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ON M-FUNCTIONS ASSOCIATED WITH MODULAR FORMS

PHILIPPE LEBACQUE AND ALEXEY ZYKIN

Abstract. Let f be a primitive cusp form of weight k and level N, let χ be a Dirichlet
character of conductor coprime with N, and let L(f ⊗ χ, s) denote either logL(f ⊗ χ, s)
or (L′/L)(f ⊗ χ, s). In this article we study the distribution of the values of L when either
χ or f vary. First, for a quasi-character ψ : C → C× we find the limit for the average
Avgχ ψ(L(f ⊗ χ, s)), when f is fixed and χ varies through the set of characters with prime
conductor that tends to infinity. Second, we prove an equidistribution result for the values
of L(f ⊗ χ, s) by establishing analytic properties of the above limit function. Third, we

study the limit of the harmonic average Avghf ψ(L(f, s)), when f runs through the set of
primitive cusp forms of given weight k and level N → ∞. Most of the results are obtained
conditionally on the Generalized Riemann Hypothesis for L(f ⊗ χ, s).

1. Introduction

1.1. Some history. The study of the distribution of values of L-functions is a classical topic
in number theory. In the first half of 20th century Bohr, Jessen, Wintner, etc. intiated a
study of the distribution of the values of the logarithm log ζ(s) and the logarithmic derivative
(ζ ′/ζ)(s) of the Riemann zeta-function, when Re s = σ > 1

2
is fixed and Im s = τ ∈ R varies

([1], [2],[18], [19]). This was later generalized to L-functions of cusp forms and Dedekind
zeta-functions by Matsumoto ([23], [24], [25]).

In the last decade Y. Ihara in [5] proposed a novel view on the problem by studying
other families of L-functions. His initial motivation was to investigate the properties of the
Euler–Kronecker constant γK of a global field K, which was defined by him in [4] to be the
constant term of the Laurent series expansion of the logarithmic derivative of the Dedekind
zeta function of K, ζ ′K(s)/ζK(s). The study of L′(1, χ)/L(1, χ) initiated in [13] grew out to
give a whole range of beautiful results on the value distribution of L′/L and logL.

Given a global field K, i.e. a finite extension of Q or of Fq(t), and a family of characters
χ of K Ihara considered in [5] the distribution of L′(s, χ)/L(s, χ) in the following cases:

(A) K is Q, a quadratic extension of Q or a function field over Fq, χ are Dirichlet
characters on K;

(B) K is a number field with at least two archimedean primes, and χ are normalized
unramified Grössencharacters;

(C) K = Q and χ = χt, t ∈ R defined by χt(p) = p−it.

The equidistribution results of the type

Avg′χΦ

(

L′(s, χ)

L(s, χ)

)

=

∫

C

Mσ(w)Φ(w)|dw|, (1)
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(with a suitably defined average in each of the above cases) were proven for σ = Re s > 1
for number fields, and for σ > 3/4 for function fields, under significant restrictions on
the test function Φ. The function field case was treated once again in [9] by Y. Ihara
and K. Matsumoto, with both the assumptions on Φ and on σ having been relaxed (Φ
of at most polynomial growth and σ > 1/2 respectively). The most general results in
the direction of the case (A) were established in [11] conditionally under the Generalized
Riemann Hypothesis (GRH) in the number field case and unconditionally in the function
field case (the Weil’s Riemann hypothesis being valid) for both families L′(s, χ)/L(s, χ) and
logL(s, χ). For Re s > 1

2
Ihara and Matsumoto prove that

AvgχΦ

(

L′(s, χ)

L(s, χ)

)

=

∫

C

Mσ(w)Φ(w)|dw|, Avgχ Φ(logL(s, χ)) =

∫

C

Mσ(w)Φ(w)|dw|,

for continuous test functions Φ of at most exponential growth. Note that Avg′ in (1) is
different from the one used in the latter paper, since extra averaging over conductors is
assumed in the former case, the resulting statements being weaker.

Unconditional results for a more restrictive class of Φ (bounded continous functions), and
with extra averaging over the conductor Avg′, but still for Re s > 1

2
were established in [10]

and [12] in the log and log′ cases respectively in the situations (A, K = Q) and (C).
The above results give rise to the density functionsMσ(z) and a related function M̃s(z1, z2)

(which is the inverse Fourier transform of Mσ, when z2 = z̄1, s = σ ∈ R) both in the
log and log′ cases. Under optimal circumstances (though it is very far from being known
unconditionally in all cases) we have

Mσ(z) = Avgχ δz (L(χ, s)) , M̃σ(z1, z2) = Avgχ ψz1,z2 (L(χ, s)) ,

where L(s, χ) is either L′(s, χ)/L(s, χ) or logL(s, χ), δz is the Dirac delta function, and
ψz1,z2(w) = exp

(

i
2
(z1w̄ + z2w)

)

is a quasi-character.

The functions M and M̃ turn out to have some remarkable properties that can be estab-
lished unconditionally. For example, M̃ has an Euler product expansion, an analytic con-
tinuation to the left of Re s > 1/2, its zeroes and the “Plancherel volume”

∫

C
|M̃σ(z, z̄)|2|dz|

are interesting objects to investigate. We refer to [6], [7] for an in-depth study of M and M̃,
as well as to the survey [8] for a thorough discussion of the above topics.

In a recent paper by M. Mourtada and K. Murty [27] averages over quadratic characters
were considered. Using the methods from [11], they establish an equidistribution result
conditional on GRH. Note that in their case the values taken by the L-functions are real. In
this respect the situation is similar to the one considered by us in §5 in case we assume that
s is real.

Finally, let us quote a still more recent preprint by K. Matsumoto and Y. Umegaki [26]
that treats similar questions for differences of logarithms of two symmetric power L-functions
under the assumption of the GRH. Their approach is based on [10] rather than on [11], though
the employed techniques are remarkably close to the ones we apply in §5. The results of
Matsumoto and Umegaki are complementary to ours, since the case of Sym1 f = f, which is
the main subject of our paper, could not be treated in [26].

1.2. Main results. In this article, we generalize to the case of modular forms the methods of
Ihara and Matsumoto to understand the average values of L-functions of Dirichlet characters
over global fields.
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Our results are obtained in two different setting. First, we consider the case of a fixed
modular form, while averaging with respect to its twists by Dirichlet characters. Our results
in this setting are fairly complete, though sometimes conditional on GRH. Second, we con-
sider averages with respect to primitive forms of given weight and level, when the level goes
to infinity.

Let us formulate our main results. A more thorough presentation of the corresponding
notation can found in §2 and in the corresponding sections.

Let Bk(N) denote the set of primitive cusp forms of weight k and level N, let f ∈ Bk(N),
and let χ be a Dirichlet character of conductor m coprime with N. Define L(f ⊗ χ, s) to be
either (L′/L)(f ⊗ χ, s) or logL(f ⊗ χ, s), put g(f ⊗ χ, s, z) = exp

(

iz
2
L(f, s)

)

. We introduce
lz(n) to be the coefficients of the Dirichlet series expansion g(f⊗χ, s, z) =

∑

n≥1

lz(n)n
−s. Using

the relations between the coefficients of the Dirichlet series expansion L(f, s) =
∑

n≥1

ηf (n)n
−s,

one can write lz(n) =
∑

x≥1

cNz,x(n)ηf (x), where c
N
z,x(n) depend only on the level N. Put cz,x(n) =

c1z,x(n).
In what follows, the expressions of the form f ≪ g, g ≫ f, and f = O(g) all denote that

|f | ≤ c|g|, where c is a positive constant. The dependence of the constant on additional
parameters will be explicitly indicated (in the form ≪ǫ,δ,... or Oǫ,δ,...), if it is not stipulated
otherwise in the text. We denote by vp(n) the p-adic valuation of n, writing as well pk ‖ n if
vp(n) = k. We also use the notation := or =: meaning that the corresponding object to the
left or to the right of the equality respectively is defined in this way.

Our main results are as follows.

Theorem (Theorem 3.1). Assume that m is a prime number and let Γm denote the group
of Dirichlet characters modulo m. Let 0 < ǫ < 1

2
and T,R > 0. Let s = σ + it belong to

the domain σ ≥ ǫ + 1
2
, |t| ≤ T, let z and z′ be inside the disk DR = {z | |z| ≤ R}. Then,

assuming the Generalized Riemann Hypothesis (GRH) for L(f ⊗ χ, s), we have

lim
m→∞

1

|Γm|
∑

χ∈Γm

g(f ⊗ χ, s, z)g(f ⊗ χ, s, z′) =
∑

n≥1

lz(n)lz′(n)n
−2σ =: M̃σ(−z̄, z′).

Theorem (Theorem 4.1). Let Re s = σ > 1
2
and let m run over prime numbers. Let Φ

be either a continuous function on C with at most exponential growth, or the characteristic
function of a bounded subset of C or of a complement of a bounded subset of C. Define Mσ

as the inverse Fourier transform of M̃σ(z, z̄). Then under GRH for L(f ⊗ χ, s) we have

lim
m→∞

1

|Γm|
∑

χ∈Γm

Φ(L(f ⊗ χ, s)) =

∫

C

Mσ(w)Φ(w)|dw|.

Theorem (Theorem 5.1). Assume that N is a prime number and that k is fixed. Let 0 <
ǫ < 1

2
and T,R > 0. Let s = σ + it belong to the domain σ ≥ ǫ+ 1

2
, |t| ≤ T, and z and z′ to

the disc DR of radius R. Then, assuming GRH for L(f, s), we have

lim
N→+∞

∑

f∈Bk(N)

ω(f)g(f, s, z)g(f, s, z′) =
∑

n,m∈N
n−s̄m−s

∑

x≥1

cz,x(n)cz′,x(m),

where ω(f) are the harmonic weights defined in §5.
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Finally, let us describe the structure of the paper. In §2 we introduce the notation and
some technical lemmas to be used throughout the paper. The §3 is devoted to the proof of
Theorem 3.1 on the mean values of the logarithms and logarithmic derivatives of L-functions
obtained by taking averages over the twists of a given primitive modular form. Using GRH,
we deduce it from Ihara and Matsumoto’s results. In §4 we study unconditionally the analytic
properties of M and M̃ functions in the above setting. We then prove an equidistribution
result (Theorem 4.1), which is, once again, conditional on GRH. In §5, we consider the
average over primitive forms of given weight k and level N, when N → ∞, establishing
under GRH Theorem 5.1. The orthogonality of characters is replaced by the Petersson
formula in this case, which obviously makes the proofs trickier. Finally, open questions,
remarks and further research directions are discussed in §6.

Acknowledgements.

We would like to thank Yasutaka Ihara for helpful discussions. The first author would
like to express his gratitude to the INRIA team GRACE for an inspirational atmosphere
accompanying his stay, during which a large part of this work was done.

2. Notation

The goal of this section is to introduce the notation necessary to state our main results.
We also prove some auxiliary estimates to be used throughout the paper.

