the 3D grain structure and orientation has been assessed via

diffraction contrast tomography and subsequently been meshed in 3D to assess the

effect of crystallographic orientation on fatigue crack propagation numerically and

experimentally. To the best of our knowledge, there are no studies that explicitly

mesh real microstructures for the case of ductile damage.
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The paper is structured as follows. The experimental setup and the laminogra-

phy imaging technique are first introduced. The basic principles of Digital Volume

Correlation incorporating uncertainty quantification and DVC results are then

presented. FE simulation tools including the microstructure meshing procedure

and the strategy for applying DVC measured boundary conditions are described

next. Last, the results from both methods are compared relatively via kinematic

field subtractions and absolutely by computing gray level residuals.

2 Experimental analyses

2.1 In situ test

The material used in this study is a commercial nodular graphite cast iron (EN-

GJS-400). The geometry of the flat specimen with a central hole is shown in

Figure 2(a). The specimen geometry yields stress triaxialities within the range 0.4-

0.5 in the vicinity of the central hole [56]. A stepwise loading procedure resulted

in the force-displacement curve shown in Figure 2(b).

(a)
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Fig. 2 (a) Schematic view of the sample with the scanned region close to the central hole.

Section of the reconstructed volume with the position of the region of interest. (b) Macroscale

force-displacement curve



Numerical Validation Framework for Micromechanical Simulations 9

The 3D images used herein were obtained at beamline ID15A [16] of the

European Synchrotron Radiation Facility (Grenoble, France) with a filtered white

beam (average energy around 60 keV), using 4,000 projections per scan. Due to

the detector design and the angle between rotation axis and beam, the minimum

specimen to detector distance is 70 mm. The resulting strongly contrasted edges

are also expected to contribute to laminography artifacts typical for incomplete

sampling. All these features induce increased DVC uncertainties compared with

the measurement resolutions for tomography [45].

The testing device applies the load by controlling the displacement via manual

screw rotation where grips incorporate a force measuring device. After apply-

ing each loading step, a scan is acquired while the sample is rotated about the

laminographic axis (i.e., parallel to the specimen thickness direction). This axis is

inclined with respect to the X-ray beam direction by an angle θ ≈ 60◦. The series

of radiographs acquired is then used to reconstruct 3D volumes via filtered-back

projection [46]. The scanned region is positioned next to the central hole whose

edge is used as orientation feature during the scanning procedure (Figure 2(a)).

The reconstructed volume has a size of 1600 × 1600 × 1600 voxels. The physical

size (length) of 1 cubic voxel is equal to 1.1 µm.

2.2 Digital Volume Correlation

The correlation procedure using the whole volume size would be computationally

too demanding. Therefore an extracted ROI of size 532× 532× 532 voxels is used

for DVC analyses. The position of the ROI in the global coordinate system is
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shown in Figure 2(a) while in the z direction the ROI and sample mid-thickness

planes coincide.

2.2.1 Basic principles

DVC used herein is an extension of 2D global Digital Image Correlation [4,27].

The reconstructed volume is represented by a discrete scalar matrix of spatial

coordinate x of (in this case 8-bit deep) gray levels determined by the microstruc-

ture absorption of X-rays (Figure 3). The image contrast is mainly due to graphite

nodules of micrometer size.

100 µm

graphit nodules

ferritic matrix

F

F
gray level voxels

reconstructed gray level volume

e

Fig. 3 Reconstructed volume as a spatial discrete matrix of gray level values

There are also smaller dark features in the ferritic matrix that can either be

voids or graphite. To better appreciate their presence a typical 3D rendering of all

dark features in nodular cast iron is shown in Figure 4. The image was obtained by

using a Gaussian filter (radius = 1 voxel) and subsequent gray level thresholding.

To quantify the presence of this second population of dark features an image

analysis has been performed. The above presented thresholded volume serves as
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input for an object counting procedure where all the large objects (i.e., volumes

> 10 × 10 × 10 voxels, which is the minimum nodule size) are a priori discarded

from the analysis. The objects in the remaining volume are counted and divided

by the corresponding number of DVC elements (their volume being `3 = 32×32×

32 voxels). If all segmented small particles are considered the average number of

particles per element is 1.6. However, if particles smaller than 1 or 5 voxels are

considered as noise, the values are 1.1 and 0.6 particle per element, respectively.

Therefore there is contrast within the ferritic matrix that can be registered and

allows displacement fields to be measured between nodules. Let us note that the

filter has been applied to the 3D image, which has evened out voxel-scale contrast.

Conversely, no filtering is performed for the correlation procedure and it may thus

be expected that submicrometer contrast also contributes to the determination of

the kinematic fields.

307.6
 µ

m

Fig. 4 3D rendering of all dark features of the nodular cast iron reconstructed volume
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The principle of DVC consists of registering the gray levels f in the reference

configuration x and those of the deformed configuration g, which satisfy

f(x) = g(x + u(x)) (1)

where u is the displacement field. However, due to acquisition noise, reconstruction

artifacts [72] and the correlation procedure itself [37], ideal match is not achieved

in real examples. Consequently, the solution consists of minimizing the gray level

residual

ρ(x) = f(x)− g[x + u(x)] (2)

by considering its L2-norm with respect to kinematic unknowns. Since a global

approach is used herein [58], C0 continuity condition over the ROI is prescribed

to the solution and the global residual to be minimized reads

Φ2
c =

∑
ROI

ρ2(x). (3)

The displacement field is parameterized by using a kinematic basis consisting of

shape functions Ψp(x) and nodal displacements up

u(x) =
∑
p

upΨp(x). (4)

Among a whole range of available fields, finite element shape functions are partic-

ularly attractive because of the link they provide between the measurement of the

displacement field and numerical models [53]. Thus, a weak formulation based on

C8 finite elements with trilinear shape functions is chosen [58]. After successive

linearizations and corrections the current system to be solved reads

[M]{δu} = {b} (5)
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where

Mij =
∑
ROI

(∇f ·Ψi)(x)(∇f ·Ψj)(x) (6)

represents the DVC matrix, while vector {b}

bi =
∑
ROI

(f(x)− g̃(x))(∇f ·Ψi)(x) (7)

contains the current difference between the reference volume f and the corrected

deformed volume g̃ = g(x+ũ(x)), ũ being the current estimate of the displacement

field. The global residual needs to decrease so that convergence is achieved, i.e.,

the displacement corrections {δu} become vanishingly small.

