Online Nonparametric Learning, Chaining, and the Role of Partial Feedback
Résumé
We investigate contextual online learning with nonparametric (Lipschitz) comparison classes under different assumptions on losses and feedback information. For full information feedback and Lipschitz losses, we characterize the minimax regret up to log factors by proving an upper bound matching a previously known lower bound. In a partial feedback model motivated by second-price auctions, we prove upper bounds for Lipschitz and semi-Lipschitz losses that improve on the known bounds for standard bandit feedback. Our analysis combines novel results for contextual second-price auctions with a novel algorithmic approach based on chaining. When the context space is Euclidean, our chaining approach is efficient and delivers an even better regret bound.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...