2.1. The g-functions. Let N , k be two integers. We denote by Sk(N) the set of cusp forms
of weight k and level N, and by Snew

k (N) the set of new forms. For f ∈ Sk(N) we write

f(z) =
∞
∑

n=1

ηf (n)n
(k−1)/2e(nz) for its Fourier expansion at the cusp ∞, with the standard

notation e(nz) = e2πinz .
Let Bk(N) denote the set of primitive forms of weight k and level N, i.e. the set of fnor =

f/ηf(1) where f runs through an orthogonal basis of Snew
k (N) consisting of eigenvectors of

all Hecke operators Tn, so that the Fourier coefficients of the elements of Bk(N) are the same
as their Hecke eigenvalues. Note that for a primitive form f ∈ Bk(N) all its coefficients ηf (n)
are real.

The L-function of a primitive form f ∈ Bk(N) is defined as the Dirichlet series L(f, s) =
∞
∑

n=0

ηf(n)n
−s. The series converges absolutely for Re s > 1, however, L(f, s) can be analyti-

cally continued to an entire function on C. It admits the Euler product expansion:

L(f, s) =
∏

p

Lp(f, s),

where, for any prime number p,

Lp(f, s) =

{

(1− ηf(p)p
−s + p−2s)

−1
if (p,N) = 1,

(1− ηf(p)p
−s)

−1
if p | N.

By the results of Deligne, these local factors can be written as follows ([14, Chapter 6] or
[20, Chapter IX, §7]):

Lp(f, s) =
(

1− αf(p)p
−s
)−1 (

1− βf (p)p
−s
)−1

, (2)
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where











|αf(p)| = 1, βf(p) = αf (p)
−1 if (p,N) = 1,

αf(p) = ±p− 1
2 , βf(p) = 0 if p ‖ N (that is p | N and p2 ∤ N),

αf(p) = βf (p) = 0 if p2 | N.

We are interested in the two functions















g(f, s, z) = exp

(

iz

2

L′(f, s)

L(f, s)

)

,

G(f, s, z) = exp

(

iz

2
logL(f, s)

)

.

Define hn(x) and Hn(x) as the coefficients of the following generating functions:

exp

(

xt

1− t

)

=

+∞
∑

n=0

hn(x)t
n,

exp(−x log(1− t)) =
+∞
∑

n=0

Hn(x)t
n,

or, equivalently (cf. [11, §1.2]), as the functions given by h0(x) = H0(x) = 1 and, for n ≥ 1,

hn(x) =
n
∑

r=0

1

r!

(

n− 1

r − 1

)

xr,

Hn(x) =
1

n!
x(x+ 1) . . . (x+ n− 1).

As we have

iz

2

L′(f, s)

L(f, s)
= −iz

2

∑

p

αf(p)p
−s log p

1− αf (p)p−s
+
βf(p)p

−s log p

1− βf (p)p−s
,
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we can write (using the standard convention that, in the case when βf(p) = 0, we put
βf(p)

n = 0, if n > 0, and βf(p)
0 = 1):

g(f, s, z) = exp

(

iz

2

L′(f, s)

L(f, s)

)

=

=
∏

p

exp

(

αf(p)p
−s

1− αf (p)p−s
· −iz log p

2

)

exp

(

βf(p)p
−s

1− βf(p)p−s
· −iz log p

2

)

=

=
∏

p

(

∑

n

hn

(

−iz
2
log p

)

αf(p)
np−ns

)(

∑

n

hn

(

−iz
2
log p

)

βf(p)
np−ns

)

=

=
∏

p

(

+∞
∑

n=0

n
∑

r=0

hr

(

−iz
2
log p

)

hn−r

(

−iz
2
log p

)

αf(p)
rβf(p)

n−rp−ns

)

=

=
∏

p∤N

(

+∞
∑

n=0

n
∑

r=0

hr

(

−iz
2
log p

)

hn−r

(

−iz
2
log p

)

αf(p)
2r−np−ns

)

·

·
∏

p‖N

+∞
∑

n=0

hn

(

−iz
2
log p

)

αf (p)
np−ns =:

∏

p

+∞
∑

n=0

λz(p
n)p−ns.

In a similar way we get:

G(f, s, z) = exp

(

iz

2
logL(f, s)

)

=

=
∏

p

exp

(

−iz
2
log(1− αp(f)p

−s)

)

exp

(

−iz
2
log(1− βp(f)p

−s)

)

=

=
∏

p∤N

(

+∞
∑

n=0

n
∑

r=0

Hr

(

iz

2

)

Hn−r

(

iz

2

)

αf (p)
2r−np−ns

)

∏

p‖N

+∞
∑

n=0

Hn

(

iz

2

)

αf (p)
np−ns

=:
∏

p

+∞
∑

n=0

Λz(p
n)p−ns.

We extend multiplicatively λz and Λz to N so that we can write:

g(f, s, z) =
∑

n≥1

λz(n)n
−s,

G(f, s, z) =
∑

n≥1

Λz(n)n
−s.

We will use the notation L for
L′(f, s)

L(f, s)
or logL(f, s), g for g or G, hz(p

n) for hn
(

− iz
2
log p

)

or Hn

(

iz
2

)

, and l for λ or Λ depending on the case we consider. Thus, we can write in a
uniform way:
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g(f, s, z) = exp

(

iz

2
L(f, s)

)

=
∑

n≥1

lz(n)n
−s =

∏

p

+∞
∑

n=0

lz(p
n)p−ns =

=
∏

p∤N

(

+∞
∑

n=0

n
∑

r=0

hz(p
r)hz(p

n−r)αf(p)
2r−np−ns

)

∏

p‖N

+∞
∑

n=0

hz(p
n)αf (p)

np−ns.

The coefficients lz(n) will be used to define the M̃ -functions in the case of averages over
twists of modular forms by Dirichlet characters.

2.2. The coefficients lz(n) and cz,x(n). In this subsection we will find a more explicit
expression for lz(n). For p ∤ N we will use the formula (see [30, (3.5)])

ηf(p
r) =

αf (p)
r+1 − βf(p)

r+1

αf(p)− βf(p)
,

which easily follows from (2). Taking into account that βf (p) = ᾱf(p), we have for r ≥ 2

ηf (p
r) =

αf(p)
r+1 − αf(p)

r+1

αf(p)− αf(p)
=

r
∑

i=0

αf(p)
iαf (p)

r−i
=

r
∑

i=0

αf (p)
r−2i =

= αf(p)
r + αf(p)

r
+

r−1
∑

i=1

αf(p)
r−2i = αf(p)

r + αf(p)
r
+

r−2
∑

i=0

αf(p)
r−2i−2 =

= αf(p)
r + αf(p)

r
+ ηf (p

r−2).

The above formula also holds for r = 1 if we put ηf(p
−1) = 0. From this we deduce that

αf(p)
r + βf (p)

r = ηf(p
r)− ηf(p

r−2).

Using the previous formula, we can write

lz(p
r) =

r
∑

a=0

hz(p
a)hz(p

r−a)αf(p)
2a−r

= hz(p
r
2 )2 +

⌊ r−1
2

⌋
∑

a=0

hz(p
a)hz(p

r−a)
(

αf(p)
r−2a + αf(p)

2a−r
)

= hz(p
r
2 )2 +

⌊ r−1
2

⌋
∑

a=0

hz(p
a)hz(p

r−a)
(

ηf(p
r−2a)− ηf (p

r−2a−2)
)

= hz(p
r
2 )2 − hz(p

r
2
−1)hz(p

r
2
+1) +

⌊ r−1
2

⌋
∑

a=0

(hz(p
a)hz(p

r−a)− hz(p
a−1)hz(p

r−a+1))ηf (p
r−2a)

=

⌊ r
2
⌋

∑

a=0

(hz(p
a)hz(p

r−a)− hz(p
a−1)hz(p

r−a+1))ηf(p
r−2a),

where we put hz(p
r
2 ) = hz(p

r
2
−1) = 0, if r is odd, and hz(p

a) = 0, if a < 0.
7



When p | N we have

lz(p
r) = hz(p

r)αf (p)
r = hz(p

r)ηf (p)
r = hz(p

r)ηf (p
r).

Denoting by P the set of prime numbers, for n =
∏

p∈P
pvp(n) put

IN(n) = {m ∈ N | vp(m) ≡ vp(n)mod 2 for p ∈ P, vp(n) = vp(m) if p | N}
and

JN(n) = {m ∈ IN(n) | vp(m) ≤ vp(n) for all p ∈ P}.
Note the following easy estimate ([3, Theorem 315]) in which τ(n) is the number of divisors
of n:

|JN(n)| =
∏

p|n

(⌊

vp(n)

2

⌋

+ 1

)

≤ τ(n) ≪ǫ n
ǫ. (3)

The previous computations may be summarized as follows:

lz(p
r) =

∑

x∈JN (pr)

cNz,x(p
r)ηf (x),

where

cNz,pa(p
r) =











hz(p
r−a
2 )hz(p

r+a
2 )− hz(p

r−a
2

−1)hz(p
r+a
2

+1), if p ∤ N and r ≡ amod 2,

hz(p
r), if p | N and r = a,

0, otherwise.

We have lz(n) =
∏

p|n
lz(p

vp(n)) and ηf(n)ηf (m) = ηf (nm) if (n,m) = 1, thus

lz(n) =
∏

p|n





∑

x∈JN (pvp(n))

cNz,x(p
vp(n))ηf (x)



 =
∑

x∈JN (n)

cNz,x(n)ηf(x),

with

cNz,x(n) =
∏

p|n
cN
z,pvp(x)

(pvp(n)).

Note that the coefficients cNz,x(n), IN(n), and JN(n) depend only on the level N and not
directly on the modular form f. Let us also define I(n) = I1(n), J(n) = J1(n), and cz,x(n) =
c1z,x(n). They will employed in the statement of Theorem 5.1, which is our main result on
averages over the set of primitive forms Bk(N).

Let B(a, R) = {z ∈ C | |z−a| < R} denote the open disc of radius R and center a ∈ C, let

B(a, R) be the corresponding closed disc. We also put DR = B(0, R). The following estimate
is used throughout the paper.

Lemma 2.1. For any ǫ > 0 and z ∈ DR we have |cNz,x(n)| ≪ǫ,R n
ǫ and |lz(n)| ≪ǫ,R n

ǫ.

Proof. To see this, recall ([11, 3.1.2]) that for any prime p
∣

∣

∣

∣

Hr

(

iz

2

)∣

∣

∣

∣

≤ Hr

( |z|
2

)

≤ hr

( |z|
2

)

≤ hr(|z| log p)
8



and
∣

∣

∣

∣

hr

(

−iz
2
log p

)∣

∣

∣

∣

≤ hr(|z| log p) ≤ exp
(

2
√

r|z| log p
)

,

thus in both cases |hz(pr)| ≤ exp
(

2
√

r|z| log p
)

. Using the concavity of the function
√
x,

we see that

|cNz,x(pr)| ≤ e2
√

r−a
2

|z| log pe2
√

r+a
2

|z| log p + e2
√

( r−a
2

−1)|z| log pe2
√

( r+a
2

+1)|z| log p

≤ e
2
√

|z| log p
(√

r−a
2

+
√

r+a
2

)

+ e
2
√

|z| log p
(√

r−a
2

−1+
√

r+a
2

+1
)

≤ e2
√

|z| log p
√
2r + e2

√
|z| log p

√
2r ≤ 2e2

√
2r|z| log p.

when p ∤ N. The above estimates on hz(p
r) also imply the same bound on cNz,x(p

r) when
p | N.