In this form, the displacement field is regularized in the sense of a continuity

requirement that is a priori assumed for the kinematic solution. Moreover, ad-

ditional mechanical knowledge may be added to help convergence. This type of

procedure is referred to as mechanical regularization [65]. In the present analyses,

mechanical regularization based on the satisfaction of the elastic solution for the

inner nodes in the calculated domain has been introduced. In the absence of body

forces it implies

[K]{u} = {0} (8)

where [K] is the rectangular stiffness matrix associated with the inner nodes.

Displacement fields u that do not satisfy the equilibrium will give rise to a gap

that will be minimized in addition to the correlation residuals

Φ2
m = {u}t[K]t[K]{u}. (9)

Minimizing the equilibrium residuals incorporates the mechanical admissibility in

the solution of the measured kinematic field. However, the previous strategy cannot

be used as such for boundary nodes, except those that belong to a free edge. For
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the other boundary nodes, an edge regularization is considered in the same way

as what was recently proposed for 2D situations [67,65]

Φ2
b = {u}t[L]t[L]{u} (10)

where [L] behaves as a mathematical operator eliminating non-physical high fre-

quency solutions. Since they do not have the same physical units these functionals

cannot be added directly [36]. For this reason, a reference displacement field v

is needed to normalize them. Additionally, weights wm and wb are given to the

normalized functionals, thereby defining regularization lengths that act as cut-off

wavelength of low pass mechanical filters [36]. The regularized correlation proce-

dure consists of iteratively solving linear systems

([M] + [N]){δu} = {b} − [N]{u} (11)

where

[N] = wm
{v}t[M]{v}
{v}t[K]t[K]{v}

[K]t[K] + wb
{v}t[M]{v}
{v}t[L]t[L]{v}

[L]t[L]. (12)

The normalization displacement field v is associated with a wave vector k so that

the two weights are defined as [65]

wm = (2π‖k‖`r)4, wb = (2π‖k‖`b)4 (13)

where `r and `b represent regularization lengths. By tuning the regularization

length the influence of the mechanical regularization functional can be varied,

resulting in more or less smooth fields. In strongly regularized solutions, high

spatial frequencies are filtered out when not mechanically admissible as part of an

elastic solution. Hence, the regularization procedure makes use of constitutive laws

and helps correlation registration to converge even in the close to zero-gradient
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gray level zones as found in the cast iron matrix. Finally, let us stress this does

not imply that the final solution is elastic in nature, which will be observed in the

case of cast iron. However, regularization can still be used as an ad hoc solution to

the problem, giving a rough, but fairly good estimate of the correct solution. This

solution is then used as initial guess in the subsequent calculations with decreased

regularization lengths. This so-called relaxation procedure [67] is followed herein

until the overall weights put on Φm and Φb are equal to zero, i.e., no additional

requirements besides gray level conservation are assumed. During the relaxation

procedure the `r/`b ratio was equal to one.

2.2.2 Direct vs. incremental DVC calculations

Since stepwise loading has been applied, direct DVC results refer to the solutions

obtained by correlating the undeformed volume (state (0)) and the correspond-

ing deformed configuration (state (n)), while incremental calculations stand for

the correlation between any reference volume (state (n)) and subsequent (state

(n+ 1)) configuration. Due to the small number of scans available for the experi-

ment, high levels of displacements occur between two consecutive acquisitions. The

convergence of direct DVC calculations is hardly achieved under such conditions,

hence an incremental correlation procedure is followed (Figure 5).
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Fig. 5 Difference between incremental and direct DVC procedures

Further, there are two different ways of displaying incremental calculation re-

sults. First, the fields are shown in the reference configuration of each incremen-

tal analysis. Second, all the results can be expressed in a Lagrangian way by

re-projecting back all the measured incremental displacement fields on the unde-

formed frame (by subtracting neighboring direct calculation results). In the sequel,

the first approach will be used but special care has to be exercised to identify com-

mon features to make the comparison objective.

All the results reported hereafter have required the DVC analyses to converge,

namely, the root mean square (RMS) of the displacement increment between two

iterations is less than 10−4 voxel. An additional check is related to the residuals ρ

that will be shown in the sequel.

2.2.3 Link between DVC and numerical simulations

The measured displacements are expressed on a regular undeformed mesh made

of 8-noded cube elements. Full-field results written node-wise are provided as .txt

output files of DVC and will be used as boundary conditions for the FE mechanical

model. Hence, for the first incremental loading step (0)-(1) the results are written

on the undeformed frame (0), for the second (1)-(2) on the mesh associated with
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the microstructure at state (1), and so on. An example is shown in Figure 5. Since

undeformed meshes (blue DVC ROI) with constant (initial) size are considered

on the microstructure state (n− 1) for loading step (n), with its positions defined

relatively to the followed microstructure features, some of the material points

present in the DVC ROI at the beginning are lost during the loading history. These

regions are depicted with white dotted rectangles in the figure. Hence, if all the

incremental displacement fields are cumulated to the initially defined nodes, it will

end up with a partial solution. Since the material points used for FE computations

need to possess a complete kinematic information through the loading history, just

an inner part of the original ROI has been utilized for communication between

DVC and FE simulations (red FE ROI), where the ROI size reduction especially

refers to the loading direction (y) for which the displacements are the largest.

Once defined, boundaries of the domain are used to extract the corresponding

part of the DVC displacement solutions. These displacements are interpolated on

the unstructured tetrahedral mesh (T4 mesh) used in numerical simulations. They

are used as Dirichlet boundary conditions in the FE simulations. Additionally,

since the underlying experiment and consequently DVC calculations are obtained

with a small number of loading steps, linear interpolation in time is necessary to

properly prepare boundary conditions for FE computations.

2.3 Uncertainty quantification

Before presenting any result, an uncertainty assessment is performed. It consists

in analyzing two consecutive scans of the unloaded and loaded sample without

applying any additional load (i.e., denoted “bis”) or prescribing rigid body motions
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between the two acquisitions [45]. For the present experiment, three independent

“bis” cases are available, namely, “0 mm” in the undeformed state and two more

in deformed states: “0.579 mm” and “0.744 mm” of the screw displacement (see

Figure 2(b)). Due to the noise contribution and reconstruction artifacts, these two

volumes are not identical. Therefore, the measured displacement field accounts for

the cumulated effects of laminography and DVC on the measurement uncertainty.

