On M-functions associated with modular forms - Archive ouverte HAL
Article Dans Une Revue Moscow Mathematical Journal Année : 2018

On M-functions associated with modular forms

Résumé

Let $f$ be a primitive cusp form of weight $k$ and level $N,$ let $\chi$ be a Dirichlet character of conductor coprime with $N,$ and let $\mathfrak{L}(f\otimes \chi, s)$ denote either $\log L(f\otimes \chi, s)$ or $(L'/L)(f\otimes \chi, s).$ In this article we study the distribution of the values of $\mathfrak{L}$ when either $\chi$ or $f$ vary. First, for a quasi-character $\psi\colon \mathbb{C} \to \mathbb{C}^\times$ we find the limit for the average $\mathrm{Avg}_\chi \psi(L(f\otimes\chi, s)),$ when $f$ is fixed and $\chi$ varies through the set of characters with prime conductor that tends to infinity. Second, we prove an equidistribution result for the values of $\mathfrak{L}(f\otimes \chi,s)$ by establishing analytic properties of the above limit function. Third, we study the limit of the harmonic average $\mathrm{Avg}^h_f \psi(L(f, s)),$ when $f$ runs through the set of primitive cusp forms of given weight $k$ and level $N\to \infty.$ Most of the results are obtained conditionally on the Generalized Riemann Hypothesis for $L(f\otimes\chi, s).$
Fichier principal
Vignette du fichier
ihara2017_01.pdf (378.89 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01475616 , version 1 (23-02-2017)

Identifiants

Citer

Philippe Lebacque, Alexey Zykin. On M-functions associated with modular forms. Moscow Mathematical Journal, 2018, 18 (3), pp.437-472. ⟨10.17323/1609-4514-2018-18-3-437-472⟩. ⟨hal-01475616⟩
137 Consultations
150 Téléchargements

Altmetric

Partager

More