Now, denoting by ω(n) the number of distinct prime divisors of n and using once again
the concavity of

√
x, for n =

∏

p∈P
pvp(n) we have

log |cNz,x(n)| ≤
∑

p|n
(log 2 +

√

vp(n) log p
√
8R) ≪R





∑

p|n

√

vp(n) log p





√
8R

≪R

√

∑

p|n
vp(n) log p

√

ω(n) ≪R

√

logn

2 + log logn

√

log n,

since by [5, Sublemma 3.10.5] (which is classical in the case of N) we have

ω(n) ≪ logn

2 + log log n
. (4)

We thus conclude that |cNz,x(n)| ≪ǫ,R n
ǫ.

As for the second statement, we notice that the estimate (3) together with Deligne bound
|ηf(n)| ≤ τ(n) ≪ǫ n

ǫ imply lz(n) ≪ǫ |JN(n)| · nǫ · τ(n) ≪ǫ n
3ǫ. �

We conclude the section by the following trivial but useful lemma.

Lemma 2.2. We have lz(n) = l−z̄(n), and cNz,x(n) = cN−z̄,x(n).

Proof. The eigenvalues ηf (n) are all real, so the L-functions L(f, s) have Dirichlet series
with real coefficients. Thus the statement of the lemma follows from the definition of the
coefficients lz(n), and c

N
z,x(n). �

3. Average on twists

This section is devoted to the proof of an averaging result for twists of a given primitive
form. It is to a large extent based on the work of Ihara and Matsumoto [11], which provides
a general setting for the problem we consider.
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3.1. Setting. Let us fix a primitive cusp form f ∈ Bk(N) of weight k and level N. Let
χ : (Z/mZ)× → C× be a primitive character mod m, where (m,N) = 1. It is known (see [15,
Prop. 14.19 and Prop. 14.20]) that f ⊗ χ is a primitive form of weight k, level Nm2, and
nebentypus χ2. We consider the twisted L-function given by

L(f ⊗ χ, s) =
∏

p

Lp(f ⊗ χ, s),

where the local factors are defined as follows:

Lp(f ⊗ χ, s) =
(

1− αf(p)χ(p)p
−s
)−1 (

1− βf (p)χ(p)p
−s
)−1

,

with the notation of §2. It is an L-function of degree 2 and conductor Nm2, entire and
polynomially bounded in vertical strips. After multiplication by the gamma factor

γk(s) =
√
π2

3−k
2 (2π)−sΓ

(

s+
k − 1

2

)

,

it satisfies a functional equation [15, §5.11]. Its analytic conductor q(f ⊗ χ, s) is defined as
follows:

q(f ⊗ χ, s) = Nm2

(∣

∣

∣

∣

s+
k − 1

2

∣

∣

∣

∣

+ 3

)(∣

∣

∣

∣

s+
k + 1

2

∣

∣

∣

∣

+ 3

)

≤ Nm2(|s|+ k + 3)2.

Just as in §2 we use the following notation for modular forms with nebentypus:














g(f ⊗ χ, s, z) = exp

(

iz

2

L′(f ⊗ χ, s)

L(f ⊗ χ, s)

)

,

G(f ⊗ χ, s, z) = exp

(

iz

2
logL(f ⊗ χ, s)

)

.

We also write g(f ⊗ χ, s, z) to denote either of the above two functions.
If G is a function on a finite group K, let Avgχ∈K G(χ) denote the usual average

|K|−1
∑

χ∈K G(χ).

3.2. The M̃-function. We would like to understand the average over all Dirichlet characters
modm of the functions g(f ⊗χ, s, z), when m runs through large prime numbers. Ihara and
Matsumoto’s results apply in this case and we get the following theorem.

Theorem 3.1. Assume that m is a prime number. Let Γm denote the group of Dirichlet
characters modulo m. Let 0 < ǫ < 1

2
and T,R > 0. Let s = σ + it belong to the domain

σ ≥ ǫ + 1
2
, |t| ≤ T, let z and z′ be inside the disk DR. Then, assuming the Generalized

Riemann Hypothesis (GRH) for L(f ⊗ χ, s), in the notation of §2 we have

Avg
χ∈Γm

(

g(f ⊗ χ, s, z)g(f ⊗ χ, s, z′)
)

−
∑

(n,m)=1

lz(n)lz′(n)n
−2σ ≪ǫ,R,T,f m

− ǫ
2 . (5)

Moreover,

lim
m→∞

Avg
χ∈Γm

(

g(f ⊗ χ, s, z)g(f ⊗ χ, s, z′)
)

=
∑

n≥1

lz(n)lz′(n)n
−2σ.

10



Proof. We notice that g(f ⊗ χ, s, z) =
∑

n≥1

lz(n)χ(n)n
−s, where lz(n) are the coefficients

of g(f, s, z). We thus can deduce the theorem from [11, Theorem 1]. We can pass to the
situation treated in [11] by omitting the summand corresponding to the trivial character χ0

since in our case all the g(f ⊗ χ, s, z) are holomorphic for Re s > 1
2
. Thus, it is enough to

prove that the family l|z|≤R is uniformly admissible in the sense of Ihara and Matsumoto.
First of all, the property (A1), asserting that l|z|≤R(n) ≪ǫ n

ǫ, follows from Lemma 2.1.
The property (A2) states that g(f ⊗ χ, s, z) extend to holomorphic functions on Re s > 1

2
for any non trivial χ, which is true under GRH.

The property (A3) will be proven in the following lemma that will be used again in §5.
Lemma 3.2. Let f be a primitive form of weight N , and let χ be a primitive Dirichlet
character of conductor m coprime with N. Then, assuming GRH for L(f ⊗ χ, s), we have
for Re s ≥ 1

2
+ ǫ :

max(0, log |g(f ⊗ χ, s, z)|) ≪ǫ,R ℓ(t)
1−2ǫℓ(mNk)1−2ǫ,

where ℓ(x) = log(|x|+ 2), t = Im s.

Proof of the Lemma. First, the following estimates hold ([15, Theorems 5.17 and 5.19]) for
any s with 1

2
< Re s = σ ≤ 5

4
:

−L
′(f ⊗ χ, s)

L(f ⊗ χ, s)
= O

(

1

2σ − 1
(log q(f ⊗ χ, s))2−2σ + log log q(f ⊗ χ, s)

)

,

and

logL(f ⊗ χ, s) = O

(

(log q(f ⊗ χ, s))2−2σ

(2σ − 1) log log q(f ⊗ χ, s)
+ log log q(f ⊗ χ, s)

)

,

the implied constants being absolute.
Next, for the same range of s we have

log q(f ⊗ χ, s) ≪ log(mNk) + log(|t|+ 2) ≪ ℓ(mNk) + ℓ(t).

Thus we see that

log |g(f ⊗ χ, s, z)| = log

∣

∣

∣

∣

exp

(

iz

2
L(f ⊗ χ, s)

)∣

∣

∣

∣

= Re

(

iz

2
L(f ⊗ χ, s)

)

≪R |L(f ⊗ χ, s)|,

so
max(0, log |g(f ⊗ χ, s, z)|) ≪ǫ,R ℓ(t)

1−2ǫℓ(Nmk)1−2ǫ.

If σ ≥ 5
4
a much simpler estimate suffices. Indeed, using the fact that [15, (5.25)]

−L
′(f, s)

L(f, s)
=
∑

n

Λf(n)

ns
and logL(f, s) = −

∑

n

Λf(n)

ns log n
,

with Λf(n) supported on prime powers and Λf(p
n) = (αf(p)

n + βf(p)
n) log p, we see that

both
L′(f, s)

L(f, s)
and logL(f ⊗χ, s) are bounded by an absolute constant. Thus the conclusion

of the lemma still holds in this case. �

Thus Ihara and Matsumoto’s property (A3) is established (with a stronger bound than
required), since in our case N and k are fixed. So, the family we consider is indeed uniformly
admissible. �
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Remark 3.3. The estimate (5) should still be true if we omit the condition on m to be
prime. To prove it one establishes an analogue of Lemma 3.2, replacing χ with the primitive
character by which it is induced and estimating the bad factors of the L-function (with some
additional work required when m is not coprime with N). Then one uses once again [11,
Theorem 1], in which the first inequality is true without any restriction on the conductor.

Remark 3.4. The theorem should hold unconditionally for σ = Re s > 1 by orthogonality of
characters, all the series being absolutely convergent in this domain.

As a direct consequence, we obtain the following result on averages of the values of g. Put

M̃s(z1, z2) =

∞
∑

n=1

lz1(n)lz2(n)n
−2s.

Because of Lemma 2.1, the series converges uniformly and absolutely on Re s ≥ 1
2
+ ε,

|z1|, |z2| ≤ R, defining a holomorphic function of s, z1, z2 for Re s > 1
2
. Put

ψz1,z2(w) = exp

(

i

2
(z1w + z2w)

)

.

Corollary 3.5. Let m run over prime numbers. Then, assuming GRH,

lim
m→∞

Avg
χ∈Γm

ψz1,z2(L(f ⊗ χ, s)) = M̃σ(z1, z2).

Proof. By definition, we have :

ψz1,z2(L(f ⊗ χ, s)) = exp

(

i

2
z1L(f ⊗ χ, s)

)

exp

(

i

2
z2L(f ⊗ χ, s)

)

= g(f ⊗ χ, s,−z̄1)g(f ⊗ χ, s, z2).

By Theorem 3.1 we get

lim
m→∞

Avg
χ∈Γm

ψz1,z2(L(f ⊗ χ, s)) =
∑

n≥1

l−z̄1(n)lz2(n)n
−2σ.

Lemma 2.2 implies that l−z̄(n) = lz(n), so the corollary is proven. �

4. The distribution of L-values for twists

Our next result concerns the distribution of the values of logarithmic derivatives and
logarithms of L-functions of twists of a fixed modular form f . In this section the dependence
on f in ≪ will be omitted.

Recall that we have defined

M̃s(z1, z2) =

∞
∑

n=1

lz1(n)lz2(n)n
−2s,

the corresponding series being absolutely and uniformly convergent on Re s ≥ 1
2
+ ǫ, |z1| ≤

R, |z2| ≤ R. For σ ∈ R, we put M̃σ(z) = M̃σ(z, z̄).
Define the family of additive characters

ψz1,z2(w) = exp

(

i

2
(z1w + z2w)

)

.

12



We also let ψz(w) = ψz,z̄(w) = exp(iRe(zw̄)). Recall that the Fourier transform of φ : C → C,
φ ∈ L1 is defined as

Fφ(z) =
∫

C

φ(w)ψz(w)|dw| =
1

2π

∫

C

φ(w)eiRe(zw̄)|dw| = 1

2π

∫

R2

φ(w)ei(xx
′+yy′)dxdy,

where |dw| = 1

2π
dxdy, x = Rew, y = Imw, x′ = Re z, y′ = Im z.

The goal is to prove the following equidistribution result, which is an analogue of [11,
Theorem 4].

Theorem 4.1. Let Re s = σ > 1
2
and let m run over prime numbers. Let Φ be either a

continuous function on C with at most exponential growth, that is Φ(w) ≪ ea|w| for some
a > 0, or the characteristic function of a bounded subset of C or of a complement of a bounded
subset of C. DefineMσ as the inverse Fourier transform of M̃σ(z), Mσ(z) = FM̃σ(−z). Then
under GRH for L(f ⊗ χ, s) we have

lim
m→∞

Avg
χ∈Γm

Φ(L(f ⊗ χ, s)) =

∫

C

Mσ(w)Φ(w)|dw|. (6)

Remark 4.2. The above theorem should hold unconditionally for any σ > 1 and any contin-
uous function Φ on C, by virtue of Remarks 3.4 and (iv) of Corollary 4.12.