From the mean gradient of the displacement field over each C8 element the Hencky

strain tensor and its second invariant (i.e., von Mises equivalent strain) will be used

in the sequel.

The uncertainty values are evaluated by the standard deviation of the measured

displacement and calculated strain fields. Figure 6 shows the standard displace-

ment and strain uncertainty levels for the analyzed ROI. An increase of the spatial

resolution (i.e., proportional to the element size or regularization length [36]) is

followed by a decrease of the displacement/strain uncertainty since more voxels

per nodal displacement are available. This first series of results shows that the

convergence of unregularized DVC can be achieved with smaller elements than the

32-voxel limit discussed in Section 2.2.1 thanks to the fact that displacement fields

are a priori assumed to be continuous over the whole ROI. However to lower the

measurement uncertainties, the element edge size was chosen equal to 32 voxels (or

35 µm) in all three directions, which yields a standard displacement and equivalent

strain resolution of 0.2 voxel and 0.2 %, respectively. These values represent the

limit below which the measured levels are not trustworthy. As expected, these lev-

els are greater than uncertainties reported in case of tomography obtained on cast

iron scans [39] but lower than laminography results on less contrasted aluminium

alloy microstructure [45].
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Fig. 6 Standard displacement (a) and equivalent strain (b) resolutions as functions of the

element size or regularization length

It is worth noting that the chosen element size (i.e., ` = 32 voxels) does not

allow the kinematic details induced by the cast iron microstructure to be fully

captured. However, the main purpose of the DVC calculations is to provide realistic

boundary conditions to the FE simulations. It has been shown that such Dirichlet

boundary conditions do not need to be measured at very fine spatial resolutions

for identification and validation purposes. However, it is crucial that they capture

the mesoscopic kinematics [26].

Keeping the element size identical (i.e., ` = 24 voxels), the uncertainties can be

further decreased (down to 0.05 voxel for displacements or 0.02 % for strains) by

utilizing mechanical regularization [37,65]. The results with mechanical regular-

ization are shown with dashed lines in Figure 6. A significant gain in uncertainty

is achieved since mechanical regularization successfully penalizes high-frequency

noise features. A saturation is observed for regularization lengths greater than

`r = 512 voxels. The observed differences are due to different initial quality of the

underlying scans that originates from focal point shift that occurred during the

experiment due to thermal drift (analyzing raw data reveals the best quality scans
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are indeed in the “0.744 mm” case). Further, once damage sets in, higher gray

level gradients are more favorable.

2.4 DVC results

Figure 7 shows microstructure sections for the unloaded state and after the first

five loading steps. From the reconstructed raw images early nodule debonding from

the matrix is noted. This phenomenon was also observed in the residual maps of

DVC analyses for another cast iron grade imaged via tomography [68]. From the

macroscopic load-displacement curve it can be seen from the sixth loading step

on that softening is followed by the final crack propagating through the scanned

region and these results, although available, are of less interest for the present

numerical modeling procedure. Conversely, the measured kinematic fields for the

initial steps are of special interest.
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Fig. 7 Through thickness section showing nodules embedded in the matrix for the undeformed

state (a) and after the first five loading steps (b)-(f)
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2.4.1 Correlation residuals

While performing DVC calculations at each iteration the deformed volume g is

being corrected by the current estimate of the displacement field. The final dif-

ference between undeformed and corrected deformed volumes represents the gray

level residual field ρ(x). It does not only serve as correlation quality inspector,

but it also provides useful tools for sensitive (precise) detection of damage occur-

rence [68]. In the present case it will also provide an objective way of comparing

measured and simulated displacement fields, as will be shown hereafter.

The kinematic basis utilized herein prescribes C0 continuity to the mea-

sured displacement field. Any deviation from this requirement (e.g., nodule/matrix

debonding, void nucleation and growth) cannot be properly captured by the un-

derlying kinematics and will be reflected in a local residual increase. Let us note

that corrected volumes are updated at each iteration on a sub-voxel scale by using

gray level interpolation (with a trilinear interpolation scheme). This means that

by using residual fields one can benefit from sub-voxel resolution in the gray level

registration procedure (Figure 6). However, a significant amount of damage growth

deteriorates gray level conservation and possibly DVC convergence.

In Figure 8 the gray level residual fields for the first loading step are shown in

isometric (a) and section (b) views as functions of different regularization lengths.

It can be noted that areas of higher residuals correspond with the position of

the debond zones. The relaxation procedure gives more freedom (since debonding

and its consequences are far from the elastic assumptions and those of constant

volume being made) in the correction of the deformed image as a part of the
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DVC procedure that results in slightly lower residual levels for the non-regularized

approach.
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Fig. 8 (a)-(c) Isometric view of the gray level residual field and (d)-(f) through thickness

section with the residual map for first loading step and three different regularization lengths

Beside debond zones with higher gray level residuals, the residual map in the

rest of the ROI shows sufficiently low values indicating successfully converged DVC

calculations. This is confirmed in Figure 9 where the root mean square (RMS)

residual field is shown for all loading steps and various regularization lengths.

Plotting the values for different regularization lengths shows the relaxation pro-

cedure, i.e., decreasing elastic regularization, yields slightly better solutions since

the elastic behavior requirements are relaxed. The fact that the residuals remain

close to the levels observed in the uncertainty analysis is an additional proof of

global convergence of DVC.
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Fig. 9 Root mean square gray level residual (normalized by dynamic range of the volume -

256 gray levels) for various regularization lengths (expressed in voxels)

2.4.2 Displacement fields

Displacement fields in the loading direction for the first loading step and four dif-

ferent regularization lengths obtained through the relaxation procedure are shown

in Figure 10. These fields correspond to the mid-thickness section of the sample.

Only relaxed solutions allow the heterogeneities induced by the nodules to be

captured. The mean values of the displacement fields do not differ much but the

standard deviation is somewhat increased by decreasing the regularization lengths.

This trend can be understood with the decrease of the registration residuals (see

Figure 9). The relaxed solution (i.e., `r = 0) allows more kinematic heterogeneities

that endow more precise corrections of the deformed images, i.e., lowers the dif-

ference (especially in debond zones) with the undeformed image.
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Fig. 10 Displacement fields of mid-thickness section for the first loading step and four dif-

ferent regularization lengths

2.4.3 Equivalent strains

Equivalent strain maps are shown in Figure 11 for the first loading step during

the relaxation procedure. Let us note the strain field heterogeneities can be seen

starting from `r = 2` = 64 voxels.
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Fig. 11 Equivalent strain maps of mid-thickness section for the first loading step and four

different regularization lengths

The strain maps plotted over the corresponding microstructure details for first

loading step for an unregularized solution are shown in Figure 12. It is interesting

to note that even at this scale, from the first loading step on, higher strained areas

are observed between some of the nodules. It is concluded that the presence of

strained bands is always accompanied by nodules, while not all the nodules are

affected by the localized strain pattern.
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Fig. 12 Equivalent strain maps plotted together with the corresponding microstructure sec-

tions for the first loading step (unregularized DVC) and different positions along the thickness

direction

3 Mechanical simulations

Performing FE simulations with real microstructures and boundary conditions

requires a robust and efficient numerical framework. Robustness is important be-

cause a real microstructure includes complex features and interfaces. For example,

a wide range of biomechanical problems typically requires meshes of human bones

or tissues that are accurate enough to reproduce nature but with a mesh qual-

ity that allows FE simulations at large strains [75,73,48]. Other materials such

as foams and composites induce similar challenges as they feature complex and

sometimes tortuous microstructures [33,73]. In the present case, the microstruc-

ture consists of voids (Figure 3) that are nearly spherical but of different sizes

and with a random distribution where some voids may have initially coalesced.

Additionally, realistic boundary conditions may induce a non proportional load-

ing path and heterogeneous distortions of the FE domain. In the following, the

whole numerical framework for performing the simulations is presented from the

mesh generation to the application of boundary conditions and mechanical mod-
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eling (Figure 1). Particular attention is paid to the computational cost of each

operation as it will play a key role for computations on large ROIs.

3.1 Meshing X-ray images

Meshing real materials and structures from images is a challenging task for which

multiple approaches have been proposed [75,73]. A direct method would consist of

first thresholding the image, then applying a contour detection algorithm to build

a surface mesh of all interfaces and finally constructing a volume mesh around

them [75]. The method used herein first builds a volume mesh, usually from a

cube, which can be the image itself or, more likely, the ROI. Then, the image

is imported into this mesh and surface meshes are built inside this volume mesh

using mesh adaption techniques.

3.1.1 Image import

In general, the whole X-ray image is not considered because it is likely to contain

some artifacts and/or noisy areas. A simple way to extract only the regions that are

exploitable is to crop the image based on a 3D box. The first step of the meshing

procedure is to generate a 3D mesh of this box. When no mesh refinement is used,

the box can already be meshed with the chosen uniform isotropic size. When local

mesh refinement is used, especially if it is based on geometric error estimators, it

is assumed that the initial mesh of the 3D box is globally finer than the smallest

size prescribed by this local mesh refinement. After import and meshing of the

image, this mesh can be coarsened in areas where refinement is not necessary.

The next step is to have a description of the image in the mesh, for exam-

ple through node-wise gray levels defined at mesh nodes. The image can also be
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thresholded before import, in which case each gray level will represent not a color

but a phase identifier. In order to transfer this information from the image to the

mesh, FE interpolation is used. The image is considered as a hexahedral FE grid

where voxels are nodes, and field transfer is operated from this grid to the nodes

of the 3D box. For each node of the 3D box, finding the hexahedron of the image

that contains it can be performed in constant time, since the image is a structured

grid.

Once this gray level is obtained, LS reinitialization is performed. LS functions

are a useful tool to localize evolving interfaces in multiphase simulations [49,63,

51]. They play a key role in the numerical method that will be used to adapt the

mesh throughout the simulations. The LS function φi for phase i is defined as

∀t,∀x ∈ Ω(t), φi(x, t) =


+d(x, ∂Ωi(t)), x ∈ Ωi(t),

−d(x, ∂Ωi(t)), x /∈ Ωi(t),

(14)

where Ω(t) is an evolving domain, Ωi(t) is the subset of Ω(t) occupied by phase

i, and d(x, ∂Ωi(t)) is the Euclidean distance from point x to the boundary of

Ωi(t). LS functions will also play a key role to compute the porosity and for error

measurements as they carry all information regarding phase distributions. The

difficulty is how to convert a node-wise gray level or phase identifier into a signed

distance function. This problem is known as the LS reinitialization problem [64,

61]. It is solved herein using a direct brute-force algorithm enhanced with a parallel

space partitioning technique [61]. Once LS functions are obtained for each phase

of the domain, one may start a simulation using only this implicit representation

of interfaces. The FE framework developed in Refs. [59,60] aims at going a little

farther and maintaining an explicit representation of interfaces throughout the

simulation.
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3.1.2 Mesh generation

Mesh generation is directly based on LS functions. Every edge where an LS func-

tion φi has opposite signs on both ends is an edge crossed by an interface. In

Ref. [59], an interface fitting procedure was proposed in order to introduce all

these intersection points in the mesh of the domain. This procedure is likely to in-

troduce very poor quality elements that will render any FE simulation on this mesh

impossible. A mesh adaption step is therefore necessary to restore an appropri-

ate mesh quality. In Ref. [60], the topological mesh adaption technique detailed in

Ref. [19] was enhanced by taking into account volume conservation during remesh-

ing in order to preserve (at best) the distribution of phases in the initial mesh.

As presented in Section 3.5, it is also used during FE simulations, where large de-

formations and topological events may induce large distortions of the Lagrangian

mesh.

The whole image import and mesh generation procedure is summarized in

Figure 13. A closer look at interfaces is presented on the right side of this figure.

While interface fitting produces a smooth surface mesh of the interface, which is

actually the zero-LS function, edge lengths are randomly distributed and element

quality is deteriorated. This is corrected in the last mesh adaption step.
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Fig. 13 Example of mesh generation from a 2D binary image

3.2 Definition of a computational domain

For each experiment, 3D X-ray images are reconstructed at various loading steps.

For obvious reasons, it is impossible to systematically capture the same part of

the specimen, and some features may go in and out of the images. Regarding

DVC, this is dependent on whether computations are conducted with a direct

or incremental scheme (see Figure 5). The ROI may be different depending on

the used method as for example more material points of intermediary images are

taken into account by the incremental method. However, this is not possible for
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mechanical simulations, namely, the chosen initial FE domain has to remain inside

all DVC ROIs throughout the simulation. This is independent of the DVC method

(direct or incremental). In practice, the DVC ROI is chosen as large as possible

(ideally, the full X-ray images minus the regions with missing information), and

the FE domain for mechanical computations is manually chosen in order to be

contained inside all DVC ROIs.