To prove this theorem we first construct the local M and M̃ -functions and establish their
properties. We then obtain a convergence result for partial M-functions Ms,P for finite sets
of primes P to a global function M . This allows us to prove some crucial estimates for
the growth of M. Finally, we deduce the global result using corollary 3.5. Our approach is
strongly influenced by that of Ihara and Matsumoto, the main ingredients being inspired by
the results of Jessen and Wintner [18] that we have to adapt to our situation.

All the results below, except from the proof of Theorem 4.1 itself, do not depend on GRH.

4.1. The functions Ms,P and M̃s,P . Let Re s = σ > 0. Define the functions on Tp = C1 =
{t ∈ C | |t| = 1} by

gs,p(t) =
−(log p)α(p)p−st

1− α(p)p−st
+

−(log p)β(p)p−st

1− β(p)p−st
,

and

Gs,p(t) = − log(1− α(p)p−st)− log(1− β(p)p−st).

As before, we let gs,p denote either gs,p or Gs,p, depending on the case we consider. We note
that the local factor of the L-function is 1 once p2 | N, so we can omit such primes from our
considerations.

Denote by fp(z) the expression

−(log p)α(p)z

1− α(p)z
+

−(log p)β(p)z

1− β(p)z
or − log(1− α(p)z)− log(1− β(p)z).

in the log′ and log case respectively. Note that if p ∤ N, fp(z) = − log p · ηf (p)z − 2z2

1− ηf(p)z + z2
or

− log(1 − ηf(p)z + z2) respectively. The functions fp(z) are holomorphic in the open disc
|z| < 1. We obviously have gs,p(t) = fp(p

−st).
13



For a prime number p, let Tp = C1 be equipped with the normalized Haar measure

d×t =
dt

2πit
. If P is a finite set of primes, we let TP =

∏

p∈P
Tp and we denote by d×tP the

normalized Haar measure on TP . Put also gs,P =
∑

p∈P
gs,p.

We introduce the local factors M̃s,p(z1, z2) via

M̃s,p(z1, z2) =
+∞
∑

r=0

lz1(p
r)lz2(p

r)p−2rs. (7)

The series is absolutely and uniformly convergent on compacts in Re s > 0 by Lemma 2.1.
Put M̃s,P (z1, z2) =

∏

p∈P
M̃s,p(z1, z2). We also define M̃σ,p(z) = M̃σ,p(z, z̄), and M̃σ,P (z) =

M̃σ,P (z, z̄).

Lemma 4.3. (i) The function M̃s,P (z1, z2) is entire in z1, z2.
(ii) We have

M̃s,p(z1, z2) =

∫

C1

exp

(

i

2
(z1gs,p(t

−1) + z2gs,p(t))

)

d×t.

In particular,

M̃σ,p(z1, z2) =

∫

C1

ψz1,z2(gσ,p(t))d
×t, and M̃σ,p(z) =

∫

C1

exp(iRe(gσ,p(t)z̄))d
×t.

(iii) The “trivial” bound |M̃σ,p(z)| ≤ 1 holds.

Proof. (i) This is a direct corollary of the absolute and uniform convergence of the series of
analytic functions (7), defining M̃s,p(z1, z2).

(ii) It is clear from the definitions that exp

(

iz

2
gs,p(t)

)

=

∞
∑

r=0

lz(p
r)(p−st)r. So, the state-

ment is implied by the fact that M̃s,p is the constant term of the Fourier series expansion of
exp

(

i
2
(z1gs,p(t

−1) + z2gs,p(t))
)

.
(iii) Obviously follows from (ii). �

For the sake of convenience in what follows we will identify a function on R2 with the
Radon measure or the tempered distribution it defines, when the latter make sense. We
will also regard the Fourier transform or the convolution products as being defined via the
corresponding distributions. We refer to [18, §2, §3] for more details.

Proposition 4.4. (i) There exists a unique positive measure Mσ,P of compact support
and mass 1 on C ≃ R2 such that

Mσ,P (Φ) =

∫

TP

Φ(gs,P (tP ))d
×tP

for any continuous function Φ on C.
(ii) FMσ,P = M̃σ,P (z).
(iii) There exists a set of primes Pf of positive density such that, for all p ∈ Pf ,

M̃σ,p(z) ≪p,σ (1 + |z|)− 1
2 .
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(iv) Let P be a set of primes. If |P∩Pf | > 4, thenMσ,P admits a continuous density (still
denoted by Mσ,P ) which is an L1 function. The function Mσ,P satisfies Mσ,P (z) =
Mσ,P (z̄) ≥ 0.

(v) Mσ,P is of class Cr once |P ∩ Pf | > 2(r + 2).

Proof. (i) The uniqueness statement is obvious and the existence is given by the direct
image measure (gs,P )∗(d

×tP ). The volume of an open set U of R2 is thus given byMσ,P (U) =
Vol(g−1

s,P (U)), therefore Mσ,P has compact support equal to the image of gs,P and mass 1.

From the formula Ms,P (Φ) =

∫

TP

Φ(gs,P (tP ))d
×tP , it is clear that Ms,P depends only on σ,

since Haar measures on TP are invariant under multiplication by pi Im(s).
(ii) From the definition of the convolution product we note that, regarded as distributions

with compact support, Mσ,P = ∗p∈PMσ,p.

Next, FMσ,P = F(∗p∈PMσ,P ) =
∏

p∈P FMσ,p. From Lemma 4.3 we see that M̃σ,P (z1, z2) =

Mσ,P (ψz1,z2), and for the Fourier transforms of tempered distributions on C ≃ R2 we have

FMσ,p(φ) =Mσ,p

(
∫

C

ψz(w)φ(w)|dw|
)

=

∫

Tp

∫

C

ψgs,p(t)(w)φ(w)|dw|d×t

=

∫

C

∫

Tp

ψgs,p(t)(w)φ(w)d
×t|dw| =

∫

C

Mσ,p(ψz(w))φ(w)|dw|

=

∫

C

Mσ,p(ψw(z))φ(w)|dw| =
∫

C

M̃σ,p(w)φ(w)|dw|.

We deduce that FMσ,P = M̃σ,P (z).
(iii) This is the most delicate part. Unfortunately, we cannot apply Jessen–Wintner the-

orem [18, Theorem 13] to fp(z), since ρ0 (in the notation of the latter theorem) depends on
p. Therefore, we need to establish the following explicit version of their result.

Lemma 4.5. Let ρ > 0 and let F (z) =
∑

k≥1

akz
k be absolutely convergent for |z| < ρ + ǫ,

ǫ > 0. Let S ⊂ C denote the parametric curve {S(θ)}θ∈[0,1] = {F (re2πiθ)}θ∈[0,1]. Let Dr be
the distribution on C = R2 defined as the direct image of the normalized Haar measure on
the circle of radius r in C by F and let D̃r = FDr be its Fourier transform. Assume that
|a1| 6= 0. Then, if

ρ′′′ =
|a1|

√
2

(

∑

k≥2

k3|ak|ρk−2

) ,

for any r < ρ0 = min(ρ, ρ′′′) we have D̃r(z) ≪r,F (1 + |z|)− 1
2 .

Proof. Our goal is to make the proof of [18, Theorem 13] explicit in order to be able to
estimate ρ0. To do so, we will verify the conditions of [18, Theorem 12] by proceeding in
several steps.
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First of all, we want to ensure that F ′(z) 6= 0, and the curve S is Jordan. Put

ρ′ =
|a1|√

2
∑

k≥2

k|ak|ρk−2
.

If r < min(ρ, ρ′), we have F ′(z) 6= 0 for all z ∈ Dr = B(0, r), and F is injective on Dr. Indeed,

either |Re a1| or | Im a1| is greater than
|a1|√
2
. Without loss of generality we can suppose that

|Re a1| ≥
|a1|√
2
. Then

|ReF ′(z)| ≥ |Re a1| − |z|
∑

k≥2

k|ak|ρk−2 ≥ |a1|√
2
− |z|

∑

k≥2

k|ak|ρk−2 > 0

on Dr, in particular F ′(z) 6= 0. The sign of ReF ′(z) does not change as the function is
continuous, so once more, without loss of generality, we may assume that ReF ′(z) > 0.
Then, for z1 6= z2 two points in Dr, we have by convexity of Dr,

Re
F (z2)− F (z1)

z2 − z1
=

∫ 1

0

ReF ′(z1 + t(z2 − z1))dt > 0,

which proves the injectivity. Thus F is a conformal transformation and S is a Jordan curve.
The next step is to get a condition for the curve S to be convex. We use a well-known

criterion [29, Part 3, Chapter 3, 108], stating that S is convex if

Re
zF ′′(z)

F ′(z)
> −1

on |z| = r. The estimate
∣

∣

∣

∣

Re
zF ′′(z)

F ′(z)

∣

∣

∣

∣

≤ |zF ′′(z)|
|F ′(z)| ≤

|z|
∑

k≥2 k(k − 1)|ak|ρk−2

|a1| − |z|
∑

k≥2 k|ak|ρk−2
≤

|z|
∑

k≥2 k(k − 1)|ak|ρk−2

|a1|
(

1− 1√
2

)

for r < min(ρ, ρ′) implies that the condition is satisfied once the left-hand side is less than
one, that is

r < ρ′′ =
|a1|(2−

√
2)

2
∑

k≥2 k(k − 1)|ak|ρk−2
.

Now, the condition (i) of [18, Theorem 12] is satisfied for all r < ρ. As for (ii) we consider
the function

gτ (θ) =
∑

k≥1

|ak|rk cos 2π(kθ + γk − τ),

where τ ∈ [0, 1) is fixed and ak = |ak|e2πiγk . We have to prove that for r explicitly small
enough, its second derivative has exactly two roots on [0, 1). We compute

hτ (θ) = −g
′′
τ (θ)

4π2r
= |a1| cos 2π(θ + γ1 − τ) + r

∑

k≥2

j2|ak|rk−2 cos 2π(kθ + γk − τ),

so
h′τ (θ) = −2π|a1| sin 2π(θ + γ1 − τ)− 2πr

∑

k≥2

k3|ak|rk−2 sin 2π(kθ + γk − τ).
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Take now

r <
|a1|

√
2

(

∑

k≥2

k3|ak|ρk−2

) = ρ′′′.