3.3 Application of boundary conditions

Once an appropriate domain has been chosen and meshed according to the ini-

tial image, boundary conditions have to be applied to follow experimental images

through each loading step. This problem is split into two operations that are time

and spatial interpolations. Neither the time step nor the FE mesh used for me-

chanical computations will generally match the loading steps used in experiments

and the mesh used for DVC. In practice, a loading step will be split into several

time steps, especially at crack initiation. Regarding the FE mesh, it will be fitted

to the features of the microstructure as described in Section 3.1. It is worth noting

that such fine meshes are not compatible with standard DVC approaches [36], the

reason for that being the fact the number of voxels per nodal displacement cannot

be arbitrarily reduced without additional regularization [37,36] (see Figure 6). As

discussed in Section 2.3, the very details of the displacement field are not needed

for Dirichlet boundary conditions when used for validation purposes.

The application of boundary conditions is presented here for time t, which is

not necessarily a time at which a scan was acquired, and for boundary nodes of

the FE mesh, which are not necessarily nodes of the DVC mesh. Note that t is
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an artificial and dimensionless time linked to the loading steps (i.e., the material

behavior is rate-independent). The automatic procedure implemented in the FE

code reads:

1. find the two loading steps taken at instants ta and tb such that ta ≤ t < tb,

with no loading step between ta and tb,

2. read the undeformed DVC mesh and the DVC displacement field at ta,

3. perform linear time-interpolation,

4. perform linear (resp. trilinear) space-interpolation by finding for each boundary

node of the FE mesh the element of the DVC mesh containing it, and apply

tetrahedral (resp. hexahedral) interpolation inside this element depending on

its type.

Operation 1 has linear complexity and negligible cost as the number of loading

steps is small. The same remark applies to operations 2 and 3 as the DVC mesh

is at least one order of magnitude coarser than the FE mesh (in terms of number

of elements). Operation 4, however, requires to localize each node of the FE mesh

inside the DVC mesh. Optimized algorithms can be found in the literature to

perform such operation in logarithmic time [61] but were not implemented here

due to the small size of the DVC mesh compared to the FE mesh. Hence, this

operation has a cost proportional to the number of elements in the DVC mesh,

and quadratic cost considering it has to be run for all boundary nodes of the FE

mesh. This cost would have to be optimized if finer DVC meshes were to be used,

especially if those meshes were to have an order comparable to that of the FE

mesh.
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Last, the displacement field interpolated at the boundary nodes of the FE mesh

is prescribed by means of Dirichlet boundary conditions on the whole boundary of

the FE domain. Therefore, apart from small differences due to interpolation and

remeshing, the boundary of the FE mesh is expected to follow exactly the measured

displacement field at each loading steps. The errors that will be measured inside

the domain are expected to be mainly due to the mechanical modeling.

3.4 Constitutive law

As stated in the introduction, graphite nodules are considered as voids in the

present computations [17,74,6,29]. These voids are modeled using an isotropic

linear elasticity law with very low Young’s modulus. With a sufficiently low value,

the behavior of a void is obtained. The influence of such penalization technique on

void growth was investigated in Ref. [57]. This investigation is again carried out

herein.

Regarding the ferritic matrix, von Mises plasticity with power law hardening

is assumed [40]

σ0(ε) = σy +Kεn, (15)

where ε is the equivalent (von Mises) plastic strain, σy the yield stress, K the

plastic consistency and n the hardening exponent. This law was fitted against a

stress/strain curve for a pure ferritic matrix [74], which is assumed to be repre-

sentative of the in-situ behavior of the ferritic matrix of the studied cast iron. The

obtained values are σy = 290 MPa, K = 382 MPa, n = 0.35; the Young’s modulus

E = 210 GPa, and Poisson’s ratio ν = 0.3. The chosen constitutive law may

appear very simplistic. However, in virtually all unit cell calculations or microme-
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chanical models accounting for ductile damage, such types of plasticity postulates

are used. It is noteworthy that more complex models can be incorporated in the

present framework (e.g., crystal plasticity).

To avoid numerical locking in the plastic regime, a mixed velocity-pressure

formulation is used with a P1+/P1 element [5]. Additionally, a Newton-Raphson

algorithm is implemented to account for the nonlinear behavior of the matrix [71].

This mechanical solution yields displacement fields at mesh nodes and stress /

strain distribution at quadrature points, including the equivalent plastic strain.

Large plastic strains are considered herein thanks to an updated Lagrangian for-

mulation, which is commonly used in metal forming simulations [71]. This incre-

mental formulation has proven to give accurate results for small time steps (time

step convergence is usually carried out in such analyses as shown below).

3.5 Mesh motion / adaption

All FE computations are performed in a Lagrangian framework. Therefore, at

each time step, the displacement field is applied to move the nodes of the mesh.

A mesh adaption technique has already been introduced in order to restore mesh

quality when generating body-fitted meshes from images. The same technique is

applied during the FE simulation. Due to the presence of large void growth and

coalescence events in the images, the boundary conditions may induce very large

deformations, which can be local for specific voids, or global to the whole domain.

Though no fracture or coalescence criteria such as those used in Ref. [59] are

employed in the present simulations, these deformations may induce topological

events such as coalescence of neighboring voids. The mesh motion and adaption
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procedure described in Ref. [60] was designed to handle such issues. This procedure

consists of detecting element flip during mesh motion, going back if it occurred,

remeshing, and trying again. Doing so, small deformation steps are performed and

the robustness of the Lagrangian framework is improved.

3.6 Simulation results

The DVC ROI for which boundary conditions are available is of dimensions up

to 5323 voxels. Finding the largest 3D box included in this ROI and in all ROIs

through each loading step was performed manually by launching simulations with-

out meshing any microstructure. Box dimensions were reduced progressively until

reaching the above condition. The chosen FE domain is of dimensions [−245, 200]×

[−17, 200]× [−245, 245] voxels, due to necking in the x-direction and crack opening

in the y-direction.

In the following, FE simulation results are presented using this initial domain

and, unless otherwise mentioned, DVC boundary conditions using element size

` = 32 voxels and no regularization. Qualitative comparisons with experiments are

presented based on 2D slices of the microstructure. Particular interest is given to

void volume change (nodules being already replaced by voids in the initial mesh)

in order to enable for quantitative comparisons. More precise error measurements

are presented in Section 4.

3.6.1 Mesh generation

To show how different meshing parameters can be used in order to capture dif-

ferent scales of the microstructure, three different sets are tested. The reference

configuration defines an isotropic mesh size h2 of 10 µm for elements close to
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interfaces and 50 µm for elements farther than 100 µm from any interface, the

transition between these two mesh sizes being linear. A coarser mesh h4 is then

obtained by multiplying all these parameters by 2, while a finer mesh h1 is based

on a division of these parameters by 2. The resulting meshes have 69, 010 elements

for the coarsest one, 1, 857, 466 for the finest one, and 387, 473 for the reference

one.

It is important to check that finer scales are better captured with the finest

setting. Therefore, the middle slice of the image is compared to the midsection

slice for each obtained mesh in Figure 14. The coarsest result in Figure 14(c) gives

a rough approximation of the microstructure, while an acceptable description is

obtained in the reference mesh (Figure 14(b)). Last, no significant difference is

observed between the initial image and the finest mesh in Figures 14(a) and 14(d).

(a) (b)

(c) (d)

F

F

x
y

Fig. 14 Matrix and nodules at midsection of: (a) the image, (b) the reference mesh h2, (c)

the coarse mesh h4, (d) the fine mesh h1



Numerical Validation Framework for Micromechanical Simulations 37

For FE simulations, mesh quality is of major importance and should be inves-

tigated. The quality distribution is presented in Figure 15 for the three settings.

A quality of 1 means a well shaped tetrahedron, while a quality of 0 means a

degenerated one. Finer meshes induce more elements far from interfaces and ren-

der mesh adaption easier. Therefore, the histogram for the finest mesh is slightly

shifted to the right. However, the proportion of elements in the first half of the

histogram remains negligible for the three configurations, which proves that accu-

racy is improved with finer meshes but not at the sacrifice of mesh quality. Though

this qualitative comparison suggests to use very fine meshes, it is important to see

the influence of these parameters on the quantities of interest such as void volume

changes for example.
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Fig. 15 Distribution of mesh quality at the initial state for the three tested mesh settings

3.6.2 Choice of numerical parameters

To choose appropriate meshing parameters, time step and void penalization co-

efficient, a sensitivity analysis is conducted. Meshing parameters are tested using

the three meshes defined in the previous section. Regarding the time step, the

reference is identical to that of the reconstructed images, i.e., there are 7 scans,
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so 6 DVC displacement fields are available and 6 time increments are performed

in the FE simulation. Note that scans were not acquired at uniformly distributed

displacement increments as smaller loading steps were performed at the onset of

void coalescence (Figure 2(b)). A configuration with a time step 10 times smaller

is tested (i.e., 60 time increments) to investigate time step influence. Last, the

reference configuration uses a Young’s modulus for voids 1, 000 times smaller than

that of the matrix. A simulation is performed with a penalization of 10, 000 to

check the influence of this coefficient.

The results are presented in Figure 16 in terms of relative void volume change,

which is expressed as the void volume divided by the volume of the FE ROI. While

the penalization parameter and the time step do not seem to have a significant

influence on the results, the mesh size plays a key role. The image import and

mesh adaption methodology introduced in Section 3.1 enable all scales of the

initial image to be captured with a finer mesh, and preserve them more efficiently

throughout the simulation. Hence, both the initial void volume and its changes

in Figure 16 are under-estimated with a coarser mesh. These results suggest that

the reference penalization parameter and time step are appropriate for the FE

simulations, hence they were used in all following results. However, more accurate

error measurements are necessary to locally investigate the influence of mesh size

(see Section 4).
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Fig. 16 Change of void volume (wrt. total ROI volume) with applied macroscopic displace-

ment for various numerical parameters

3.6.3 Discussion

To show the interest of the present method linking synchrotron experiments and

FE simulations through the use of DVC, it is important to compare the void volume

change curves in Figure 16 to experimental observations. This is qualitatively

illustrated in Figure 17, where void growth in the FE simulation using mesh h1 is

compared with experimental images, while quantitative comparisons are presented

in Section 4. Results in Figure 17 suggest that void coalescence is not only due

to an acceleration of void growth in inter-void ligaments. It seems that there is

either important matrix softening between neighboring voids, which would imply

the presence of a minor void population [28,76] not captured by X-ray images, or

a transition from strained bands to localized fracture of these ligaments.



40 A. Buljac et al.

Fig. 17 Comparison between the void/matrix interface obtained by the FE simulation (thin

white line) and the experimental images at a macroscopic displacement of: (a) 0 µm, (b)

330 µm, (c) 578 µm, (d) 744 µm, (e) 868 µm, (f) 910 µm, (g) 950 µm

Inter-void plastic strained bands are clearly visible in Figure 18. Compari-

son with the final crack propagation path in Figure 17 reveals the importance of

studying more closely the behavior of the matrix in these bands. Crystal plasticity

modeling [55] may be important, as grain size in the matrix material is comparable

to nodule size [29]. Such discussions are only possible thanks to simulations with

real microstructures and measured boundary conditions. As mentioned above,

such models can be included in the numerical framework presented herein.
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Fig. 18 Equivalent plastic strain obtained by the FE simulation superimposed with experi-

mental images at a macroscopic displacement of: (a) 578 µm, (b) 910 µm

4 Quantitative comparisons

The whole methodology presented in the previous sections focuses on expressing

experiments and FE simulations in the same kinematic space. On the one hand,

experimental images are directly exploited by the FE code in order to mesh the

initial domain. On the other hand, they are also exploited by DVC in order to

compute displacement fields that are then used to drive the FE simulation. In

order to check the validity and accuracy of all the computations, these links need

to be reversed, as shown in Figure 1. The FE simulation results should be com-

pared both against experimental images obtained during loading and measured

displacement fields as well. Regarding the validation of DVC measurements, it is

common practice to study correlation residuals (see Section 2.4.1), namely, the

deformed experimental volumes are corrected using the measured displacement

field and compared to the actual reference volume. This operation can also be

applied to the displacement fields obtained by the FE simulation, i.e., compute

gray level residuals (see Equation (2)) for the FE kinematic fields by correcting
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reconstructed volumes. The corresponding DVC and FE gray level residual fields

can then be compared. DVC displacement fields are applied to the boundaries of

the FE domain, but they are also available inside the domain. Hence, DVC and FE

kinematic fields can also be interpolated on the same mesh and directly compared.