Since
∑

k≥2

k3|ak|ρk−2 ≥
∑

k≥2

k2|ak|ρk−2, the function hτ can possibly have zeroes only on the

two intervals (modulo 1) containing ±1
4
− γ1 + τ mod 1 defined by the condition | cos 2π(θ+

γ1 − τ)| < 1√
2
. The same argument shows that hτ is positive at θ = −γ1 + τ mod 1 and

negative at θ = 1
2
+ τ − γ1mod1, and therefore it has at least one zero in each of these

intervals.
On the other hand, when | cos 2π(θ + γ1 − τ)| < 1√

2
, we see that

|h′τ (θ)| ≥ 2π|a1|| sin 2π(θ + γ1 − τ)| − 2πr
∑

k≥2

k3|ak|rk−2 > 2π|a1|
(

√

1− 1

2
− 1√

2

)

= 0,

showing that there is exactly one zero of hτ in each of the above intervals.
We thus can apply [18, Theorem 12], obtaining that the conclusion of the theorem holds

for r < ρ0 = min(ρ, ρ′, ρ′′, ρ′′′) = min(ρ, ρ′′′). �

By [28, Corollary 2 of Theorem 4], there exists a set P of positive density such that, for
all p ∈ P, |ηf(p)| > 1. We apply the above lemma to the functions F = fp, p ∈ P, defined by
absolutely convergent series for |z| < ρ+ ǫ, with ρ = ǫ = 1

2
, and to the radii rp = p−σ. In the

log case, the coefficient |a1| of the lemma is |ηf(p)|, whereas we have for any i, |ai| ≤ 2. In
the log′ case, the coefficients are all multiplied by log p : |a1| is |ηf(p)| log p and |ai| ≤ 2 log p.
Thus, for p such that p ∈ P and

p−σ <
1

8
√
2
∑

k≥2

k32−k
=

1

204
√
2
,

we have that M̃σ,p(z) = O
(

(1 + |z|)− 1
2

)

, proving thus (iii).

(iv), (v) By the Fourier inversion formula, we get FM̃σ,P (−z) =Mσ,P . It is well-known [18,
§3] that f = Fg is absolutely continuous and admits continuous density, once the integral
∫

C
|g(w)||dw| converges. Moreover, it possesses continuous partial derivatives of order ≤ p,

if the convergence holds for
∫

C
|z|p|g(w)||dw|. Thus, to deduce the regularity properties of

Mσ,P it suffices to bound the growth of M̃σ,P (z).

For the primes p /∈ Pf , we use the trivial bound |M̃σ,p(z)| ≤ 1 from Lemma 4.3. For all
the other p the bound from (iii) can be applied.

Now, the identity Mσ,P (z) =Mσ,P (z̄) is the consequence of (ii) together with the symme-

try M̃σ(z, z̄) = M̃σ(z̄, z). The positivity of Mσ,P (z) follows from the definition Mσ,P (U) =
Vol(g−1

σ,P (U)) together with the continuity that we have established. �

Let P denote the set of all prime numbers, Px = {p ∈ P | p ≤ x}.
Corollary 4.6. Given r > 0, y > 0, there exists C = C(y, r, f) such that M̃σ,Px\Py(z) =
O((1 + |z|)−r) and the function Mσ,Px\Py(z) is of class Cr for all x ≥ C.
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Proof. This comes directly from the fact that Pf has positive density, implying that there
exists C, such that if x ≥ C, then (Px \ Py) ∩ Pf contains more than 2r + 4 primes. �

Remark 4.7. The previous proposition is motivated by the following equidistribution result
that is essentially implied by [5, Lemma 4.3.1] applied to Ψ = Φ ◦ gσ,P :

lim
m→∞

Avg
χ∈Γm

Φ(LP (f ⊗ χ, s)) =

∫

TP

Φ(gσ,P (tP ))d
×tP ,

where Φ is a an arbitrary continuous function on C, LP is either the logarithm or the
logarithmic derivative of the corresponding partial product

∏

p∈P Lp(f⊗χ, s) for L(f⊗χ, s),
and χ runs through all Dirichlet character of prime conductor m 6∈ P. Note a difference in
the type of average considered in the aforementioned lemma with the one we use. The proof
stays the same, being an application of Weyl’s equidistribution criterion together with the
orthogonality of characters.

Note, however, that it is not at all obvious to pass from the local equidistribution result
to the global one. This also seems to give (after very significant effort) only a certain weaker
form of global averaging results (e.g.[5], [9]). Following later papers by Ihara and Matsumoto,
we use instead the convergence for particular test functions (quasi-characters, c.f. Theorem
3.1) and then deduce the general case, using the information on the resulting distributions
together with some general statements on convergence of measures.

4.2. Global results for M̃σ. Let us establish some global properties of M̃, in particular the
convergence of M̃σ,P to M̃σ. From now on we assume that Re s = σ > 1

2
, without mentioning

it in each statement.

Proposition 4.8. (i) The function M̃s(z1, z2) is entire in z1, z2.
(ii) We have the Euler product expansion

M̃s(z1, z2) =
∏

p

M̃s,p(z1, z2),

which converges absolutely and uniformly on Re s ≥ 1
2
+ ǫ and |z1|, |z2| ≤ R, for any

ǫ, R > 0.
(iii) M̃σ(z) = O((1 + |z|)−N) for all N > 0.

Proof. (i) This is a direct corollary of the absolute and uniform convergence of the series of
analytic functions, defining M̃s(z1, z2).

(ii) To prove the uniform convergence of the infinite product it is enough to establish it

for the sum
∑

p

|M̃s,p(z1, z2)− 1|. By Lemma 2.1 we see that

|M̃s,p(z1, z2) − 1| ≤
∞
∑

r=1

|lz1(pr)||lz2(pr)|p−2rσ ≪ǫ′,R

∞
∑

r=1

p(2ǫ
′−2σ)r ≤

∞
∑

r=1

p(−1−ǫ)r < 2p−1−ǫ.

which implies the convergence.
The limit of the infinite product equals M̃s. Indeed, the series for M̃s converges absolutely

and uniformly, thus the difference between M̃s and the partial product over primes p ≤ x,

which is
∑

n∈Sx

lz1(n)lz2(n)n
−2s, where Sx is the set of integers n divisible by at least one prime

strictly greater than x, tends to 0 as x→ ∞.
18



(ii) Note that for any two sets P ⊂ P ′ of primes, any z ∈ C,

|M̃σ,P ′(z)| ≤ |M̃σ,P (z)|.
Corollary 4.6 implies that one can find a finite set of primes P such that M̃σ,P (z) ≪
(1 + |z|)−N . This is enough to conclude. �

Remark 4.9. Along the same lines as in [10, 3.20], one proves a more precise estimate:
|M̃σ,p(z) − 1| ≪ |z|2p−2σ in the log case, and |M̃σ,p(z) − 1| ≪ |z|2p−2σ log p in the log′ case
with absolute constants in ≪ .

Remark 4.10. One should be able to write an explicit power series expansion of M̃s(z1, z2)

similar to the one in [11, §4, Theorem M̃ ].

4.3. Global results for Mσ.

Proposition 4.11. The sequence (Mσ,Px(z))x≫0 converges uniformly (as continuous func-

tions) to Mσ(z) := FM̃σ(−z). Moreover, for a fixed y, the sequence of continuous func-

tions (Mσ,Px\Py)x≫0 converges uniformly to the continuous function M
(y)
σ = ∗P\PyMσ,p :=

F
(

∏

p∈P\Py
M̃σ,p(−z)

)

, and we have Mσ(z) =Mσ,Py ∗M (y)
σ .

Proof. First of all, the notation x ≫ 0 is used to make sure that all the elements of the
sequence are continuous functions.

Fix ǫ > 0. One can find a closed disk Dr and x
′ large enough, so that for all P ′ ⊃ Px′ ,

∫

C\Dr

|M̃σ,P ′(w)||dw| < ǫ.

The sequence (M̃σ,Px(z)x≫0 converges uniformly to M̃σ(z) = M̃σ(z) on Dr by Proposition
4.8, thus we can find x′′ large enough to guarantee for x > max(x′, x′′),

‖FM̃σ(z)−FM̃σ,Px(z)‖∞ < 2ǫ.

This proves that (FM̃σ,Px(z))x≫0 = (Mσ,Px(−z))x≫0 converges uniformly to FM̃σ(z) =
Mσ(−z).

The same arguments apply if we remove Py from the set of all primes. Moreover, taking the

Fourier transform of M̃σ = M̃σ,Py×
∏

p/∈Py
M̃σ,p, we see thatMσ(z) =Mσ,Py ∗(∗P\PyMσ,p). �

Corollary 4.12. We have

(i) Mσ(z) =Mσ(z̄) ≥ 0;

(ii)

∫

C

Mσ(z)|dz| = 1;

(iii) Mσ(z) ∈ C∞ and the partial derivatives of Mσ,Px converge uniformly to those of Mσ;
(iv) If σ > 1, the support of Mσ is compact.

Proof. (i) This is obvious from the corresponding properties of Mσ,P .

(ii) Using the identity Mσ(z) = FM̃σ(−z), we see that

∫

C

Mσ(z)|dz| = M̃σ(0) = 1.

(iii) We note that, given p, there exists y0 such that for p > y0, Mσ,Py has continuous partial

derivatives up to order p. Now, letting D(a,b) =
∂a+b

∂az ∂bz̄
, we have D(a,b)(f ∗g) = (D(a,b)f)∗g, if
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f admits the corresponding partial derivative. The statement now follows from the uniform

convergence of M
(y)
σ,Px\Py

to M
(y)
σ .

(iv) Indeed, by the uniform convergence of Mσ,P to Mσ, and the fact that the support of
Mσ,P is equal to the image of gs,P , it is enough to prove that the latter is bounded for σ > 1.
This is true since the series

∑

p

p−σ converges for σ > 1. �

We will now obtain the rapid decay of Mσ à la Jessen–Wintner by proving the following
proposition, which is crucial for the proof of the main theorem of this section.

Proposition 4.13. For any λ > 0, Mσ(z) = Oσ,λ(e
−λ|z|2), as |z| → ∞. The same is true for

all its partial derivatives.

Proof. We adapt the proof of Jessen–Wintner [18, Theorem 16] to our specific case. The
proof is based on an argument of Paley and Zygmund.

Let σ > 1
2
and λ > 0 be fixed. Let p1 < · · · < pi . . . denote the sequence of all prime

numbers. Write Pj = {p1, . . . , pj}. We have

fp(z) =
∑

i≥1

ai,pz
i,

on the disk B(0, 1). By writing 1 − ηf(p)z + z2 = (1 − αf(p)z)(1 − βf (p)z), where |αf(p)|
and |βf (p)| are less than or equal to 1, we see that for all i, |ai,p| ≤ 2 log p in the log′ case
and ≤ 2 in the log case respectively.

Put rp = p−σ. Then the series
∑

p

|a1,p|2r2p converges, so that we can find q such that

d = 1− 2λ
∑

p>pq

|a1,p|2r2p > 0.