In the following, displacement fields obtained by C8-DVC are interpolated on

the corresponding FE mesh (i.e., T4 unstructured mesh). The meshes are shown

in Figure 19. The FE domain, which needed to be reduced compared with the

DVC ROI for the reasons outlined in Sections 2.2.3 and 3.1.2, contains the fine

mesh h2 adjusted to the microstructure details as opposed to the structured and

coarser DVC mesh.
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(a) (b) X section

(c) Y section (d) Z section

Fig. 19 (a) DVC (blue) and FE (red) meshes plotted over the corresponding cast iron

microstructure in (a) isometric view and (b-d) sections normal to X, Y and Z axes

The original FE and DVC interpolated displacement fields are then subtracted

yielding the displacement difference field. The displacement fields and their dif-

ference is shown in Figure 20 for the third loading step on the section normal to

the y-direction. The displacement field magnitude shows good match between the

two solutions, which is to be expected since measured boundary conditions are

prescribed. The field differences mainly occur in areas close to the nodules.
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Fig. 20 Section normal to y-direction: (a) DVC displacement field magnitude, (b) FE dis-

placement field magnitude, (c) absolute difference between them and (d) DVC and FE meshes

for the third loading step. All reported values are expressed in voxels (1 voxel ↔ 1.1 µm)

and correspond to the FE mesh h2

The displacement difference is characterized by the mean and standard devia-

tion values for the three directions, and shown in Figure 21. It is interesting to nor-

malize standard deviations with the corresponding DVC displacement uncertainty

(Figure 21(b)). The displacement differences deviate more than the measurement

uncertainty meaning the current DVC and FE results are not fully consistent.

However, it is worth noting that for the first four steps the differences remain

rather small (i.e., less than 5 times the standard displacement resolutions). Con-

versely, for the last loading step, the agreement is less good. This is due to the fact

that significant void growth has occurred (Figure 17) and is not fully captured

either by DVC or FE simulations.
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Fig. 21 (a) Mean values and (b) standard deviations of the difference between the measured

simulated displacement fields for the FE mesh h2. Standard deviations are normalized by the

corresponding DVC uncertainties

The influence of the mesh size used in the FE computations is reported in Fig-

ure 22 using the three densities defined in Section 3.6.1. The diagrams are showing

(a) mean and (b) standard deviation of the displacement differences between mea-

sured (via DVC) and FE simulations. The results show there is no significant

influence of the mesh size when compared to DVC results. Interestingly, for the

last two loading steps, the difference between the three FE simulations increases.

This is a further indication that localized phenomena occur and that the FE dis-

cretization becomes sensitive to such events.
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Fig. 22 (a) Mean values and (b) standard deviations of the difference between the mea-

sured and simulated displacement fields for different FE mesh sizes. Standard deviations are

normalized by the corresponding DVC uncertainties

Although assessing displacement differences is an interesting piece of informa-

tion, it is not an objective way of validating FE simulations since the meshes are

different in DVC calculations and FE simulations (Figure 19). In the following it

is proposed to use gray level residuals to compare all results even though the ex-

perimental solution is unknown. To validate DVC results the corrected deformed

volumes ĝ are computed with measured displacement fields. The same procedure is

followed by computing gray level residuals with FE computed displacement fields.

The T4 mesh together with the computed displacement values are imported into

a newly developed T4-DVC code [35,26]. By using the T4 shape functions the

displacement results are interpolated voxel-wise and the corresponding deformed

volume g(x) is corrected by the computed displacement field uFE(x). The gray

level residuals, namely, differences between the reference volume f(x) and cor-

rected deformed volume g(x + uFE(x)) can then be compared for DVC and FE

computations.

This procedure is illustrated in Figure 23 for the third loading step. The mi-

crostructure section in the reference and deformed states is shown in addition to
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their raw difference. The latter shows that the motion of the nodules is not fully

accounted for. Figure 23(d-e) shows the gray level residual after correcting with

the displacement fields measured via DVC and computed with the FE simula-

tion with h2 mesh. When compared with Figure 23(c) it is concluded that DVC

and FE results are close to the experiment. There still are some very small areas

close to the nodule interface that are not properly captured by the measured and

simulated fields. On the DVC side, this is an indication that debonding has oc-

curred and the displacement continuity associated with the C8 mesh is violated.

The coarseness of the mesh in comparison with the nodular graphite cast iron

microstructure is an additional reason. On the FE side, the hypothesis that the

nodules can be approximated by voids may be a possible cause for this difference.

The constitutive model chosen for the matrix at this scale and the corresponding

material parameters could be another reason.
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Fig. 23 Microstructure section in the (a) reference and (b) deformed states. Absolute gray

level differences between the two initial states (c) and after correction with DVC (d) and FE

(e) displacements (obtained on h2 mesh) for third loading step
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The results of Figure 23 indicate that DVC and FE results are very close in

terms of gray level residuals. This is confirmed by reporting the standard devia-

tions of the residual fields for all the analyzed loading steps (Figure 24). These

curves are plotted together with the corresponding residuals from the uncertainty

analyses of the first and fourth loading steps. First, the DVC and FE residuals

have very similar levels for the whole history even though the discretizations are

very different. This is mainly due to the fact that measured boundary conditions

have been applied to the numerical model. As the screw displacement is increased,

the two residuals depart from those observed for the uncertainty analysis. This is

an indication that the measured and computed displacements are no longer able

to capture all the complex phenomena taking place. Model errors are therefore

to be expected. On the DVC side it is related to the coarse and continuous C8

discretization.
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Fig. 24 Standard deviation for the dimensionless gray level residual fields for all loading

steps (FE results obtained with h2 mesh)

In terms of overall levels, there are two regimes observed in the standard devi-

ations of the residual fields. For the first five loading steps, the standard deviations

vary between 1.2 and 1.5 times the level observed in the uncertainty quantification.

Such low levels prove that even though imperfect, the present simulations are con-
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sistent with the experimental data at hand. For the sixth loading step, there is a

clear degradation of the gray level residuals (i.e., the standard deviation is 2 times

the level observed in the uncertainty quantification). This phenomenon is associ-

ated with coalescence (see Figure 7(f)), which is confirmed in Figure 17. In this

last regime, the numerical predictions depart from the experimental observations.

The influence of the FE mesh is evaluated in Figure 25. There is no significant

influence of the mesh size on the gray level residuals. The three meshes can be

used in the present analyses since they lead to virtually identical global residuals.

This last result shows that on the FE side the origin of higher residual is due to

the constitutive model that is no longer able to fully capture all the strained bands

preceding coalescence mechanisms.
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Fig. 25 Standard deviation gray level residuals for all loading steps with three different FE

discretizations

From the previous results (Figure 24) it is concluded that the FE solution

driven by the DVC boundary conditions is close to the laminography data used

herein in the void growth regime. Conversely, void coalescence is not well described.

This result validates the numerical framework. However, it does not necessarily

validate the constitutive model since up to now only kinematic fields extracted

from laminographic scans were probed. Error measurements based purely on kine-
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matic data may not be sufficient because all 6 faces of the FE ROI are constrained.

Hence, static data should also be involved in the analysis. This procedure requires

the knowledge of stress profiles along the sample ligament to be able to compare

experimentally measured macro-forces and calculated static responses from FE

simulations on microscopic level (FE ROI scale).

5 Conclusions

In this study an innovative validation procedure combining synchrotron laminog-

raphy, digital volume correlation and FE simulations on the microscale level has

been presented (Figure 1). Experimental data, namely, reconstructed volumes are

collected via laminography while performing a tensile test on a flat specimen of

nodular cast iron with a central hole. Bulk kinematic fields in the region close to

the central hole are measured via DVC. Since high strain levels occur between sub-

sequent scans regularized approaches to DVC are to be used to converge. A step-

wise relaxation procedure has been followed ending with unregularized solutions.

The FE mesh is adapted to the real microstructure under the assumption that

graphite nodules are considered as voids with a specially developed (re)meshing

procedure. The FE simulations are driven by Dirichlet boundary conditions ex-

tracted from DVC measurements on all 6 surfaces of the analyzed domain. The

results obtained from DVC registrations and FE simulations are then mutually

and separately compared with respect to the available experimental information.

DVC results are validated with respect to experimental data through the corre-

lation residuals, which are probed for all voxels belonging to the region of interest

and all the analyzed scans. Since the kinematic basis utilized herein prescribes C0
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continuity to the kinematic fields, the gray level residual fields serve as correlation

quality inspector and provide a useful tool for damage detection in the zones where

the continuity requirement is not met. The overall residual levels are reasonably

low thereby indicating successful registrations. The areas of higher residuals corre-

spond to the position of the debond zones that appear very early on, and increase

further due to void coalescence.

Once validated, DVC measurements are used to drive FE simulations. Added to

the fact that the real microstructure is discretized in the FE mesh, heterogeneous

displacements prescribed by DVC require a robust mesh adaption methodology.

The latter is used herein and enables simulations to be performed with significant

void growth up to coalescence. While microstructures are often idealized in the

literature, these promising results open new possibilities for numerical modeling

of heterogeneous 3D microstructures having a complex morphology and undergo-

ing large deformations and complex topological events such as those observed in

reality.

DVC and FE results are then probed by direct comparison of the full-field

solutions and computation of the gray level residuals. The first method, which is

a relative comparator, provides the gap between DVC and FE kinematic fields.

It is shown that differences between the two methods are mainly concentrated in

the bulk of the inspected region around the nodules, while boundary zones have

mostly zero differences because the boundary conditions are measured via DVC.

However, just observing the displacement difference between the two methods does

not yield an absolute error. Conversely, the gray level residuals can be computed

independently for both approaches. The kinematic fields are probed by computing

the deformed volume corrected by the measured or simulated displacement fields.
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The fact that the gray level residuals remain reasonably low for the FE simulations

in the void growth regime is a partial validation. However, void coalescence is not

properly captured. This last result calls for more advanced constitutive models for

the matrix, the nodules and their interface with the matrix. During coalescence,

void nucleation at finer scales and very large strains might play a role. It is associ-

ated with damage softening. The present framework will allow, in future analyses,

to test this hypothesis using more sophisticated plasticity/damage models.

One of the next steps of the present work will thus deal with the constitu-

tive law of the matrix whose parameters can be modified to get an even better

agreement between the experimental data and numerical results. Similarly, the

hypothesis of considering nodules as voids can also be probed and debonding can

be addressed. The proposed numerical/experimental framework will still be used

with sequential or integrated identification procedures [26,42].

To the authors’ best knowledge this is the first time 3D calculations are per-

formed on a real microstructure and by using measured boundary conditions up

to large plastic strain. This approach will enable for better understanding and

modeling of damage mechanisms at microscale levels. The presented numerical

framework can easily be generalized for other types of materials that possess het-

erogeneous microstructures.
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36. Leclerc, H., Périé, J., Hild, F., Roux, S.: Digital volume correlation: What are the limits

to the spatial resolution? Mech. & Indust. 13, 361–371 (2012)
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Reconstruction for Parallel-Beam Computed Laminography by Filtered Backprojection on

Multi-Core Clusters. IEEE Trans. Image Process. 22(12), 5348–5361 (2013)

47. Needleman, A., Tvergaard, V.: An analysis of ductile rupture in notched bars. J. Mech.

Phys. Solids 32(6), 461–490 (1984)

48. Odin, G., Savoldelli, C., Bouchard, P.O., Tillier, Y.: Determination of Young’s modulus

of mandibular bone using inverse analysis. Medical engineering & physics 32(6), 630–7

(2010)

49. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms

based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1), 12–49

(1988)



Numerical Validation Framework for Micromechanical Simulations 57

50. Proudhon, H., Li, J., Reischig, P., Guéninchault, N., Forest, S., Ludwig, W.: Coupling

diffraction contrast tomography with the finite element method. Advanced Engineering

Materials (2016). DOI 10.1002/adem.201500414

51. Quan, D.L., Toulorge, T., Marchandise, E., Remacle, J.F., Bricteux, G.: Anisotropic mesh

adaptation with optimal convergence for finite elements using embedded geometries. Com-

puter Methods in Applied Mechanics and Engineering 268, 65–81 (2014)

52. Rabotnov, Y.: On the Equations of State for Creep, pp. 307–315. McMillan, New York

(USA) (1963)
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