For n > q let us look at the partial sums

sn(θ1, . . . , θn) =

n
∑

j=1

fpj(rpje
iθj ) and tn(θq+1, . . . , θn) =

n
∑

j=q+1

a1,pjrpje
iθj ,

where θj ∈ [0, 2π]. We can bound the difference by

|sn(θ1, . . . , θn)− tn(θq+1, . . . , θn)| ≤
∣

∣

∣

∣

∣

q
∑

j=1

fpj(rpje
iθj )

∣

∣

∣

∣

∣

+

n
∑

j=q+1

∞
∑

k=2

|ak,pj |rkpj

≤
∣

∣

∣

∣

∣

q
∑

j=1

fpj(rpje
iθj )

∣

∣

∣

∣

∣

+ 2

n
∑

j=q+1

r2pj(1− rpj)
−1 log pj

≤
∣

∣

∣

∣

∣

q
∑

j=1

fpj(rpje
iθj )

∣

∣

∣

∣

∣

+ 8

+∞
∑

j=q+1

r2pj log pj

≤
q
∑

j=1

sup
ϑj∈[0,2π]

|fpj(rpjeiϑj )|+ 8

+∞
∑

j=q+1

r2pj log pj ≪ A(q)

as (1− rpj)
−1 ≤

√
2√

2− 1
. Here A depends only on q and not on n.
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By an inequality of Jessen [17, p. 290–291], writing |sn|2 ≤ 2|sn − tn|2 + 2|tn|2, we obtain
∫

TPn

exp(λ|sn(θ1, . . . , θn)|2)dθ1 . . . dθn

≤ e2λA(q)2
∫

TPn,q

exp(2λ|tn(θq+1, . . . , θn)|2)dθq+1 . . . dθn,

≤ e2λA(q)2

1− 2λ
n
∑

j=q+1

|a1,p|2r2pj

≤ e2λA(q)2d−1 = K. (8)

where Pn,q = Pn \ Pq. Noting that Mσ,Pn(e
λ|w|2) is just the left-hand side of (8), we deduce:

Mσ,Pn(e
λ|w|2) ≤ K,

where K is independent of n. Thus by Fatou lemma and Proposition 4.11 we conclude that
∫

C

Mσ(w)e
λ|w|2dw ≤ K.

Let us take y such that Mσ,Py is a continuous function. It is clear that if we remove all
the terms corresponding to p ≤ y, and take q > y large enough we obtain exactly the same

bound for the function M
(y)
σ = ∗p∈P\PyMσ,p :

∫

C

M (y)
σ (w)eλ|w|2dw ≤ K.

If Dρ = B(0, ρ), B = B(z, ρ) denote the corresponding closed discs, z /∈ Dρ, then

eλ(|z|−ρ)2
∫

B

M (y)
σ (w)|dw| =

∫

B

eλ(|z|−ρ)2M (y)
σ (w)|dw| ≤

∫

B

eλ|w|2M (y)
σ (w)|dw| ≤ K.

Let ρ be large enough, so that Dρ contains the support of Mσ,Py . Then

Mσ(z) = (Mσ,Py ∗M (y)
σ )(z) =

∫

C

Mσ,Py(w)M
(y)
σ (z − w)|dw| =

∫

Dρ

Mσ,Py (w)M
(y)
σ (z − w)|dw|

≤ sup
Dρ

Mσ,Py (w) ·
∫

C

M (y)
σ (z − w)|dw| ≤ Ke−λ(|z|−ρ)2 sup

Dρ

Mσ,Py (w).

As y, ρ, ρ are independent of z, we obtain that

Mσ(z) = O(e−λ|z|2).

According to Corollary 4.6, one can take y large enough so that Mσ,Py has continuous

partial derivatives of order up to p. We also have D(a,b)(f ∗ g) = D(a,b)(f) ∗ g = f ∗
D(a,b)(g). Thus, the same arguments as above imply that the required estimate holds for
partial derivatives of Mσ(z) of any order p. �

Corollary 4.14. The functions Mσ(z) and M̃σ(z) belong to the Schwartz space, that is they
go to zero as |z| → ∞ faster than any inverse power of |z|, as do all their derivatives.

Proof. The statement is clear for Mσ(z) by the above theorem. Now, M̃σ(z) = FMσ(−z).
Since F maps Schwartz functions to Schwartz functions the result follows. �
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Corollary 4.15.

M̃σ(z1, z2) =

∫

C

Mσ(w)ψz1,z2(w)|dw|.

Proof. Each side of the above equality is an entire function of z1, z2 (the left one by Propo-
sition 4.8, the right one by Proposition 4.13). These functions are equal when z2 = z̄1 by
Proposition 4.11, thus they must coincide for any z1, z2 ∈ C. �

Remark 4.16. The last corollary also follows from Theorem 4.1, however we prefer to give a
direct proof.

4.4. Proof of Theorem 4.1. We will apply Lemma A from [11, §5], which is a general
result that allows to deduce from the convergence of averages for a special class of functions
Φ, the same fact for more general Φ.

First of all, Corollaries 4.12 and 4.14 imply that Mσ is a good density function on R2 in
the sense of Ihara and Matsumoto, that is, it is non-negative, real valued, continuous, with
integral over R2 equal to 1, and such that both the function and its Fourier transform belong
to L1 ∩ L∞.

By 3.5 the identity (6) holds for any additive character ψz of C. Lemma A implies then
that (6) is true for any bounded continuous Φ, for the characteristic function of any compact
subset of R2 or of the complement of such a subset.

Now, let us take φ0(r) = exp(ar). Proposition 4.13 implies that
∫

C
Mσ(z)φ0(|z|)|dz|

converges. The same reasoning as in [11, §5.3, Sublemma] allows us to see that
Avgχ∈Γm

exp(a|L(f ⊗ χ, s)|) ≪ 1. This concludes the proof of Theorem 4.1.

5. Average on primitive forms

While working with modular forms it is analytically more natural to consider harmonic
averages instead of usual ones. One introduces the harmonic weight

ω(f) =
Γ(k − 1)

(4π)k−1(f, f)N
,

where

(f, f)N =

∫

Γ0(N)\H
|f(z)|2ykdx dy

y2

is the Petersson scalar product, H = {z ∈ C | Im z > 0}. We denote by Avgh

f∈Bk(N)

G(f) the

harmonic average

Avgh

f∈Bk(N)

G(f) =
∑

f∈Bk(N)

ω(f)G(f).

It can be proven [16, Corollary 2.10 for m = n = 1] that for squarefree N we have

∑

f∈Bk(N)

ω(f) =
ϕ(N)

N
+O

(

τ(N)2 log(2N)

Nk5/6

)

, (9)

thus Avgh

f∈Bk(N)

is an average operator when ϕ(N)
N

→ 1.
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One has the following interpretation of ω(f) via the symmetric square L-functions [16,
Lemma 2.5]:

ω(f) =
2π2

(k − 1)NL(Sym2 f, 1)
. (10)

Theorem 5.1. Assume that N is a prime number and that k is fixed. Let 0 < ǫ < 1
2
and

T,R > 0. Let s = σ + it belong to the domain σ ≥ ǫ+ 1
2
, |t| ≤ T, and z and z′ to a disc DR.

Then, assuming GRH for L(f, s), for any δ > 0 we have

Avgh

f∈Bk(N)

(g(f, s, z)g(f, s, z′))−
∑

n,m∈N
n−s̄m−s

∑

x∈J(n)∩J(m)
(nm,N)=1

cz,x(n)cz′,x(m) ≪ǫ,R,T,δ,k N
−ǫ/2+δ,

and

lim
N→+∞

Avgh

f∈Bk(N)

(g(f, s, z)g(f, s, z′)) =
∑

n,m∈N
n−s̄m−s

∑

x∈J(n)∩J(m)

cz,x(n)cz′,x(m).

The convergence of the series is on the right-hand sides is uniform and absolute in the
above domains without the assumption of GRH.

Remark 5.2. In contrast to the situation, considered in Theorem 3.1, we see that the average
depends both on Re s and Im s. In fact, the independence of Im s in the case of averages
with respect to characters is the corollary of the invariance of Haar measures on C1 under
rotations.

Corollary 5.3. Under the conditions of the previous theorem we have

lim
N→+∞

Avgh

f∈Bk(N)

ψz1,z2(L(f, s)) = M̃h
s (z1, z2) =

∑

n,m∈N
n−s̄m−s

∑

x∈J(n)∩J(m)

cz1,x(n)cz2,x(m).

Proof. We have

ψz1,z2(L(f, s)) = g(f, s,−z1)g(f, s, z2),
so

lim
N→+∞

Avgh

f∈Bk(N)

ψz1,z2(L(f, s)) =
∑

n,m∈N
n−s̄m−s

∑

x∈J(n)∩J(m)

c−z̄1,x(n)cz2,x(m).

The corollary follows from the equality c−z̄,x(n) = cz,x(n) which is implied by Lemma 2.2. �

5.1. Naive approach. In this subsection we try to estimate the average in a naive way via
Euler products. This approach works for Re s large enough and gives a formula which turns
out to be valid for more general s. The intermediate calculations will be used again in §5.3.
All the estimates are written assuming only that N is squarefree and not assuming that k is
fixed until the very end of §5.3.

We have

Avgh

f∈Bk(N)

(g(f, s, z)g(f, s, z′)) =
∑

f∈Bk(N)

ω(f)
∑

n,m≥1

n−s̄m−slz(n)lz′(m).

Let τk(n) = |{(d1, . . . , dk) ∈ Nk | d1 · · · · · dk = n}|. We will use a version of the Petersson
formula proven in [16, Corollary 2.10]. Note that our weights are slightly different from those
used in [16], we follow instead [30] in our normalization.
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Proposition 5.4. If N is squarefree, (m,N) = 1, (n,N2) | N, then

S(m,n) =
∑

f∈Bk(N)

ω(f)ηf(m)ηf (n) =
ϕ(N)

N
δ(m,n) + ∆(m,n),

where δ(m,n) is the Kronecker symbol and

∆(m,n) = O
(

k−
5
6 (mn)

1
4N−1(n,N)−1/2τ(N)2τ3((m,n)) log(2mnN)

)

,

the implied constant being absolute.

The conditions of this proposition are in particular satisfied once (nm,N) = 1. We will
also use the following trivial bound, when (m,N) 6= 1 :

|S(m,n)| ≤
∑

f∈Bk(N)

ω(f)
τ(m)τ(n)
√

(m,N)
=

(

ϕ(N)

N
+O

(

τ(N)2 log(2N)

Nk5/6

))

τ(m)τ(n)
√

(m,N)
, (11)

which holds by virtue of (9) and the fact that |ηf(m)| ≤ τ(m)
√

(m,N)
since N is squarefree.

Obviously, the corresponding bound is also true if we assume instead that (n,N) 6= 1.

Remark 5.5. In what follows, one can possibly soften our restrictions on N (in particular,
remove the assumption that N → ∞) by using more elaborate bounds on the sums in the
case when (mn,N) 6= 1, applying directly the construction of an explicit basis of Sk(N) from
Bk(N), in a way similar to [16, Proposition 2.6].
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Using the above estimates, we can write

Avgh

f∈Bk(N)

(g(f, s, z)g(f, s, z′)) =
∑

f∈Bk(N)

ω(f)
∑

n,m

n−s̄m−slz(n)lz′(m)

=
∑

n,m

n−s̄m−s
∑

f∈Bk(N)

ω(f)lz(n)lz′(m)

=
∑

n,m

n−s̄m−s
∑

x∈JN (n),y∈JN (m)

cNz,x(n)c
N
z′,y(m)

∑

f∈Bk(N)

ω(f)ηf(x)ηf (y)

=
∑

n,m

n−s̄m−s
∑

x∈JN (n),y∈JN (m)
(xy,N)=1

cNz,x(n)c
N
z′,y(m)

(

δ(x, y)
ϕ(N)

N
+∆(x, y)

)

+
∑

n,m

n−s̄m−s
∑

x∈JN (n),y∈JN (m)
(xy,N)6=1

cNz,x(n)c
N
z′,y(m)

∑

f∈Bk(N)

ω(f)ηf(x)ηf (y)

=
ϕ(N)

N

∑

n,m

n−s̄m−s
∑

x∈JN (n)∩JN (m)
(x,N)=1

cNz,x(n)c
N
z′,x(m)

+
∑

n,m

n−s̄m−s
∑

x∈JN (n),y∈JN (m)
(xy,N)=1

cNz,x(n)c
N
z′,y(m)∆(x, y)

+
∑

n,m

n−s̄m−s
∑

x∈JN (n),y∈JN (m)
(xy,N)6=1

cNz,x(n)c
N
z′,y(m)S(x, y).

The fact that the sum can be subdivided into three parts will be justified by the absolute
convergence of the series for Re s large enough.

Put M̃(s) =
∑

n,m

n−s̄m−s
∑

x∈JN (n)∩JN (m)
(x,N)=1

cNz,x(n)c
N
z′,x(m). Let us first note that the sum does

not depend on N, since cNz,x(n) = cz,x(n) if (n,N) = 1, and the coefficient cNz,x(n) van-

ishes, once we have both (x,N) = 1, and (n,N) 6= 1. This allow us to write M̃(s) =
∑

n,m

n−s̄m−s
∑

x∈J(n)∩J(m)
(nm,N)=1

cz,x(n)cz′,x(m).

Our goal is to verify that M̃(s) gives the principal term of the asymptotic behaviour of

m(s, z, z′). Ifm /∈ I(n), which is equivalent to I(m) 6= I(n), the term cz,x(n)cz′,x(m) vanishes.
Therefore,

M̃(s) =
∑

n∈N, (nm,N)=1
m∈I(n)

n−s̄m−s
∑

x∈J(n)∩J(m)

cz,x(n)cz′,x(m).

Let us define r−(n) to be the largest square dividing n, and r+(n) to be the least square

divisible by n. So, if n = pk11 . . . pkll , we have

n = pk1 mod 2
1 . . . pkl mod 2

l r−(n)
2, r+(n)

2 = pk1 mod 2
1 . . . pkl mod 2

l n,
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and the squarefree part of n is equal to

pk1 mod 2
1 . . . pkl mod 2

l =
r+(n)

r−(n)
.

Using this notation, we can write for s = σ + it

M̃(s) =
∑

n≥1

∑

r≥1

n−σ+it

(

r+(n)

r−(n)

)−σ−it

r−2s
∑

x∈J(n)∩J(m)
(mn,N)=1

cz,x(n)cz′,x

(

r+(n)r
2

r−(n)

)

=
∑

n,r≥1

r+(n)
−2σr−(n)

2itr−2s
∑

x∈J(n)
(mn,N)=1

cz,x(n)cz′,x

(

r+(n)r
2

r−(n)

)

, (12)

so

|M̃(s)| ≤
∑

n,r≥1

(r+(n))
−2σr−2σ

∑

x∈J(n)
(mn,N)=1

|cz,x(n)|
∣

∣

∣

∣

cz′,x

(

r+(n)r
2

r−(n)

)∣

∣

∣

∣

.

There are 2ω(n)−1 = 2l−1 different n giving the same r+(n). As ω(n) ≪ logn
2+log logn

by (4),

so 2l ≪ǫ n
ǫ, using Lemma 2.1 and (3) we see that the the sum M̃(s) converges absolutely

for Re s > 1/2 :

|M̃(s)| ≪ǫ

∑

n,r≥1

nǫ · n−2σ · r−2σ · nǫ · nǫ · r−2ǫ · nǫ =
∑

n≥1

n−2σ+4ǫ
∑

r≥1

r−2σ+2ǫ.

Let us now see what happens with the error term. If we put

∆(s) =
∑

n,m≥1

n−s̄m−s
∑

x∈JN (n),y∈JN (m)
(xy,N)=1

cNz,x(n)c
N
z′,y(m)∆(x, y),

from the Proposition 5.4 together with the estimate τ3(n) ≤ τ(n)3 ≪ǫ n
ǫ, and Lemma 2.1

we conclude that

|∆(s)| ≪ǫ
τ(N)2 logN

Nk5/6

∑

m,n≥1

(mn)−σ+ 1
4
+ǫ.

In a similar way, putting

∆′(s) =
∑

n,m≥1

n−s̄m−s
∑

x∈JN (n),y∈JN (m)
(xy,N)6=1

cNz,x(n)c
N
z′,y(m)S(x, y),

we get

|∆′(s)| ≪ǫ
1

√

pmin(N)

(

ϕ(N)

N
+O

(

τ(N)2 log(2N)

Nk5/6

))

∑

m,n≥1

(mn)−σ+ǫ,

where pmin(N) is the least prime factor of N.
These bounds only make sense for σ = Re s > 5/4, when the series converge. For these

values of s we conclude that the error terms tend to 0, once pmin(N) → ∞ (recall that we
assume N to be squarefree). In the next section we are going to show how the estimates can
be pushed to the left from Re s > 5/4.
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5.2. Integral representation. We introduce the following notation. Let 0 < ǫ′ < ǫ < 1
2
,

s ∈ C with σ = Re s ≥ 1
2
+ǫ, c > max(0, 1−σ), X ≥ 1 a parameter to be specified later. The

symbol ≪ will depend on ǫ, R, and T but this dependence will not be explicitly indicated.
As before, we assume only that N is squarefree (and not necessarily prime), and we do not
suppose k to be fixed. We will write g to denote g(f, s, z) when no ambiguity is possible.

We use the techniques from [11], though it would be possible to employ the approximate
functional equations instead, since they are available in our case. First, we establish the
analogues of the propositions proven in [11, §2.2].

Lemma 5.6. (i) For Re s ≥ 1

2
+ǫ we have g = g+−g−, where the holomorphic functions

g+ and g− are defined by

g+(f, s, z,X) =
1

2πi

∫

Rew=c

Γ(w)g(f, s+ w, z)Xwdw,

and

g−(f, s, z,X) =
1

2πi

∫

Rew=ǫ′−ǫ

Γ(w)g(f, s+ w, z)Xwdw.

(ii) The function g+ has a Dirichlet series expansion

g+ =

∞
∑

n=1

lz(n)e
− n

X n−s

which is absolutely and uniformly convergent on compacts in C.

Proof. The first statement admits exactly the same proof as the corresponding part of [11,
Proposition 2.2.1] with Ihara and Matsumoto’s property (A3) being replaced by Lemma 3.2
in our case.

As for the second statement, we have the Dirichlet series expansion

g(f, s, z) =

∞
∑

n=1

lz(n)n
−s.

Taking in account that σ + c > 1, we see that

g(f, s+ w, z) =
∞
∑

n=1

lz(n)n
−s−w

is absolutely and uniformly convergent with respect to Imw on Rew = c. Exchanging the
integration and summation and using

1

2πi

∫

Rew=c

Γ(w)a−wdw = e−a,

we obtain the desired expansion. The absolute and uniform convergence is clear for Lemma
2.1. �

In what follows we will estimate g+ on average, which will give the main term, the function
g− will on the contrary be estimated individually for each f. The following lemma bounds
g− in terms of the parameter X .
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Lemma 5.7. Let Re s ≥ 1/2+ǫ. Then for any f ∈ Bk(N), 0 < ǫ′ < ǫ, T > 0, for | Im(s)| ≤ T
we have

|g−(f, s, z,X)| ≪ǫ′ (NkX)ǫ
′

X−ǫ.

Proof. Once again our proof largely mimics that of [11, Proposition 2.2.13]. We need to
estimate the integral

g−(f, s, z,X) =
1

2πi

∫

Rew=ǫ′−ǫ

Γ(w)g(f, s+ w, z)Xwdw.

Clearly, |Xw| = Xǫ′−ǫ and it is well-known [11, (2.2.9)] that

Γ(w) ≪ | Imw|c−1/2 exp
(

−π
2
| Im(w)|

)

,

when | Imw| ≥ 1, Rew ≤ c, so in our case Γ(w) ≪ exp(−| Im(w)|). Lemma 3.2 ensures that,
putting u = Im(w) and t = Im(s), we have

log |g(f, s+ w, z)| ≪ ℓ(kN)1−2ǫ′ℓ(t + u)1−2ǫ′.

Therefore, there exists C = C(T, ǫ′) such that

|g(f, s+ w)| ≤ exp
(

Cℓ(Nk)1−2ǫ′(log(|u|+ 1))1−2ǫ′
)

≤ exp
(

Cℓ(Nk)1−2ǫ′ log(|u|+ 1)
)

.

So, by comparison with the Γ-integral, we have

|g−(f, s+ w, z,X)| ≪ Xǫ′−ǫ

∫ +∞

0

e−u(u+ 1)Cℓ(Nk)1−2ǫ′

du

≪ Xǫ′−ǫΓ(Cℓ(Nk)1−2ǫ′ + 1)

≪ Xǫ′−ǫ exp(Cℓ(Nk)1−2ǫ′ log(Cℓ(Nk)1−2ǫ′))

≪ Xǫ′−ǫ exp(C ′ℓ(Nk)1−2ǫ′ log(ℓ(Nk)))

≪ǫ′ X
ǫ′−ǫ exp(ǫ′ℓ(Nk)) ≪ Xǫ′−ǫ(Nk)ǫ

′

,

since for Nk large enough depending on T and ǫ′, C ′ℓ(Nk)−2ǫ′ log(ℓ(Nk)) < ǫ′ holds. �

5.3. Averaging. We now go back to averaging over primitive forms. We denote for sim-
plicity g = g(s, f, z), g′ = g(s, f, z′) and we adopt similar notation for g± and g′±.

First of all, using the decomposition established in §5.2, we note that

Avgh

f∈Bk(N)

(gg′) = Avgh

f∈Bk(N)

(g+g
′
+)− Avgh

f∈Bk(N)

(g+g
′
−)− Avgh

f∈Bk(N)

(g−g
′
+) + Avgh

f∈Bk(N)

(g−g
′
−).

Our first goal is to prove that the average

Avgh

f∈Bk(N)

(g+g
′
+) =

∑

f∈Bk(N)

ω(f)
∑

n,m≥1

n−s̄m−slz(n)lz′(m)e−
n+m
X .

gives the main term of the asymptotic behaviour. The calculations of §5.1 allow us to
decompose the above average as follows:

Avgh

f∈Bk(N)

(g+g
′
+) = M̃(s,X) + ∆(s,X) + ∆′(s,X), (13)
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with

M̃(s,X) =
ϕ(N)

N

∑

n,m

n−s̄m−se−
n+m
X

∑

x∈JN (n)∩JN (m)
(x,N)=1

cNz,x(n)c
N
z′,x(m),

∆(s,X) =
∑

n,m

n−s̄m−se−
n+m
X

∑

x∈JN (n),y∈JN (m)
(xy,N)=1

cNz,x(n)c
N
z′,y(m)∆(x, y),

∆′(s,X) =
∑

n,m

n−s̄m−se−
n+m
X

∑

x∈JN (n),y∈JN (m)
(xy,N)6=1

cNz,x(n)c
N
z′,y(m)S(x, y).

Noting that 0 < 1− e−a < min(a, 1) and fixing any α > 0, we see that

|M̃(s)− M̃(s,X)| = ϕ(N)

N

∣

∣

∣

∣

∣

∣

∣

∣

∑

n,m

n−s̄m−s(1− e−
n+m
X )

∑

x∈JN(n)∩JN (m)
(x,N)=1

cNz,x(n)c
N
z′,x(m)

∣

∣

∣

∣

∣

∣

∣

∣

≤ ϕ(N)

N

∑

n≤αX
m≤αX

n−σm−σn +m

X

∑

x∈JN (n)∩JN (m)
(x,N)=1

|cNz,x(n)||cNz′,x(m)|

+
ϕ(N)

N

∑

n≥αX
or

m≥αX

n−σm−σ(1− e−
n+m
X )

∑

x∈JN(n)∩JN (m)
(x,N)=1

|cNz,x(n)||cNz′,x(m)|.

The calculations of §5.1 together with the observation that (in the notation of (12))
r2r+(b)

2 = mn result in the following bound valid for any ǫ′′ > 0:

∑

n≥αX
or

m≥αX

n−σm−σ(1− e−
n+m
X )

∑

x∈JN (n)∩JN (m)
(x,N)=1

|cNz,x(n)||cNz′,x(m)|

≪ǫ′′

∑

(rs)2≥αX

(rs)−2σ+ǫ′′ ≪ǫ′′

∑

r≥
√
αX

r−2σ+ǫ′′ ≪ǫ′′ (αX)1/2−σ+ǫ′′/2,

while the absolute convergence of the series for M̃(s) implies

∑

n≤αX
m≤αX

n−σm−σn+m

X

∑

x∈JN (n)∩JN (m)
(x,N)=1

|cNz,x(n)||cNz′,x(m)| ≪ α.

Taking ǫ′′ small enough so that β = 1/2 − σ + ǫ′′/2 < 0 and α satisfying α = (αX)β, we
finally see that

|M̃(s)− M̃(s,X)| ≪ǫ′′
ϕ(N)

N
X

1/2−σ+ǫ′′/2

1/2+σ−ǫ′′/2 ≤ ϕ(N)

N
Xǫ′′/2−ǫ. (14)
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Now, let us turn to the second and the third terms in (13). Once again, applying the
estimates from §5.1 we see that for any ǫ′′ > 0

|∆(s,X)| ≪ǫ′′
τ(N)2 logN

Nk5/6

∑

m,n≥1

(mn)−σ+ 1
4
+ǫ′′e−

m+n
X ,

|∆′(s,X)| ≪ǫ′′
1

√

pmin(N)

(

ϕ(N)

N
+O

(

τ(N)2 log(2N)

Nk5/6

))

∑

m,n≥1

(mn)−σ+ǫ′′e−
m+n
X .

Bounding the sums via the corresponding improper integrals (cf. [11, proof of Proposition
2.2.13]), we get

|∆(s,X)| ≪ǫ′′
τ(N)2 logN

Nk5/6
X3/2+2ǫ′′−2ǫ, (15)

|∆′(s,X)| ≪ǫ′′
1

√

pmin(N)

(

ϕ(N)

N
+O

(

τ(N)2 log(2N)

Nk5/6

))

X1+2ǫ′′−2ǫ. (16)

In what follows, we will choose X (as a function of N) in such a way that the right-hand
sides in (14), (15), and (16) tend to 0. With this choice of X, taking z = z′ and using the

absolute convergence of M̃(s), we obtain

Avgh

f∈Bk(N)

|g+|2 ≪ǫ′′ 1, Avgh

f∈Bk(N)

|g′+|2 ≪ǫ′′ 1

Let us estimate the remaining terms involving g− and g′−. By Lemma 5.7 and (9)

Avgh

f∈Bk(N)

|g−|2 ≪ǫ′,T (NkX)2ǫ
′

X−2ǫ
∑

f∈Bk(N)

ω(f)

≤
(

ϕ(N)

N
+O

(

τ(N)2 log(2N)

Nk5/6

))

(NkX)2ǫ
′

X−2ǫ.

We apply the Cauchy–Schwartz to get

| Avgh

f∈Bk(N)

(g+g
′
−)|+ | Avgh

f∈Bk(N)

(g−g
′
+)|+ | Avgh

f∈Bk(N)

(g−g
′
−)|

≪ǫ′

(

ϕ(N)

N
+O

(

τ(N)2 log(2N)

Nk5/6

))

(NkX)2ǫ
′

X−ǫ, (17)

since (NkX)2ǫ
′ ≥ (NkX)ǫ

′

and X−2ǫ ≤ X−ǫ.
Let us now turn to the case considered in the theorem, by assuming that k is fixed and

N = p is prime. Assuming that ǫ′′ < 2ǫ, we have

|M̃(s)− M̃(s,X)| ≪ǫ′′ X
ǫ′′/2−ǫ,

|∆(s,X)| ≪ǫ′′
log p

p
X3/2+2ǫ′′−2ǫ,

|∆′(s,X)| ≪ǫ′′
1√
p
X1+2ǫ′′−2ǫ,

| Avgh

f∈Bk(N)

(g+g
′
−)|+ | Avgh

f∈Bk(N)

(g−g
′
+)|+ | Avgh

f∈Bk(N)

(g−g
′
−)| ≪ǫ′,k p

2ǫ′X2ǫ′−ǫ.
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Taking X = p1/2, we see that the above bounds lead to

| Avgh

f∈Bk(N)

g(f, s, z)g(f, s, z′)− M̃(s)| ≪δ p
−ǫ/2+δ,

where δ, which depends on ǫ′ and ǫ′′, can be taken arbitrarily small.
The second part of the theorem follows from the first.

6. Open questions and remarks

This section is devoted to a series of questions and remarks to complement the results of
the paper. We hope to address at least some of them in subsequent articles. We start by
the topics discussed in §3.
Question 6.1. Can Theorem 3.1 be proven in a greater generality?

For example, one can consider L-functions of more general automorphic cusp forms and
the average taken with respect to their twists by Hecke characters of imaginary quadratic
number fields or algebraic function fields with a fixed place at infinity. As indicated in
[11], going beyond imaginary quadratic number fields seems to be tricky since it involves
essentially new problems related to the presence of non-trivial units. One can also consider
averages over quadratic characters in the spirit of [27]

Question 6.2. What is an unconditional version of Theorem 4.1?

The unconditional results [10, Theorem 1] and [12, Theorem 1.1] suggest that it should
be possible to prove similar statements in our case.

Question 6.3. Prove an analogue of Theorem 4.1 for modular forms in the other situations
within the framework of the cases (A), (B), (C) discussed in the introduction.

Some results in this direction were established by Mastsumoto in [23] in the case (C), that
is the equidistribution of L(f, σ + it), when σ is fixed and t ∈ R varies. It seems, however,
that, even when considering averages of Dirichlet L-functions conditionally on GRH, this
question has not been fully investigated, the most advanced results having been obtain only
in the case (A).

Question 6.4. Carry out a more in-depth study of the functions M and M̃.

In the case of Dirichlet characters this was done in [6], [7]. One should be able to write

down an explicit power series expansion of M̃s(z1, z2) in the variables z1, z2, establish its
analytic continuation, study its growth, its zeroes, etc.

We next switch to the case of averages with respect to primitive forms of §5, where the
results are far less complete.

Question 6.5. Can one obtain Theorem 5.1 with weaker assumptions on N? Can we let k
tend to infinity, while N is fixed? Can we let k +N → ∞?

By following carefully the proof of Theorem 5.1, one can see that the limit statement is
still true when N = 1 and k → ∞. Indeed, in this case ∆′ is not present and the parameter
X cas be chosen to be equal to k1/2. This suggests that some greater generality should be
possible. The idea would be to use better bounds on averages of the Fourier coefficients of
cusp forms with indices not coprime with N, which should be possible by a careful treatement
of an explicit basis of the space of old forms in the spirit of [16]
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Question 6.6. Prove an unconditional version of Theorem 5.1.

Surprisingly enough, a crude reasoning with Euler products does not seem to work even
for Re s > 1. An unconditional version for Re s > 1/2 will certainly be tricky to obtain even
if one only considers characters ψz as in[10] and [12].

Question 6.7. Is it possible to establish value distribution results in the case harmonic aver-
ages over the set of primitive forms?

The reason we could not carry out the study analogous to that of §4 is the absence of a
local theory (at least in a straight-forward way). Indeed, the M̃s do not seem to admit an
Euler product in this case. One could hope to rely on the interpretation of ω(f) via the
symmetric square L-functions (10), though there does not seem to be an easy way to do
that.

Question 6.8. Can one remove the harmonic weights in Theorem 5.1?

At least two approaches are available. The papers [16], [21], [22] address a similar issue in
different situations by using the interpretation (10) of the weights via L(Sym2 f, 1).

A more conceptual way would be to construct the local theory first. The results of Serre
[31] on the equidistribution of the eigenvalues of Hecke operators Tp suggest that the local
picture should be fairly clear. This would allow to establish the value distribution results
missing in the case of harmonic averages. We plan to address this question in a forthcoming
paper.

Question 6.9. Can one prove Theorem 5.1 in greater generality for other types of automorphic
forms?

The first obvious step would be establishing it for L(f⊗χ, s). For more general L-functions
an appropriate trace formula would be necessary to replace Petersson.

Question 6.10. What is a function field version of Theorem 5.1?

The GRH being known in this case, unconditional results should not be very difficult to
establish along the lines of this paper, once proper definitions are given.

Question 6.11. Establish the properties of M̃ functions in the case of averages with respect
to primitive forms.

Some peculiarities do arise compared to the case of characters. For example, M̃s(z1, z2)
is no longer holomorphic in s, since the average does depend on s and s̄. The function
is still entire in z1, z2 for fixed s. Establishing its explicit power series expansion, analytic
continuation, etc. seems to be of interest. The growth properties of M̃ seem to be much
more delicate in our case, since they are proven using local results in the situation of Ihara
and Matsumoto.

Question 6.12. Write an adelic version of Ihara’s and Matsumoto’s results, as well as of our
results in the setting of modular forms.

This might shed some light on and give a better understanding of the functions M, M̃, as
well as of the relation of the global theory to the local one. One might also hope to be able
to deal with the problems related to units in the number field case (c.f. Question 6.1).
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Question 6.13. What are the arithmetic implications of our results?

The results of Ihara and Matsumoto give us a better understanding of the behaviour of the
Euler–Kronecker constants of cyclotomic fields. More generally, since the log case of averag-
ing results for Q concerns, in particular, zeta-functions of cyclotomic fields ζQ(ζm)(s), which
are simply the products of L(s, χ) over primitive Dirichlet characters of conductors dividing
m, the results of Ihara and Matsumoto can be seen as a first step in the development of a
finer version of the asymptotic theory of global fields from [32], that gives non-trivial results
for abelian extensions. This is not the case in [32], since infinite global fields, containing
infinite abelian subfields are asymptotically bad in the terminology of loc. cit.

When one takes averages with respect to primitive forms, the results are close in spirit to
the asymptotic study of zeta-functions of modular curves X0(N), that can be written as

ζX0(N)(s) =
∏

f∈B2(N)

L(f, s).

Establishing a precise relation boils down to answering Question 6.8.
Note that even a cruder version of the asymptotic theory in the spirit of [32] has not been

developed in this case. In the function field case this was to a significant extent done in
[33]. A higher dimensional asymptotic theory in the characteristic zero case is yet to be
constructed.
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